Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems

Brian E. Gilchrist
University of Michigan, Ann Arbor, MI
NASA Marshall Space Flight Center, Huntsville, AL
Penn State University, University Park, PA

1. The Near-Earth Space Environment varies over spatial and temporal scales, covering many orders of magnitude.
2. Cross-scale coupling between physics processes often plays an important role in the interaction, evolution, and interaction of each other.
3. Plasma waves and instabilities imply spatiotemporal complexity, which presents a challenge to separate temporal evolution from spatial propagation and deformation.

Example Technique Proven

- Direct Measurements of E||B in an auroral acceleration region
- Systematic Multipoint measurements of plasma density

The Science Question

What mechanisms are involved in control of E||B?

The Space Tether Solution

Space tethers can make simultaneous multiple measurements with a fixed separation in distance.

- Proven during TSS-1R
- Found asymmetries in density gradients within a large plasma bubble. Important for scintillation.

Example Technique Proven

- TSS-1R Orbiter data before and after a uniform time delay of 2.5 s is applied, thus aligning them with most of the prominent density structures at the satellite.

Enabling Technology

For Space Weather Tethers

- Tethers for CubeSats
 - Enables CubeSat with miniature plasma and/or field sensors
- ISS & CubeSat launches
 - Enables launch tethered CubeSat into low altitude orbit
- Sounding Rocket Tethers
 - Enables unique observations of plasma environment (e.g., E||B, plasma turbulence)

References