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A generic model of the aerodynamic coefficients was developed using wind tunnel
databases for eight different aircraft and multivariate orthogonal functions. For each
database and each coefficient, models were determined using polynomials expanded about
the state and control variables, and an othgonalization procedure. A predicted squared-
error criterion was used to automatically select the model terms. Modeling terms picked
in at least half of the analyses, which totalled 45 terms, were retained to form the generic
nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model
parameters and associated uncertainty that best fit the GNA model to each database. Non-
linear flight simulations were used to demonstrate that the GNA model produces accurate
trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic
behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories)
under large-amplitude excitation. This compact aerodynamics model can be used to de-
crease on-board memory storage requirements, quickly change conceptual aircraft models,
provide smooth analytical functions for control and optimization applications, and facilitate
real-time parametric system identification.

Nomenclature

Roman
a orthogonal model parameters
ax, ay, az body accelerations [G]
b wing span [ft]
CD, CY , CL aerodynamic force coefficients
Cl, Cm, Cn aerodynamic moment coefficients
CX , CZ longitudinal and heave coefficients
cov(.) covariance
c̄ mean aerodynamic chord [ft]
I inertia tensor [slug·ft2]
J(θ) least-squares cost function
L, M , N aerodynamic moments [ft·lbf]
m mass [slug]
N number of observations
n number of parameters
P orthogonal regressors
PSE predicted squared error
p, q, r roll, pitch, and yaw rates [rad/s]
q̄ dynamic pressure [lbf/ft2]
R correlation matrix
R2 coefficient of determination
S wing reference area [ft2]
T thrust [lbf]
t time [s]

V airspeed [ft/s]
X regressors
X, Y , Z aerodynamic forces [lbf]
xcg center of gravity position [ft]
y model output
z measurement

Greek
α angle of attack [rad]
β sideslip angle [rad]
δa, δe, δr aileron, elevator, rudder deflection [rad]
θ model parameters
ν measurement noise
Ξ candidate regressors
σ2 covariance
υ residual

Superscripts
˙ time derivative
T matrix transpose
˜ normalized rates [rad]
ˆ estimated value
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I. Introduction

Globally valid, high-fidelity aerodynamic models used in applications such as flight simulation and
feedback control design often come from wind tunnel test data in the form of databases of aerodynamic

coefficients, tabulated according to state and control variables. There are several disadvantages to modeling
aircraft aerodynamics in this manner. These databases are relatively large and encompass wide ranges
of the flight envelope with sufficient resolution to accurately model the global, nonlinear aerodynamics of
rigid-body aircraft. Large amounts of time, money, computational resources, and manpower are required
to produce these databases. Various sources of error can make the aerodynamic coefficient hyper-surfaces
appear ragged and discontinuous. This leads to problems when computing gradients for optimization, control
analysis, trimming, and generating linear models. There is also no clear approach to smoothly update regions
of the tables with new information from subsequent wind tunnel tests, computational fluid dynamics results,
or flight tests. The tabular nature of these databases also makes it difficult to gain physical insight into the
behavior of the aircraft by simple inspection.

Analytical models using functional expansions are often used to approximate the databases and address
those problems. However, it is not always clear which and how many terms should be included in the
models. Many works have used proper orthogonal decompositions,1 singular value decompositions,2,3, 4, 5, 6

or Chebyshev polynomials7 to generate basis functions that approximate the databases. These methods
however use many terms and the basis functions do not provide any physical insight into the aircraft dynamics.
Step-wise regression is often used to generate model structures, however this method is iterative and is time
consuming. Model terms can also be highly correlated, which causes inaccurate parameter estimates.

A relatively new technique that mitigates these problems is modeling aerodynamic data using multivariate
orthogonal functions (MOFs). A large pool of terms based on aircraft states and controls are transformed
into a set of orthogonal polynomials. The functions can be ordered in terms of importance in fitting the
data because they are orthogonal. A statistical metric is then used to select the number of model terms to
attain good accuracy without overparameterzing the model, which could increase uncertainty and decrease
predictive capability. Ordinary least-squares parameter estimation is used to identify model parameters.
This method has been successfully applied in several applications using flight-test data.8,9, 10

This modeling method currently must be applied to each aircraft to determine the appropriate model
structure and parameter estimates. However, conventional aircraft tend to behave similarly and it is expected
that a large number of aircraft can be modeled reasonably well using the same aerodynamic model structure
and only changing a few model parameters. Different types of aircraft could then quickly be changed for
analysis. This would be advantageous for flight simulators, conceptual designs, and control law verification
on different aircraft or using parametric uncertainties. The models are nonlinear and valid within large
regions of the flight envelope. The analytical model requires only small amounts of memory and can produce
smooth and differentiable data. With a known model structure, design of experiments can be used to lower
wind tunnel test time and costs. Parametric system identification methods such as equation error in the
frequency domain11,12,13 can also be used given a known model structure.

In this paper, a generic nonlinear aerodynamic (GNA) model is presented. Multivariate orthogonal func-
tions were used to generate models of the aerodynamic coefficients, approximating aerodynamic databases
generated from wind tunnel databases for eight different nonlinear flight simulations. Terms that were iden-
tified in at least half of the analyses are retained in the generic model. Ordinary least-squares parameter
estimation was then used with that model structure and the original aerodynamic databases to estimate
the model parameters for each aircraft. Substitution of these identified generic aerodynamic models back
into the flight simulations and excitation using dynamic maneuvers show that these models approximate the
databases well.

This paper is organized as follows. Section II presents the aerodynamic coefficients, ordinary least squares,
and model structure determination using multivariate orthogonal functions. Section III describes the eight
nonlinear flight simulations used to identify models. Section IV presents the generic aerodynamic model
structure, model parameters for the nonlinear simulations, and comparisons with the original aerodynamic
databases using dynamic maneuvers.

Computer programs for modeling with multivariate orthogonal functions, least-squares regression with
colored residuals, and the F-16C nonlinear simulation are all included in a MATLAB R©toolbox called System
IDentification Programs for AirCraft (SIDPAC).14 This software was developed at NASA Langley Research
Center and is continually expanded and improved upon.
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II. Methods

II.A. Aerodynamic Coefficients

Models were developed for the aerodynamic force and moment coefficients. These were computed from the
body-frame applied forces X, Y , Z and moments L, M , N as CD

CY

CL

 =
1

q̄S

 − cosα 0 − sinα

0 1 0

+ sinα 0 + cosα


 X

Y

Z


 Cl

Cm

Cn

 =
1

q̄S

 1/b 0 0

0 1/c̄ 0

0 0 1/b


 L

M

N

 (1)

where α is the angle of attack, q̄ is the dynamic pressure, S is the wing reference area, c̄ is the mean
aerodynamic chord, and b is the wing span. Drag and lift forces were used instead of body-frame longitudinal
and heave forces because the aerodynamics are natively written in the wind frame, which results in simpler
models. This form is appropriate when measuring forces and moments, for example during a wind tunnel
test. If instead flight test data are available, standard modeling assumptions can be used15,16,14 to compute
these as  CD

CY

CL

 =
1

q̄S

 − cosα 0 − sinα

0 1 0
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
 Ixxṗ− Ixz(pr + ṙ) + (Ixz − Iyy)qr

Iyy q̇ + (Ixx − Izz)pr + Ixz(p
2 − r2)

Izz ṙ − Ixz(ṗ− qr) + (Iyy − Ixx)pq

 (2)

where T is the engine thrust, ax, ay, az are linear accelerations, p, q, r are the body rates, m is the mass, and
{Iij} are elements of the inertia tensor.

II.B. Ordinary Least Squares

Consider the model

z = y + ν

= Xθ + ν (3)

for N measurements of z, where y is the model output, X = [ x1 x2 . . . xn ] is a matrix of n independent
regressor variables, θ is a vector of model parameters, and ν is the measurement error. The least-squares
cost function

J(θ) =
1

2
(z−Xθ)

T
(z−Xθ) (4)

is minimized by the solution

θ̂ =
(
XTX

)−1
XT z (5)

The uncertainties of the estimated parameters are

cov(θ̂) =
(
XTX

)−1

 N∑
i=1

x(i)

N∑
j=1

Rνν(i− j)xT (j)

(XTX
)−1

(6)

where Rνν is the autocorrelation of the residuals. This can be estimated as

R̂νν(k) =
1

N

N−k∑
i=1

υ(i)υ(i+ k) for k = 0, 1, 2, . . . , N − 1 (7)
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where
υ = z− y (8)

are the residuals.17,18,14 Equation (6) is necessary to accurately predict the uncertainties in this work
because of deterministic content left in the residuals due to model truncation.

There are two important problems with using ordinary least squares to estimate a generic aerodynamic
model for aircraft. The first is that in order to solve Eq. (5), the model structure must be known. Sometimes
prior knowledge can be used, other times step-wise regression can determine model structures using a variety
of statistical metrics. However, the model structure problem must be determined iteratively until a solution
is deemed sufficient. Another problem is that regressors typically have some level of correlation, either from
feedback control, small ranges in which variables are similar, or simply the motion of the aircraft. In these
cases, the least-squares estimator cannot correctly attribute variation to the correct regressor and the XTX
matrix becomes ill-conditioned. These problems make using ordinary least squares difficult for identifying
and estimating generic aircraft models from data.

II.C. Model Structure Determination using Multivariate Orthogonal Functions

The problems with ordinary least squares mentioned in the last section can be overcome by using multivariate
orthogonal functions. This method orthgonalizes the regressors so that their unique variations become
apparent. In the process, model terms can be ordered by the amount in which they lower the cost. Using
a statistical metric, the process can be automated to choose the most important terms that model the
measurement well without overparameterizing the model. This process has been successfully applied to
numerous research problems, documented in several references,8,9, 14 and is briefly summarized here.

The process begins by selecting a matrix of n candidate regressor variables Ξ = [ ξ1 ξ2 . . . ξn ] to
be orthogonalized. The orthogonal modeling functions are

p0 = 1

pj = ξj −
j−1∑
k=0

γkjpk j = 1, 2, . . . , n (9)

where for convenience the first function is selected as unity and then the remaining functions are defined
recursively. During this process, the coefficients

γkj =
pTk ξj
pTk pk

k = 0, 1, . . . , j − 1 (10)

are defined, which populate the upper-triangular matrix

G =


1 γ01 γ02 . . . γ0n

0 1 γ12 . . . γ1n

0 0 1 . . . γ2n
...

...
...

. . .
...

0 0 0 . . . 1

 (11)

The matrix G is a linear transform that orthgonalizes the candidate regressor variables as

P =
[

p0 p1 . . . pn

]
= ΞG−1 (12)

where pTi pj = 0 for i 6= j. The matrix PTP is diagonal and by applying Eq. (5), the orthgonal parameter
estimates are

âj =
(
pTj z

)
/
(
pTj pj

)
(13)

which depend only on the data and the regressor, and does not depend on the other model terms. Substituting
Eq. (13) back into Eq. (4), the least-squares cost function is8,14

J(â) =
1

2
zT z− 1

2

n∑
j=0

(
pTj z

)2
/
(
pTj p

)
(14)
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where the summation term is the value by which including that model parameter in the model reduces the
cost. By ordering the regressors in terms of this value, they are ordered in terms of their effectiveness in
modeling the data. Orthogonalizing the regressors has decoupled least-squares in that each model parameter
can be independently estimated and judged on how effective it is in reducing the cost function.

A metric called the predicted squared error

PSE =
1

N
(z− ŷ)

T
(z− ŷ) + σ2

max

n

N
(15)

can be employed to determine how many regressors should be retained in the final model.19,8, 14 The
first term is called the mean squared fit error (MSFE), which monotonically decreases with each additional
modeling term and penalizes the error in the model fit. The second term is the over-fit penalty (OFP), which
monotonically increases and guards against over-parameterizing the model, which leads to poor prediction
results. Since one term is always increasing and one is always decreasing, there is always a point at which
the PSE is minimized. Choosing this point for selecting the number of modeling terms results in good
models. The variance σ2

max is of the mean measurements, which is conservative in that it produces models
with minimal complexity. Once the minimum PSE is obtained, the final regressor variable matrix X can be
assembled, and ordinary least squares can be used as normal. This procedure is automated within a code
contained in SIDPAC.14

III. Aircraft Nonlinear Flight Simulations

Eight nonlinear simulations of different aircraft flight dynamics models were used. These aircraft simula-
tions and data are documented in several references.20,14,21 The aerodynamic data for these models comes
from static and forced-oscillation tests conducted at various wind tunnels at NASA Langley Research Center.

The aircraft used were the A-7, F-4, F-16C, F-16XL, F-106B, Generic Transport Model (GTM), Twin
Otter (TO), and X-31. The A-7 is a single-seat attack fighter. The F-4 is a two-seat fighter/bomber aircraft.
The F-16C is a single-seat, multi-role fighter aircraft. The F-16XL is an enhanced version of the F-16C
with a cranked-arrow delta wing configuration. The F-106B is a two-seat interceptor with a delta wing
configuration. The GTM is a sub-scale model of a typical transport-style aircraft. The TO is a commuter
style research aircraft. The X-31 is a single-seat research aircraft with a cranked delta wing configuration
and thrust-vectoring capability, used for research in highly agile flight. The majority of these aircraft are
agile aircraft capable of seating one or two pilots. There are two larger style transport aircraft.

The aerodynamic databases and nonlinear aircraft simulations were previously coded in MATLAB R©.20,14,21

Table 1 lists the mass and geometry properties for each of these aircraft. The longitudinal position of the
aircraft center of gravity xcg has been changed in some instances to make the simulations flyable without
feedback control. The simulations include routines for trimming the aircraft, generating linear models from
numerical finite-differences, computing aerodynamic coefficients from the states and surface deflections, and
simulating the dynamic response of the aircraft to control inputs.

IV. Results

This section presents the generic aerodynamic model, determined using the aforementioned methodology.
All aircraft simulations described in Section III were used in the analysis. For illustration, the GTM results
are highlighted because this is a well-known and high-fidelity simulation that is available to the public.

IV.A. Model Structure Determination

The aerodynamic databases were interrogated to obtain measurements of the aerodynamic coefficients at
different conditions. For computational tractability, this interrogation was performed separately for the
longitudinal and lateral/direction dynamics because typically these are only weakly coupled in normal flight
regimes. A total of 3168 longitudinal and 9072 lateral/directional cases were analyzed, using the ranges
and resolutions of independent variables listed in Table 2. The ranges selected remain within those used
during the wind tunnel testing used to develop the simulations, and also remain within the normal operating
envelope.22 The resolutions selected are similar to what was used in the wind tunnel testing to refrain from
artificially lowering the uncertainty on the estimation results. To lower the number of database interrogations,
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it was also assumed that the aircraft have lateral symmetry, for instance so that an aileron deflection in each
direction causes the same magnitude roll rate. During the longitudinal interrogation, all lateral/directional
states and deflections were set to null, and vice-versa.

For each aircraft, the procedure described in Section II was used to determine model structures for each
aerodynamic coefficient in Eq. (1) and then to estimate model parameters and uncertainties for those models.
Independent variables for the longitudinal interrogation were α, q̃, and δe, whereas β, p̃, r̃, δa, and δr were
used for the lateral/directional interrogations, where p̃

q̃

r̃

 =
1

2V

 b 0 0

0 c̄ 0

0 0 b


 p

q

r

 (16)

are the non-dimensional body rates, where V is the airspeed. Variables were taken in combinations up to
fourth order, e.g., 1, α, q̃, δe, αδe, α

2q̃δe, α
4, to form the candidate regressor pool. Mach effects were not

considered because the interrogations were restricted to subsonic velocities (M = 0.1) where the variation
in airspeed is removed using non-dimensional aerodynamic coefficients. Thrust effects were not considered
since they contribute only second-order interactions with the aerodynamics. Any additional control surface
deflections, such as flaps and canards, were set to null for this analysis.

Figure 1 shows the roll moment coefficient orthogonal function modeling results for the GTM. As more
functions are included in the model, the MSFE decreases and the OFP increases. The PSE is minimized when
the first ten orthogonal functions are included. However only nine functions were included because upon
further analysis, one of those functions was linearly dependent on another two. These functions, ordered in
importance to the model, are

X =
[

1 β δr p̃ δa β3 r̃ δ2r βδa

]
which had R2 = 0.9997 and συ = 0.0003, indicating a good fit. The fit for this model and the residuals are
shown in Figure 2. Data is shown for each interrogation because the roll coefficient is a multiple-dimension
hyper-surface. The plot points out the magnitude of the roll coefficient, shows the model fits the data very
closely, and illustrates the residuals are small.

×
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7
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PSE
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Figure 1. GTM roll coefficient modeling using multivariate orthogonal functions

Application of multivariate orthogonal function modeling resulted in different aerodynamic models for
each aircraft. Modeling terms that were used in at least half of the aircraft models were retained in the
GNA model. For instance, Figure 3 displays all the important modeling terms for the roll coefficient, as
well as the number of instances in which they were selected. The roll rate and aileron deflection were
selected for each of the eight aircraft, which is not surprising since these two variables comprise the first-
order roll mode approximation.15,16,14 The sideslip angle, yaw rate, and rudder deflection were selected
for seven out of the eight aircraft, which again is not surprising because these variables are coupled in
the linearized lateral/directional modes of conventional aircraft. The remainder of the modeling terms are
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Figure 2. GTM roll coefficient database interrogation and fitting using multivariate orthogonal functions

nonlinear variables that appear in less than half of the aircraft models. This disparity supports the decision
to use the majority, i.e. at least four of the eight, as a good cut-off point for selecting which modeling terms
are retained in the general nonlinear aerodynamic model.

This process was applied to all of the aerodynamic coefficients, and the final structure for the GNA model
is

CD = θ1 + θ2α+ θ3αq̃ + θ4αδe + θ5α
2 + θ6α

2q̃ + θ7α
2δe + θ8α

3 + θ9α
3q̃ + θ10α

4

CY = θ11β + θ12p̃+ θ13r̃ + θ14δa + θ15δr

CL = θ16 + θ17α+ θ18q̃ + θ19δe + θ20αq̃ + θ21α
2 + θ22α

3 + θ23α
4

Cl = θ24β + θ25p̃+ θ26r̃ + θ27δa + θ28δr

Cm = θ29 + θ30α+ θ31q̃ + θ32δe + θ33αq̃ + θ34α
2q̃ + θ35α

2δe + θ36α
3q̃ + θ37α

3δe + θ38α
4

Cn = θ39β + θ40p̃+ θ41r̃ + θ42δa + θ43δr + θ44β
2 + θ45β

3 (17)

which uses 45 model terms. With the exception of the drag coefficient, all the linear terms are present in the
aerodynamic coefficients. The sideforce and roll coefficients are strictly linear. The drag, lift, and pitching
moment coefficients are the most nonlinear, having terms ranging up to α4 to model variations due to stall.
The yaw coefficient is the only lateral/directional coefficient having nonlinear terms, where the β3 term is
used to model the asymmetric variations at higher sideslip.

IV.B. Parameter Estimation

Ordinary least-squares parameter estimation described in Section II was used to estimate the model param-
eters that best fit the GNA model in Eq. (17) to the aerodynamic database for each aircraft. Parameter
estimates and standard errors are reported for each aircraft in Tables 3 and 4. Together with the mass and
geometry properties provided in Table 1, this information can be used to build nonlinear flight simulations
of each of the aircraft in this paper.

When comparing the multivariate orthogonal function model to the GNA model, there are four possible
cases. The first case is that the models contain the same modeling terms, which results in the models
being the same. The second case is that the GNA model contains more terms than the MOF model. The
GNA model is overparameterized in this case, which results in variations of the parameter estimates, larger
uncertainties, and small values for the extra parameters. The third case is when the GNA model contains
fewer terms than the MOF model. In this case variations in the database are not captured by the GNA
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Figure 3. Modeling terms and instances for the roll coefficient model using aircraft multivariate orthogonal functions

model, which results in poorer fits to the data and larger error bounds. The fourth case is when different
variables are used to model the variation. While this shifts the modeling dependencies, it does not necessarily
lower the fit or increase the error on estimated parameters.

In general, the GNA model fit the aircraft aerodynamic databases well. The fits had ranges of R2 between
0.8676 and 1.0000, indicating good fits. For example, Figure 4 shows the fitting of the GNA model to the
database for the GTM roll coefficient. The GNA model has R2 = 0.9961 and συ = 0.0010, which fit the data
well. Compared with Figure 2, the residual is larger for the GNA model, which is due to the difference in
the model structures. This highlights one of the fundamental compromises with using reduced-order models,
that model simplicity is gained at the expense of model accuracy.

This GNA model can also be used for preliminary design and for testing control laws for a broad range
of aircraft. For instance, Figure 5 shows the parameter estimates and two standard deviation error bounds
of the model parameter θ30, which is the traditional pitching moment stiffness derivative Cmα

. All values
lie within the typical range −3 rad to +1 rad,23 and are consistent with results for previous aircraft.24,16

The fighters have lower values because they are designed with lower static margins than the GTM and
Twin Otter, which are transport and commuter style aircraft. The error bounds on the GTM and Twin
Otter estimates are higher than the other aircraft because the MOF analysis wanted to use more and other
parameters than those retained in the GNA model, which led to larger residuals and error bounds. For
an agile fighter type aircraft, select a value of Cmα

around −0.4, for a transport-type aircraft, pick a value
around −1.6 for conceptual design or testing. While these pitching moment stiffness terms are almost exactly
equal to those found by linearizing the models numerically, it should be noted that the longitudinal position
of the centers of mass have been artificially moved in the nonlinear simulations, per Table 1, so that normally
unstable aircraft can be flown without control laws by a pilot in the simulation.

IV.C. Validation

To validate the GNA models, they were substituted for the original aerodynamic databases in the nonlinear
flight simulations. The simulations were then excited using standard inputs for system identification. It was
a very quick procedure to replace large database files with six equations. The simulations were trimmed and
then large-amplitude doublets were applied to the elevator, aileron, and rudder control surfaces. Computer-
ized inputs were used instead of piloted inputs to help excite nonlinear responses.

Figure 6 shows the results for the GTM simulation. The time histories of the control inputs are shown
in Figure 6(a). The GTM was originally trimmed for straight and level flight at 1200 ft with a 125 ft/s
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Figure 4. GTM roll coefficient database interrogation and fitting using generic nonlinear aerodynamic model
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airspeed and 5.0 degree angle of attack using 15% throttle and 1.0 degree of elevator deflection. Using the
GNA model, the throttle and elevator trim settings changed to 12% and 1.8 degrees, respectively. These
trim conditions are very close, as seen in the starting values in Figure 6(a).

The time histories in Figure 6(a) are very close and had fits above R2 = 0.9094. Differences between the
time histories are attributed to using relatively small and low-order polynomial functions to approximate
the large aerodynamic database. Figure 6(b) shows the time histories of the aerodynamic coefficients, using
mass and geometry data in Table 1, Eq. (2), and the data in Figure 6(a). Again these time histories are very
similar, with fits above R2 = 0.8008, where the differences attributed to the differences in the aerodynamic
models. The global, nonlinear dynamic behavior is very close between the original wind tunnel database and
the compact GNA model.

Table 5 shows the modal parameters for the GTM about these trim conditions using both aerodynamic
sources, obtained using numerical central finite-difference approximations. The same modes are present and
the values reflect the approximate same modal behavior. The small differences in the results indicate that
the GNA model is an excellent approximation of the aerodynamic databases. Local linear models, handling
qualities, and modal parameters are very close between the database and GNA model.
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V. Conclusions

This paper presented a generic nonlinear aerodynamics model for aircraft. This was accomplished by
interrogating measured aerodynamic databases for eight aircraft over a large range of aerodynamic angles,
body rates, and control surface deflections. This data was then used with multivariate orthogonal function
modeling to determine nonlinear polynomial models for the aerodynamic coefficients. By minimizing the
predicted square error, these models are both accurate and simple. The GNA model structure are the
model terms deemed important in at least half of the analyses. Ordinary least squares was used to identify
model parameters that best match the GNA model structure to the interrogated database, and these were
substituted into nonlinear simulations of the aircraft to validate their accuracy. Values necessary for building
nonlinear flight dynamic simulations for all eight aircraft presented are contained within this paper.

A single, fixed aerodynamic model structure could accurately approximate large aerodynamic databases
for eight different aircraft, including fighter, fighter/bomber, research, commuter, and transport styles. It
was demonstrated using the GTM that by using this method, trim solutions are accurately computed, local
modal behavior is preserved, and 91% and 80% accuracy of large-amplitude state and aerodynamic coefficient
time histories are obtained.

Having a GNA model makes it very easy to perform analyses on different types of aircraft. Simulations
need only to switch 45 variables instead of large databases of aerodynamic measurements. Conceptual
designers can change a few parameters according to historical trends, rules of thumb, or first principles to
obtain dynamic flight simulations of new aircraft. Control law designers can change parameters to check
performance for a large range of aircraft. Having functional representations of the aerodynamics allows for
analytical derivation of derivatives for optimization applications. Having a known model structure facilitates
real-time parameter estimation techniques.

This work could potentially be improved by incorporating more aircraft, different configurations, and
larger ranges of the flight envelope into the analysis. If higher speeds are of interest, Mach effects could be
included in the pool of candidate regressors. Assumptions of longitudinal and lateral/directional decoupling
could be relaxed if more computational resources are available. In that case, it could be that some cross
variables, such as αβ, could model variations that are currently attributed to higher order nonlinear functions.
This work could also be extended to account for Mach variations, thrust and power effects, and variations
due to additional control effectors. Other methods of selecting the GNA model terms are also possible.
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Tables

Table 1. Aircraft simulation parameters

aircraft description weight Ixx Iyy Izz Ixz S c̄ b xcg

[lbf] [slug·ft2] [slug·ft2] [slug·ft2] [slug·ft2] [ft2] [ft] [ft] [ft]

A-7 fighter 22699 16970 65430 76130 4030 375 10.8 38.7 0.30

F-4 fighter/bomber 38924 24970 122190 139800 1175 530 16 38.67 0.29

F-16C fighter 20500 9496 55814 63100 982 300 11.32 30 0.25

F-16XL fighter 27867 18581 118803 135198 74 663 24.7 32.4 0.1

F-106B interceptor 29776 18634 177858 191236 5539 698 23.75 38.13 0.25

GTM transport 49.6 1.327 4.254 5.454 0.120 5.902 0.915 6.849 0.25

TO commuter 10747 20922 24231 38425 1021 420 6.5 65 0.12

X-31 agility 16000 3553 50645 49367 156 226.3 12.35 22.83 0.3

Table 2. Ranges and resolution for aerodynamic database interrogation

case variable minimum maximum resolution unit

α −4 +30 2 deg

longitudinal q +0 +50 5 deg/s

δe −20 +10 2 deg

β +0 +20 4 deg

p +0 +100 20 deg/s

lateral/directional r +0 +50 10 deg/s

δa +0 +10 2 deg

δr +0 +30 5 deg
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Table 5. Comparison of linearized Eigenvalues for the GTM

Mode Frequency [rad/s] Damping Ratio

Database GNA Database GNA

spiral 0.0498 0.0887 – –

phugoid 0.318 0.342 0.0517 0.0452

roll subsidence 5.28 5.44 – –

dutch roll 5.89 5.27 0.149 0.179

short period 6.64 6.49 0.455 0.351
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