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Data from extensive check standard tests of seven measurement processes in three NASA 
Langley Research Center wind tunnels are statistically analyzed to test a simple model 
previously presented in 2000 for characterizing short-term, within-test and across-test 
repeatability. The analysis is intended to support process improvement and development of 
uncertainty models for the measurements. The analysis suggests that the repeatability can be 
estimated adequately as a function of only the test section dynamic pressure over a two-
orders-of-magnitude dynamic pressure range. As expected for low instrument loading, 
short-term coefficient repeatability is determined by the resolution of the instrument alone 
(air off). However, as previously pointed out, for the highest dynamic pressure range the 
coefficient repeatability appears to be independent of dynamic pressure, thus presenting a 
lower floor for the standard deviation for all three time frames. The simple repeatability 
model is shown to be adequate for all of the cases presented and for all three time frames. 

Nomenclature 
14x22 LaRC 14- by 22-Foot Subsonic Tunnel 
A coefficient in model equation for instrument effective resolution 
AT across-test (variation of check standard test grand averages from test to test) 
B coefficient in model equation for standard deviation floor 
C  general force or pressure coefficient  
CA  axial-force coefficient 

CL  lift coefficient 

CN  normal-force coefficient 

CSM check standard model 
CSP check standard probe 
′C  calibration coefficient for the 14x22, DPC/DPI  

d4  bias correction factor for converting the median range to an estimate of the population standard 
deviation (Ref. 1) 

DOF number of degrees of freedom 

DPC 14x22 calibration probe differential pressure;  ptotal − pstatic , psf  

DPI 14x22 test section reference differential pressure; ptotal − pstatic , psf  
LaRC Langley Research Center 
LTPT LaRC Low-Turbulence Pressure Tunnel 
mRAT  moving range of within-test grand averages 

 mRAT  median of the moving ranges in a control chart of the within-test grand averages for a canonical 
test condition 

NTF National Transonic Facility 
q∞  free-stream dynamic pressure, psf or psi 

                                                             
* Consultant, 234 Par Drive, Associate Fellow. 
† Senior Aerospace Engineer, 30 Research Drive, Senior Member. 



 
American Institute of Aeronautics and Astronautics 

2

RWG   range of the values within a group 

 RWG  median of the RWG  in a control chart for a canonical test condition 
RWT  range of the group averages within a test 

 RWT  median of the RWT in a  control chart for a canonical test condition 
S   sample standard deviation 
Sref   reference area for force and moment coefficients 
WT within-test (variation of check standard group averages within a test) 
WG within-group (variation of a single check standard measurement within a group, i.e. back-to-

back) 
ρ  correlation coefficient 
σ  population standard deviation 
σ̂  estimate of the population standard deviation based on pooled samples 
σ C , AT  additional repeatability to be RMS added to σ C ,WG  and σ C ,WT for across-test measurements of 

coefficient C 
σ C ,WG  repeatability to be expected for C for short-term measurements; i.e. back-to-back 
σ C ,WT  additional repeatability to be RMS added to σ C ,WG  for within-test measurements of coefficient C 

σ̂ AT  
estimate of the repeatability standard deviation of the within-test coefficient grand averages; see 
Eq.(4) 

σ̂WT  
estimate of the repeatability standard deviation of the within-test coefficient group averages; see 
Eq.(3) 

σ̂WG  estimate of the repeatability standard deviation of the within-group coefficient values; see Eq.(2) 
 
Introduction 
In 1998, the NASA Langley Research Center (LaRC) began a campaign of check standard testing in most of its 
major wind tunnels. The purpose of check standard testing is to track the behavior of a wind tunnel’s measurement 
systems over time, including the short-term, within-test and across-test time frames. This is done using an artifact 
that is stable over time to provide a load on a measurement system. The actual load is not important, as long as it is 
steady, since it serves only to measure the instrument variation over time. The artifact should also not introduce 
variation that is not associated with the measurement process, e.g. unsteady flow. Typical artifacts used at LaRC are 
(1) wind tunnel models that are set aside for check standard testing only, (2) select pitot-static probes used to 
measure the test section conditions, and (3) chord-wise rows of pressures on wings. Statistical process control 
charts1, 2 have been developed for carrying out the tracking and serve as an early warning system of potential 
problems with the measurement processes. Preliminary analyses of the early LaRC check standard results were 
presented in References 3-5, together with a fuller description of the check standard process. The early results for 
the short-term time frame suggested a simple model for correlating the results across the entire dynamic pressure 
range of a given facility.  
 
The model proposed in References 3-5 was developed by carrying out the error propagation equation6 for a typical 
force or pressure coefficient as shown in Appendix A. The result is‡ 
 

 σ̂ = A

q∞

⎛
⎝⎜

⎞
⎠⎟

2

− 2ρ A

q∞

⎛
⎝⎜

⎞
⎠⎟
B + B2   (1) 

 
where σ̂ is the model estimate of the population standard deviation, A is the effective resolution of the instrument(s) 
divided by the reference area, q∞  is the dynamic pressure in the test section, B is the coefficient of variation of the 

dynamic pressure σ q∞
/ q∞( )  multiplied by the force or pressure coefficient value, and ρ  is the correlation 

coefficient6 for the A / q∞  and B  sources of variation. 

                                                             
‡ For the 14x22 analyses, q∞  is replaced by DPI. 
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The purpose of this work is to test that model for the three time frames using extensive check standard tests for 
seven measurement processes in three LaRC tunnels. This kind of statistical testing for standard deviation models is 
hampered by the need for a fairly large number of degrees of freedom (DOF) to keep the confidence limits 
reasonable for prediction. As shown§ in Figure 1, for example, it is necessary to obtain 20 DOF in order to limit the 
scatter to ±50% of the population value. Of course, the population standard deviation is unknown except through the 
taking of samples which, by necessity, have a small DOF at any given time. Fortunately for this work, regular check 
standard testing will eventually produce sufficient DOF with which to model the three time frames of variation. The 
three time frames to be dealt with in this paper and the methods for estimating the corresponding standard deviations 
are (1) the short-term variation of the coefficient C( )  within a group (pooled over the tests), σWG ; (2) the variation 
of group averages within a test (pooled over the tests), σWT ; (3) the variation of the within-test grand averages,  
σ AT . For the model testing herein, the estimates of the population standard deviations are given by1: 
 
Within-Group (WG): 
 
  σ̂WG = RWG / d4   (2) 
   
which reads “the estimate of the within-group population standard deviation is equal to the median of all of the 
within-group ranges divided by the bias correction factor d4 ”. 
 
Within-Test (WT): 
 
  σ̂WT = RWT / d4   (3) 
   
which reads “the estimate of the population standard deviation of group averages obtained within a test is equal to 
the median of all of the within-test group average ranges divided by the bias correction factor d4 ”. 
 
Across-Test (WT): 
 
  σ̂ AT = mRAT / d4   (4) 
   
which reads as “the estimate of the population standard deviation of within-test grand averages obtained within a test 
is equal to the median moving range of all of the within-test grand averages divided by the bias correction factor 
d4 ”. The bias correction factor, d4 , for Eq.(2-4) is a function of the DOF.1  
 
 
Example results will be presented below for  
 

1. The test section calibration coefficient ′C( )  of the 14x22 measured by the check standard probe (CSP) 

2. The normal-force coefficient CN( )  measured on the 14x22 check standard model (CSM) 

3. The axial-force coefficient CA( )  measured on the 14x22 CSM 

4. The normal-force coefficient CN( ) measured on the NTF CSM 

5. The axial-force coefficient CA( )measured on the NTF CSM 

6. The airfoil lift-coefficient CL( )  measured on the LTPT CSM using the main balance 

                                                             
§ The control chart limits used in Figure 1 are given in Appendix VI of Ref. 2 for the average of the sample standard deviations. 
Medians are used instead throughout this analysis to make the control charts more robust to occasional outliers. Thus the limits in 
Figure 1 should be inflated somewhat for the approach herein. However, the authors have been unable to find limits tables for 
medians for large DOF. Hence, the values of Figure 1 are used herein, but with the caveat that they should be somewhat bigger. 
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7. The airfoil lift coefficient CL( )measured on the LTPT CSM using a chord-wise row of pressure taps at 
mid-span.  
 

The paper will conclude with some general observations about the results. It is beyond the scope of this effort to 
investigate the sources of the observed variations. 
 
Case 1. 14x22 Check Standard Probe (Test Section Calibration Coefficient) 
The 14x22 is a large atmospheric subsonic closed-return tunnel7 that is used for a wide range of tests, including 
ground wind loads on launch vehicles, free-flight testing, helicopter performance and acoustic testing, and landing 
and takeoff performance. In 1996 the staff decided to use a new test section calibration model in which the 
calibration coefficient ′C  is a function of the test section reference pitot-static pressure difference, DPI. This new 
model significantly improved the accuracy of the calibration. ′C is now defined as 
 

 ′C =
ptotal − pstatic( )

probe

ptotal − pstatic( )
reference

= DPC

DPI
  (5) 

 
which means that two instruments are needed to measure ′C . The performance of the two instruments used is 
assumed to be the same since they are identical. (See Appendix B for a derivation of the expected performance at 
very low test-section dynamic pressures.) The probe is mounted in the test section as shown in Figure 2. The probe 
head is located on the test section centerline at the most common center of rotation of the model mounting system. 
The test section can be configured in several different ways. For this case, the test section is closed, i.e. the walls, 
ceiling and floor enclose the space. 
 
The ′C measurements are obtained in a group defined as three back-to-back polars through the DPI range from 0.5 
to 120 psf. The data are piece-wise linearly interpolated to the nominal DPI canonical conditions to avoid including 
set point error in the measurement variation. For each canonical condition, a robust measurement of the standard 
deviation was obtained using the control chart median ranges.1 (See Eq. (2-4).) The group standard deviation is a 
measure of the short-term repeatability of the calibration measurement. Multiple groups were usually obtained in 
each test, which allowed measurement of the within-test variation using the variation of the group averages. 
Fourteen tests have been carried out so far, which allows measurement of the across-test variation using the grand 
averages of the within-test results. The standard deviations and grand averages are tracked over time using statistical 
process control charts for each canonical DPI test condition.1, 2, 6 
 
Figure 3 shows a log-log plot of the three time frames of variation obtained using the medians from the control 
charts for each canonical condition. A log-log plot is used to emphasize the behavior in the low q∞  region. In this 
region, the calibration coefficient standard deviations are expected to be proportional to 1/DPI (see Appendix B). 
The regions where σ  is constant are also apparent for high DPI.  
 
Figure 4(a) is a log-log plot showing the measured within-group repeatability standard deviations (symbols), 
together with the fitted model (red line) of Eq.(1) as a function of DPI. For the low Mach numbers in this tunnel, 
DPI is very close to q∞ . It is convenient for this tunnel to use DPI for the abscissa rather than q∞  because DPI is 
used to set the conditions during the tests. The model coefficient, A , is obtained by averaging σ ∗DPI  over the 
region for which the 1/DPI  dependence holds. The model coefficient, B , is obtained by averaging σ  over the 
region where it seems to be constant (given the observed scatter). Finally, the correlation coefficient, ρ  , is chosen 
to fit the largest number of  points between the limits (to be discussed below). 
 
The model coefficients are given in Table 1. Also shown in Figure 4(a) are upper and lower limits (grey lines) based 
on the estimated number of degrees of freedom (DOF) for the groups. (See Figure 1.) The results shown are for 45 
groups with 3 measurements each. Thus, each group is estimated to contribute 2 DOF, yielding 90 DOF to date. The 
limits are control chart limits for 90 DOF placed on the model. The authors prefer to use control chart limits on the 
model rather than confidence limits placed on the data because they clearly show the range of sample standard 
deviation scatter to be expected by chance alone. For this case, all of the data are within or on the limits. Figure 4(a) 
also shows the result that would be expected for the two Mensor pressure sensors using the manufacturer’s quoted 
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combined repeatability, nonlinearity and hysteresis (i.e. with B = 0 ). See Appendix B for the derivation. Figure 4(b) 
shows the same information using a semi-log plot to emphasis the region of constant σ that extends over the upper 
half of the test section DPI range. 
 
Figures 5 and 6 show similar results for the variation of the group averages within a test and the variation of the test 
grand averages respectively across the available tests. Multiple groups were obtained in 11 of the 14 tests with an 
average of 3 groups each. With an estimated 2 DOF for each such test, the total number of DOF is 22. Since there 
have been a total of 14 tests, the number of DOF for the across-test variation is 13. It should be noted that the limits 
expand significantly as the number of DOF is reduced, i.e. 13 versus 22 versus 90. (See Figure 1.) Given the very 
large range of the limits for the across-test results, it would seem reasonable to consider the fit provisional rather 
than confirmed. 
 
Figure 7 compares the models for the three time frames on a log-log plot, showing that the variations for the longer 
time frames are dominant. Note that σ̂WT is roughly 3 times larger than σ̂WG  for the larger values of DPI. For the 
same DPI range, σ̂ AT  is almost three times σ̂WT . The model coefficients are given in Table 1. Appendix C presents 
the necessary equations for extracting the repeatability that a customer would expect to see for a single ′C  
measurement within or across tests. 
 
Case 2. 14x22 Check Standard Model (Normal-Force Coefficient) 
The check standard model for the 14x22 is the elliptical wing shown in Figure 8. It is tested in a fashion similar to 
that of the CSP except that three back-to-back polars are obtained for each canonical DPI condition. The groups are 
formed after interpolating the data to the nominal angle-of-attack (AOA) set points. Only the data at an AOA of two 
degrees are used in the current analysis. This is the AOA that is expected to give the smoothest flow over the model. 
Since the instrument used for the CSM testing is multi-component (normal, axial and side forces and pitch, yaw and 
roll moments), the measurements for the purposes of check standard testing are taken about the balance electrical 
center to avoid combining the individual measurements (to first order).** 
 
The results from the control chart medians for the normal-force coefficient variation are shown in Figures 9-11 for 
all three time frames. Figure 9 shows the control chart medians for the within-group results, together with the model 
fit and the limits for the 41 groups (82 DOF). Also shown is the expected behavior if the resolution of the balance at 
1σ were 0.012% of full-scale (with B = 0 ). That value is roughly what one would expect for the resolution of 
LaRC single element balances. Note that the control limits about the model fit contain all of the measured results. 
Similar results are shown in Figures 10 and 11 for the within-test (11 tests with multiple groups, 22 DOF) and 
across-test (13 tests, 12 DOF) variations respectively. Again, all of the data are contained within the control limits 
about the model fit. Although the limits are fairly wide for the across-test results, the fit looks reasonably confirmed. 
 
The three model fits are shown together in Figure 12. It is apparent that the across-test variation is only significant 
for DPI ≥ 15 psf. The model fit coefficients are given in Table 1. 
 
Case 3. 14x22 Check Standard Model (Axial-Force Coefficient) 
The results from the control chart medians for the axial-force coefficient variation are similar to those for the 
normal-force coefficient and are shown in Figures 13-15 for all three time frames. Figure 13 shows the within-group 
results, together with the model fit and the limits for the 41 groups (82 DOF). Also shown is the expected behavior if 
the resolution of the balance at 1σ were 0.012% of full-scale (with B = 0 ). Note that the control limits about the 
model fit contain all of the measured results. Similar results are shown in Figures 14 and 15 for the within-test and 
across-test variations respectively. Again, all of the data are contained within the control limits about the model fit. 
And again, although the limits are fairly wide for the across-test results, the fit looks reasonably confirmed. 
 
The three model fits are shown together in Figure 16. It is apparent that the across-test variation is only significant 
for the very highest portion of the DPI range. The model fit coefficients are given in Table 1. It is interesting to note 
that the correlation coefficients for the three time frames match those for the CN  variation. 
 
                                                             
** It is impossible to separate the second-order effects from the measurements due to the complex second-order 6-component 
calibration matrix used to reduce the data to engineering units. 
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Case 4. NTF Check Standard Model (Normal-Force Coefficient) 
The check standard model for the NTF is the Pathfinder I as described in Reference 8 and shown in Figure 17. The 
NTF is a transonic pressure tunnel that can be run with warm air or with cryogenic nitrogen. Because of the large 
costs associated with cryogenic testing, the check standard testing is done in air with occasional cryogenic testing to 
augment those results. Also, because the NTF is a pressure tunnel (total pressure range from 1 to 10 atmospheres), a 
more than two-orders of magnitude range of q∞ is available for model testing. 
 
Analysis of the normal-force coefficient data from the NTF check standard testing is identical to that shown in the 
three previous examples. The σ for the three time frames are shown in Figures 18-20 with the control limits. The 
NTF check standard testing is not always conducted at each of the canonical conditions. Hence, the DOF for the 
various canonical conditions do not have the same values and the control limits are shown as individual “error bars” 
on the model fits (for the appropriate DOF). Also, shown in Figure 18 is the observed effective resolution of the 
normal-force measurement process (black line) (with B = 0 ). As before with the 14x22 instrument processes, the 
resolution is roughly what would be expected for an NTF single element balance. 
 
The control limits do not capture all of the data for the three time frames. For the within-group variation there are 
three points each outside the limits. The within- and across-test fits have one point each outside the limits. The 
across-test DOF for 15, 34 and 2400 psf are small leading to lower limits of zero. The model fits for the three time 
frames are shown in summary in Figure 21. The across-test variation is clearly dominant. The model fit coefficients 
are given in Table 1. 
 
 
Case 5. NTF Check Standard Model (Axial-Force Coefficient) 
Analysis of the axial-force coefficient data from the NTF check standard testing is identical to that shown in the four 
previous examples. The σ for the three time frames are shown in Figures 22-24 with the control limits. Also, shown 
in Figure 22 is the observed effective resolution of the axial-force measurement process (black line with B = 0 ). 
The resolution of the NTF CSM balance axial measurement is roughly what would be expected. 
 
The control limits do not capture all of the data for the within-group and within-test time frames. For within-group 
data, there are two points outside the limits. For the within-test fit, there are three points outside the limits. The 
model fits for the three time frames are shown in summary in Figure 25. The across-test variation is clearly 
dominant. The model fit coefficients are given in Table 1. It is interesting to note the similarity of the normal- and 
axial-force coefficient fits in Figures 21 and 25 respectively. 
 
Cases 6 and 7. LTPT Check Standard Model Lift Coefficient Measured by Two Systems 
The check standard model for the LTPT is a single element airfoil as shown in cross-section in Figure 26, together 
with the location of a chordwise ring of pressure taps. The LTPT test section is three feet wide and seven feet high 
and the airfoil chord is two feet long. Although check standard testing was not conducted after the first two tests, 
those two tests provided an interesting set of lift coefficient (CL ) data with which to determine and compare the 
repeatability of the main balance and integrated pressure measurement systems. The data were obtained in multiple 
groups of 10 back-to-back polars. The analysis is performed only at the design AOA points (2 degrees) after 
interpolation to avoid set point error. (The lift coefficient is roughly 0.7 at the design angle of attack.) The Mach 
number was 0.2 for the range†† 0.4 ≤ q∞ ≤ 4.0 . To obtain data for the range 0.05 ≤ q∞ ≤ 0.4  the Mach number was 
decreased accordingly.   
 
The main balance within-group results are shown in Figure 27 with the integrated pressure results shown in Figure 
28. The models fit is shown with the control limits for each canonical condition‡‡. The model fit coefficients are 
given in Table 1. For the balance data, four out of the seven points are at the edge of the control limits. For the 
integrated pressure data, one point is at a control limit. There were too few within-test results to be able to test a 
model for that time frame. 

                                                             
†† The LTPT can be pressurized to 10 atm, providing a 10-fold range of q∞  at a given Mach number.  
‡‡ Different numbers of groups were obtained at the various canonical q∞  test conditions. Hence, the control limits are shown as 
“error” bars on the model fits. 
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The model fits for the two measurement processes are compared in Figure 29. While the pressure measurement 
system was designed to give considerably better results than those from the main balance at low q∞ , it was a bit 
surprising that the two processes would appear to converge to the same repeatability for the highest q∞ . This result 
may lend more credibility to the provisional model of Eq. (1) since the model suggests that the repeatability floor is 
independent of the force or pressure measurement process used. But it must be stressed that this possibility must 
remain conjecture until high DOF results are obtained with two or more measurement systems measuring the same 
thing in the same tunnel. 
 
Concluding Observations 
With the seven examples given above, the following observations seem reasonable: 
 

1. The repeatability model appears to work for all three time frames of variation; although, when the limits are 
wide, the agreement should be considered provisional. 

2. The within-group variation for low q∞ is clearly due to the known resolution of the measurement system 
for the six example cases for which the information is available. (The resolution of the integrated pressure 
measurement of lift is not known.) 

3. The within-group variation for higher q∞  may be independent of the measurement system used. (See LTPT 
example.) But extensive (high DOF) additional testing would be required to determine if this possible result 
holds for the within-test and across-test variation, 

4. For 4 out of the 17 model fits the correlation coefficient is one or nearly one (probe within-test, elliptical 
wing within-test for CN ,CA , airfoil balance within-group). For the other 13 fits, the correlation coefficient 
would usually be considered statistically insignificant, although it is certainly needed here to make the 
model work in the transition regions. 

5. The within-test and across-test variation at both low and high q∞ seem unreasonably large relative to the 
within-group variation and significant performance improvement might be possible by examining the 
measurement process in detail.  

6. Since the measurement of q∞ may be the dominant source of variation for coefficients obtained at high q∞  
values, performance improvement might be possible by changing the measurement process. Currently, the 
time constants for the balance and dynamic pressure systems are very different in all of the tunnels. 

 
Finally, using a rational (mechanistic) model with which to fit the data is, in a sense, equivalent to pooling the data 
(increasingly the DOF) over the whole test condition range. Hence, the model itself is likely to be known more 
accurately than the individual values at the various conditions.  
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Appendix A --- Derivation of Model Equation for Balance and Pressure Coefficients 
 
Consider the coefficient 

 C = F

q∞Sref
  (A.1) 

where F is the instrument output, q∞ is the test section dynamic pressure and S is the reference area. Differentiating 
Eq.(A.1) to obtain the sensitivity coefficients for the variables F and q∞  gives 
 
 ∂C

∂F
= 1

q∞Sref
  (A.2) 

 

 ∂C
∂q∞

= − C

q∞
  (A.3) 

The error propagation equation is then given by8 
 

 σ̂ 2 = 1

q∞Sref

⎛

⎝⎜
⎞

⎠⎟

2

σ F
2 + 2ρ 1

q∞Sref

⎛

⎝⎜
⎞

⎠⎟
− C

q∞

⎛
⎝⎜

⎞
⎠⎟
σ Fσ q∞

+ − C

q∞

⎛
⎝⎜

⎞
⎠⎟

2

σ q∞

2   (A.4) 

 
Let A and B be defined by 

 A = σ F

Sref
  (A.5) 

 

 B = C
σ q∞

q∞
  (A.6) 

Then Eq.(A.4) becomes 

 σ̂ = A

q∞

⎛
⎝⎜

⎞
⎠⎟

2

− 2ρ A

q∞

⎛
⎝⎜

⎞
⎠⎟
B + B2   (A.7) 

which is the desired model equation. 
 
Appendix B --- Derivation of 14x22 C’ Check Standard Probe Measurement Resolution 
By definition 

 C ' = DPC

DPI
 (B.1) 

 
The sensitivities of C’ with respect to the two measurements are given by 
 

 ∂C '
∂DPC

= 1

DPI
 (B.2) 

and 

 ∂C '
∂DPI

= − C '

DPI
 (B.3) 

 
Combining the variances, assuming that they are uncorrelated (and small), gives 
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 σ C '
2 = ∂C '

∂DPC
⎛
⎝⎜

⎞
⎠⎟
2

σ DPC
2 + ∂C '

∂DPI
⎛
⎝⎜

⎞
⎠⎟
2

σ DPI
2  (B.4) 

 
Substituting Eqs.(B.2, B.3) into Eq.(B.4) and taking the square root gives 
 

 σ C ' =
1

DPI
σ DPC
2 + C 'σ DPI( )2  (B.5) 

 
Since the type and range of the two Mensor’s are identical, we shall assume that σ DPC ≅ σ DPI  so that Eq.(C.5) 
becomes 

 σ C ' ≈
σ DPI

DPI
1+C '2  (B.6) 

It is known that 1.15 ≤C ' ≤1.18  so that Eq.(C.6) is given by 
 

 σ C ' ≈1.5
σ DPI

DPI
 (B.7) 

 
The full-range of the Mensors is 1 psi which are quoted to be accurate to 0.009% FS. If we assume that the quote is 
for 2-sigma, then the manufacturer’s quote for combined nonlinearity, hysteresis and repeatability is 
 
 σ DPI = 0.5( ) 144 psf( ) 0.00009( ) = 0.00648 psf  (B.8) 
 
Substituting Eq.(B.8) into Eq.(B.7) gives 
 

 σ C ' ≈1.5
0.00648 psf

DPI
= 0.00972 psf

DPI
 (B.9) 

 
 
Appendix C --- Method for Combining Within-Group, Within-Test and Across-Test Results 
By definition (see Nomenclature) 

 σWT
2 =σ C ,WT

2 + 1
n
σWG
2  (C.1) 

Rearranging Eq.(C.1) gives 

 σ C ,WT
2 =σWT

2 − 1
n
σWG
2  (C.2) 

Also by definition 

 σ AT
2 =σ C , AT

2 + 1
N
σWT
2  (C.3) 

Rearranging Eq.(C.3) gives 

 σ C , AT
2 =σ AT

2 − 1
N
σWT
2  (C.4) 

The result of interest for within-test repeatability of a single measurement of the coefficient is 
 
 σ C ,WG+WT

2 =σWG
2 +σ C ,WT

2  (C.5) 
 
Substituting Eq.(C.2) into Eq.(C.5) and rearranging gives the desired expression 
 

 σ C ,WG+WT
2 = 1− 1

n
⎛
⎝⎜

⎞
⎠⎟ σWG

2 +σWT
2  (C.6) 

 
Similarly, the result of interest for across-test repeatability of a single measurement of the coefficient is 
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 σ C ,WG+WT +AT

2 =σWG
2 +σ C ,WT

2 +σ C , AT
2  (C.7) 

 
Substituting Eq.(C.2) and Eq.(C.4) into Eq.(C.7) and rearranging gives 
 

 σ C ,WG+WT +AT
2 = 1− 1

n
⎛
⎝⎜

⎞
⎠⎟ σWG

2 + 1− 1
N

⎛
⎝⎜

⎞
⎠⎟ σWT

2 +σ AT
2  (C.8) 

 
Results from the fits in the Figures 7, 12, 16, 21 and 25 can be substituted into Eq.(C.6) and Eq.(C.8) for prediction 
purposes. For the cases in this paper, n is always equal to 3 and N is equal to 3 on the average. 
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Facility Check Standard Time Frame A B ρρ  
14x22 Pitot-Static Probe Back-to-Back q∞  Sweeps 0.00985 0.000325 0.225 

| | Within-Test 0.0109 0.000956 -0.9 

| | Across-Test 0.0160 0.00267 -0.2 

| Elliptical Wing (CN) Back-to-Back Polars 0.00919 0.000321 0.2 

| | Within-Test 0.025 0.00067 -1 

| | Across-Test 0.0163 0.00159 0 

| Elliptical Wing (CA) Back-to-Back Polars 0.00266 0.000061 0.2 

| | Within-Test 0.0050 0.00012 -1 

| | Across-Test 0.0032 0.00014 0 

NTF Pathfinder I (CN) Back-to-Back Polars 0.126 0.0009 0.2 

| | Within-Test 0.40 0.00075 0.4 

| | Across-Test 0.50 0.00143 0.22 

| Pathfinder I (CA) Back-to-Back Polars .0149 0.00005 0.2 

| | Within-Test 0.0390 0.00006 0.3 

| | Across-Test 0.0500 0.000235 0.22 

LTPT Efficient Airfoil 
(Balance) Back-to-Back Polars 0.00306 0.0007 -1 

| Efficient Airfoil 
(Integrated Pressure) | 0.000826 0.0012 0 

 
Table 1. Model Coefficients 

 

 
Figure 1. Control limits for samples of the standard deviation pooled by averaging (Ref. 2), 

normalized by the population standard deviation. 
 

S /σ
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Figure 2. The 14- by 22-Foot Subsonic Tunnel check standard probe (CSP) on its stand in the test section. 
 
 

 
Figure 3. Log-log plot of variation of median σ̂ for ′C for the three time frames; 14x22 CSP. 

σ̂
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(a) Log-log plot

Figure 4. Model of σ̂WG  for ′C with control limits for 90 DOF; 14x22 CSP. 
 

 
(b) Semi-log plot. 

Figure 4. Concluded 

σ̂WG

σ̂WG



 
American Institute of Aeronautics and Astronautics 

14 

 
Figure 5. Model of σ̂WT  for ′C with control limits for 22 DOF; 14x22 CSP. 

 
 

 
Figure 6. Model of σ̂ AT  for ′C with control limits for 13 DOF; 14x22 CSP. 

 

σ̂WT

σ̂ AT



 
American Institute of Aeronautics and Astronautics 

15 

 
Figure 7. Comparison of the σ̂ models for ′C for the three time frames of variation; 14x22 CSP. 

 

 
 

Figure 8. 14x22 check standard model (CSM). 
 

σ̂
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Figure 9. Model of σ̂WG for CN  with control limits for 82 DOF; 14x22 CSM. 

 

 
Figure 10. Model of σ̂WT for CN  with control limits for 22 DOF; 14x22 CSM. 

 

σ̂WG
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Figure 11. Model of σ̂ AT for CN with control limits for 12 DOF; 14x22 CSM. 

 

 
Figure 12. Comparison of the σ̂ models for CN  for the three time frames of variation; 14x22 CSM. 

 

σ̂ AT
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Figure 13. Model of σ̂WG for CA  with control limits for 82 DOF; 14x22 CSM. 

 

 
Figure 14. Model of σ̂WT for CA  with control limits for 22 DOF; 14x22 CSM. 

σ̂WG
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Figure 15. Model of σ̂ AT for CA with control limits for 12 DOF; 14x22 CSM. 

 

 
Figure 16. Comparison of the σ̂ models for CA  for the three time frames of variation; 14x22 CSM. 
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Figure 17. National Transonic Facility (NTF) check standard model. 
 

 
 

Figure 18. Model of σ̂WG for CN  with control limits for various DOF; NTF CSM. 
 

σ̂WG

q∞ , psf



 
American Institute of Aeronautics and Astronautics 

21 

 
Figure 19. Model of σ̂WT for CN  with control limits for various DOF; NTF CSM. 

 
 
 

 
Figure 20. Model of σ̂ AT for CN  with control limits for various DOF; NTF CSM. 
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Figure 21. Comparison of the σ̂ models for CN  for the three time frames of variation; NTF CSM. 

 
 

 
Figure 22. Model of σ̂WG for CA  with control limits for various DOF; NTF CSM. 
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Figure 23. Model of σ̂WT for CA  with control limits for various DOF; NTF CSM. 

 

 
Figure 24. Model of σ̂ AT for CA  with control limits for various DOF; NTF CSM. 

 

σ̂WT

q∞ , psf

σ̂ AT

q∞ , psf



 
American Institute of Aeronautics and Astronautics 

24 

 
Figure 25. Comparison of the σ̂ models for CA  for the three time frames of variation; NTF CSM. 

 

 
 

Figure 26. Airfoil and pressure tap locations for the LTPT check standard model. 
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Figure 27. Model of σ̂WG for balance CL  with control limits for various DOF;  
LTPT CSM (10 back-to-back polars in each group). 

 

 
 

Figure 28. Model of σ̂WG for pressure CL  with control limits for various DOF;  
LTPT CSM (10 back-to-back polars in each group). 
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