Recycling of oceanic lithosphere: Water, \(\dot{f}O_2 \) and Fe-isotope constraints

M. BIZIMIS\(^1\)*, A. H. PESLIER\(^2\), C. A. MCCAMMON\(^3\), S. KESHAV\(^4\), H. M. WILLIAMS \(^5\)

\(^1\)EOS, Univ. of South Carolina, Columbia, SC 29208, USA
\(^2\)Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA; anne.h.peslier@nasa.gov
\(^3\)Bayerisches Geoinstitut, Univ. of Bayreuth, GERMANY, catherine.mccammon@uni-bayreuth.de
\(^4\)Univ. of Montpellier, Montpellier, FRANCE
keshav@gm.univ-montp2.fr
\(^5\)Dept. of Earth Sciences, Durham U., Durham, UK
h.m.williams2@durham.ac.uk

Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling.

The peridotites have lower bulk \(H_2O \) (\(-70-114 \) ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher \(H_2O \) (200-460 ppm, up to 550 ppm accounting for phlogopite) and low \(H_2O/Ce \) ratios (<100). The peridotites have relatively light Fe-isotopes (\(\dot{\delta}^{57}Fe = -0.34 \) to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (\(\dot{\delta}^{57}Fe \) up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger than can be explained by existing melting models.

The high \(H_2O \) and low \(H_2O/Ce \) ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy \(\dot{\delta}^{57}Fe \) are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity.

The \(Fe^{3+}/\Sigma Fe \) systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (AFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (AFMQ = -2 to -0.4, at 20-25 kb). Such mineralogically and compositionally imposed \(\dot{f}O_2 \) gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity
This abstract is too long to be accepted for publication. Please revise it so that it fits into the column on one page.

and high electrical conductivity structures near the base of the lithosphere and upper mantle.