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Abstract

Long-term PM2.5 exposure has been reported to be associated with various adverse
health outcomes. However, most ground monitors are located in urban areas, lead-
ing to a potentially biased representation of the true regional PM2.5 levels. To facilitate
epidemiological studies, accurate estimates of spatiotemporally continuous distribution5

of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD)
has been widely used for PM2.5 concentration estimation due to its comprehensive
spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is
their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate
Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectro-10

Radiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD
product with 1 km spatial resolution retrieved by the multi-angle implementation of at-
mospheric correction (MAIAC) algorithm was used. A two-stage model was developed
to account for both spatial and temporal variability in the PM2.5-AOD relationship by
incorporating the MAIAC AOD, meteorological fields, and land use variables as predic-15

tors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and
data from 2001 to 2010 were collected from various sources. The model was fitted for
each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE
from 1.73 to 2.50 μgm−3, and RMSPE from 2.75 to 4.10 μgm−3. In addition, we found
cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μgm−3, and RM-20

SPE from 3.12 to 5.00 μgm−3, indicating a good agreement between the estimated and
observed values. Spatial trends show that high PM2.5 levels occurred in urban areas
and along major highways, while low concentrations appeared in rural or mountainous
areas. A time series analysis was conducted to examine temporal trends of PM2.5 con-
centrations in the study area from 2001 to 2010. The results showed that the PM2.525

levels in the study area followed a generally declining trend from 2001 to 2010 and de-
creased about 20 % during the period. However, there was an exception of an increase
in year 2005, which is attributed to elevated sulfate concentrations in the study area in
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warm months of 2005. An investigation of the impact of wild and prescribed fires on
PM2.5 levels in 2007 suggests a positive relationship between them.

1 Introduction

Long-term exposure to PM2.5 (particle size less than 2.5 μm in the aerodynamic di-
ameter) is associated with various adverse health outcomes including respiratory and5

cardiovascular diseases (Crouse et al., 2012; Peng et al., 2009). Due to the spatiotem-
porally continuous nature of fine particles, obtaining long-term and spatially-resolved
distribution of PM2.5 concentrations is important to reduce exposure misclassification
and facilitate accurate epidemiological studies in the region. In addition, time series
analyses of air pollution and human health have become the most common study10

design to compare day-to-day fluctuations of air pollution and corresponding fluctu-
ations in health outcomes (Ito et al., 2007), requiring long-term PM2.5 concentration
estimates. Previous research examined temporal trends in PM2.5 levels. For instance,
Weber et al. (2003) investigated the temporal variations in PM2.5 mass at the US En-
vironmental Protection Agency (EPA) Atlanta Supersite Experiment in August 1999.15

So et al. (2007) examined long-term variation in PM2.5 levels during two 12 month pe-
riods in Hong Kong. EPA (2011) reported temporal trends of annual and 24 h mean
PM2.5 concentrations at the national level from 2001 to 2010 and found that annual and
24 h mean PM2.5 concentrations dropped 24 % and 28 %, respectively, within these ten
years.20

Another critical aspect is the investigation of spatial trends of PM2.5 levels. Station-
ary ambient monitors have been established to measure ground-level PM2.5 concentra-
tions, yet those point measurements leave large areas uncovered, and therefore spatial
variability is difficult to assess with those point measurements alone. In addition, these
sites do not measure individual-specific exposure, and thus this approach inevitably25

introduce measurement errors that likely have substantial implications for interpret-
ing epidemiological studies, especially for time-series analyses (Zeger et al., 2000).
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On the other hand, aerosol observations from satellite remote sensing could substan-
tially improve estimates of population exposure to PM2.5 (van Donkelaar et al., 2010).
As a result, satellite-retrieved aerosol optical depth (AOD) that measures light extinc-
tion by aerosols in the atmospheric column has been widely used to predict ground-
level PM2.5 concentrations, considering its relatively low cost and large spatiotemporal5

coverage. A number of AOD products from sensors such as the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), the Multiangle Imaging SpectroRadiome-
ter (MISR), and the Geostationary Operational Environmental Satellite Aerosol/Smoke
Product (GASP) have been applied to PM2.5 concentration prediction in previous stud-
ies (Liu et al., 2007, 2009; Paciorek et al., 2008; Hu et al., 2013). Nevertheless, one10

of the limitations inherent with those AOD products is their coarse spatial resolutions.
For instance, the spatial resolutions of AOD derived from MODIS and MISR are 10 km
and 17.6 km, respectively. Although GASP has a spatial resolution of 4 km, the AOD
retrievals are less precise than those from the polar-orbiting instruments due to a lim-
ited information content (one spectral band) and relatively low signal-to-noise ratio of15

GOES sensor (Prados et al., 2007). Meanwhile, epidemiological studies typically have
access to health data geo-coded to small geographical units (e.g., zip code and census
block groups), many of which are substantially smaller than the spatial resolutions of
MODIS and MISR. In addition, estimated PM2.5 concentrations at coarse resolutions
inevitably omit some details of spatial variability of PM2.5 exposure and therefore have20

fundamental limitations in the investigation of spatial trends of PM2.5 levels. Hence,
it is essential to use high resolution AOD retrievals to generate high spatial resolution
PM2.5 concentration estimates. Recently, a new AOD product retrieved by a multi-angle
implementation of atmospheric correction (MAIAC) algorithm has been reported (Lya-
pustin et al., 2011b). MAIAC AOD has a spatial resolution of 1 km and thus has the25

ability to estimate PM2.5 concentrations at that resolution. Moreover, the MAIAC AOD
has been demonstrated to be strongly associated with monitored PM2.5 levels in the
New England region (Chudnovsky et al., 2012).
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Various statistical methods have been developed to establish the quantitative rela-
tionship between PM2.5 and satellite-derived AOD including linear regression (Schafer
et al., 2008; Wallace et al., 2007; Gupta and Christopher, 2009), many of which do not
consider day-to-day variability. Lee et al. (2011) and Kloog et al. (2011) argued that
the PM2.5-AOD relationship varies day-to-day, and the temporal variability needs to be5

accounted for in order to improve performance of the AOD-based prediction models.
As a result, both studies developed a linear mixed effects model to incorporate daily
calibration of the PM2.5-AOD relationship and obtained predictions with high accuracy.
To move one step further, we introduce a geographically weighted regression (GWR)
model as the second stage to account for the spatial variability in the PM2.5-AOD rela-10

tionship.
The objective of this paper is first, to estimate spatiotemporally-resolved PM2.5 con-

centrations in the study domain during the period between 2001 and 2010 using a two-
stage model with MAIAC AOD as the primary predictor and meteorological and land
use variables as the secondary predictors. Second, maps of annual mean PM2.5 con-15

centrations as well as the changes between 2001 and 2010 were generated from the
daily estimates to visually illustrate spatial trends of annual PM2.5 levels from 2001 to
2010. Third, time series analyses were conducted for the study domain and the Atlanta
metro area using the monthly and annual mean PM2.5 estimates to examine the 10 yr
temporal trends of fine particle levels, and the underlying causes were discussed. Fi-20

nally, potential impact of wild and prescribed fires on PM2.5 levels in the south of our
study region was investigated.

2 Materials and methods

2.1 Study area

The study area is approximately 600× 600km2 in the southeastern US, covering most25

of Georgia, Alabama, and Tennessee, and parts of North and South Carolina (Fig. 1).

25621



ACPD
13, 25617–25648, 2013

10 yr trend of PM2.5

concentrations in the
southeastern US

X. Hu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

The domain includes several large urban centers, numerous medium to small cities,
and suburban and rural areas. Additionally, Zhang et al. (2010) reported that biomass
burning contributes 13 % to PM2.5 mass annually in the southeastern US. Therefore,
to investigate the impact of wild and prescribed fires on PM2.5 levels, two test sites of
the same size (e.g., 18×18km2) were selected in the south of the study area. Those5

two adjacent sites are both located in rural areas and away from any major emission
source. One has an accumulated number of 472 fires from 2001 to 2010 (40 fires in
2007), and the other has a total number of 80 fires during the same period of time (8
fires in 2007).

2.2 PM2.5 measurements10

The 24 h average PM2.5 concentrations from 2001 to 2010 collected from US
Environmental Protection Agency (EPA) federal reference monitors (FRM) were
downloaded from the EPA’s Air Quality System Technology Transfer Network
(http://www.epa.gov/ttn/airs/airsaqs/). PM2.5 concentrations less than 2 μgm−3 (∼0.2–
3 % of total data records) were discarded as they are below the established limit of15

detection (EPA, 2008a).

2.3 Remote sensing data

MAIAC retrieves aerosol parameters over land at 1 km resolution, which was accom-
plished by using the time series of MODIS measurements and simultaneous process-
ing of a group of pixels in fixed 25×25km2 blocks (Lyapustin et al., 2011a, b, 2012).20

MAIAC uses a sliding window to collect up to 16 days of MODIS radiance observa-
tions over the same area and processes them to obtain surface parameters used for
aerosol retrievals. To facilitate the time series analysis, MODIS data are initially gridded
to a 1 km resolution in a selected projection. For this work, we used MODIS level 1B
(calibrated and geometrically corrected) data from Collection 6 re-processing, which25
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removed major effects of temporal calibration degradation of Terra and Aqua, a neces-
sary prerequisite for the trend analysis.

Validation showed that the MAIAC and operational Collection 5 MODIS Dark Target
AOD have a similar accuracy over dark and vegetated surfaces, but also showed that
MAIAC generally improves accuracy over brighter surfaces, including most urban areas5

(Lyapustin et al., 2011b). MAIAC AOD data from 2001 to 2010 were obtained from
NASA Goddard Space Flight Center.

Zhang et al. (2012) found that Terra and Aqua may provide a good estimate of the
daily average of AOD, thus the average of Aqua and Terra measurements can be used
to predict PM2.5 concentrations. In this study, Aqua (overpass at ∼1:30 p.m. LT) and10

Terra (overpass at ∼10:30 a.m. LT) MAIAC AOD values were first combined to improve
spatial coverage. In a common MAIAC pixel, there might be only one MAIAC prod-
uct from either Aqua or Terra, or both may be present. In the second case, when we
combine them, the averaged value represents the mean of the AOD distribution from
10 a.m. to 2 p.m. LT, yet in the first case, AOD as an indicator of PM2.5 abundance is15

biased towards the atmospheric condition either in the morning or early afternoon. To
overcome this bias, Lee et al. (2011) defined a simple ratio between averaged Terra and
Aqua AOD to estimate the missing AOD value. In this study, we fitted a linear regres-
sion to define the relationship between daily mean AOD values of MAIAC-Terra and
MAIAC-Aqua. We used this regression to predict the missing AOD value (i.e., predict20

MAIAC-Terra AOD with the available MAIAC-Aqua AOD, and vice versa), then aver-
aged the observed and the predicted AOD values together. Finally, we set an upper
bound of 2.0 for the combined AOD to reduce potential cloud contamination (∼0.05–
0.1 % of total data records were excluded).

The fire detection data for the study region were obtained25

from the US Department of Agriculture (USDA) Forest Ser-
vice’s Remote Sensing Applications Center for 2001 through 2010
(http://activefiremaps.fs.fed.us/gisdata.php?sensor=modis&extent=north america).
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These data are Terra and Aqua MODIS fire and thermal anomalies data from the
official NASA MCD14ML product, Collection 5, Version 1.

2.4 Meteorological fields

The meteorological fields provided by the North American Land Data Assim-
ilation System (NLDAS) Phase 2 were downloaded from the NLDAS website5

(http://ldas.gsfc.nasa.gov/nldas/). The spatial resolution of NLDAS meteorological data
is 1/8th-degree (∼13 km). Another meteorological dataset used in this study is the
North American Regional Reanalysis (NARR). NARR is a long term, consistent, high-
resolution climate dataset for North America (Mesinger et al., 2006). The spatial res-
olution of the NARR dataset is ∼32 km. NLDAS provides most of the meteorological10

fields used in this analysis, including relative humidity, u-wind, and v-wind, while NARR
provides another critical parameter: boundary layer height. To generate daytime me-
teorological fields corresponding to the MODIS overpass times, 3-hourly NARR mea-
surements and hourly NLDAS measurements from 10 a.m. to 4 p.m. standard local time
were averaged.15

2.5 Land use variables

Elevation data were downloaded from the national elevation dataset (NED)
(http://ned.usgs.gov). NED is the seamless elevation dataset covering the contermi-
nous United States and is distributed by the US Geological Survey (USGS). The ele-
vation data are downloaded at a spatial resolution of 1 arcsec (∼30 m). The road data20

were obtained from ESRI StreetMap USA (Environmental Systems Research Institute,
Inc., Redland, CA). The road data at level A1 (limited access highway) were extracted.
Summed length of road segments were calculated for each 1×1km2 MAIAC grid cell,
and grid cells with no roads were assigned zero. 2001 and 2006 Landsat-derived
land cover maps covering the study area with a spatial resolution of 30 m were down-25

loaded from the National Land Cover Database (NLCD) (http://www.epa.gov/mrlc/nlcd-
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2001.html). Forest cover maps were generated by assigning one to forest pixels and
zero to others. Primary PM2.5 emissions (tons per year) were obtained from the 2002,
2005, and 2008 EPA National Emissions Inventory (NEI) facility emissions reports. Grid
cells with multiple emission sources were assigned the summed value, and those with
no emissions were assigned zero.5

2.6 Data integration

All the data were first re-projected to the USA Contiguous Albers Equal Area Conic
USGS coordinate system. For model fitting, a 1×1km2 square buffer was generated for
each PM2.5 monitor site. Meteorological fields and AOD values were assigned to each
PM2.5 monitor site using the nearest neighbor approach. Forest cover and elevation10

were averaged, while road length and point emissions were summed over the 1×1km2

square buffer. For PM2.5 prediction, the same procedure was performed for each 1×
1km2 MAIAC grid cell.

2.7 Model structure

We developed a two-stage spatiotemporal model. The first stage is a linear mixed15

effects model with day-specific random intercepts and slopes for AOD, meteorologi-
cal fields to account for the temporally varying relationship between PM2.5 and AOD
(Eq. 1). The model structure can be expressed as

PM2.5,st = (b0 +b0,t )+ (b1 +b1,t )AODst + (b2 +b2,t )Meteorological Fieldsst

+b3Elevations +b4Major Roadss +b5Forest Covers

+b6Point Emissionss +εst (b0,tb1,tb2,t ) ∼ N[(0,0,0),Ψ]

(1)

where bi and bi,t (day-specific) are the fixed and random intercept and slopes, respec-20

tively; PM2.5,st is the measured ground level PM2.5 concentration (μgm−3) at site s
in day t ; AODst is the MAIAC AOD value (unitless) at site s in day t ; Meteorologi-
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cal Fieldsst is the meteorological parameters at site s in day t and may include Rela-
tive Humidityst , Boundary Layer Heightst , Wind Speedst , U-Windst , and V-Windst ; Rela-
tive Humidityst is the relative humidity (%) at site s in day t ; Boundary Layer Heightst is
the boundary layer height (m) at site s in day t ; Wind Speedst is the 2 m wind speed
(ms−1) at site s in day t ; U-Windst is the east-west component of wind (ms−1) at site5

s in day t ; V-Windst is the north-south component of wind (ms−1) at site s in day t ;
Elevations is elevation values (m) at site s; Major Roadss is road length values (m) at
site s; Forest Covers is forest cover values at site s; Point Emissionss is point emissions
(tyr−1) at site s; and Ψ is an unstructured variance-covariance matrix for the random
effects. The fixed effects affect the population mean and represent the average effects10

on PM2.5 concentration estimates for the entire period, while the random effects con-
tribute to the covariance structure and account for the daily variability in associations
between dependent and independent variables.

The second stage is a geographically weighted regression (GWR) model that can
generate a continuous surface of estimates for each parameter at each location instead15

of a universal value for all observations. We fitted a monthly GWR model to calibrate the
spatial variability within the PM2.5-AOD relationship, and the model can be expressed
as

PM2.5_resist = β0,s +β1,sAODst +εst (2)

where PM2.5_resist denotes the residuals from the stage one model at site s in month t ,20

AODst is the MAIAC AOD value (unitless) at site s in month t , and β0,s and β1,s denote
the location-specific intercept and slope, respectively.

It should be noted that the model was fitted for each year individually, and therefore
the predictors used in the model may vary for different years. The model structures
were determined by comparison of performance of models using different predictors25

to ensure that relatively better prediction accuracy can be achieved. To assess the
goodness of fit of the model, various statistical indicators such as the coefficient of de-
termination (R2), mean prediction error (MPE), and square root of the mean squared
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prediction errors (RMSPE) were calculated between the fitted PM2.5 concentrations
from the model and the observations. In addition, a 10-fold cross validation (CV) tech-
nique was adopted to assess the potential model over-fitting. That is, the model could
perform better on the data used to fit the model than unobserved data. The entire
model-fitting dataset was randomly split into ten subsets with approximately 10 % of5

the total data records in each subset. In each round of cross validation, we selected
one subset (10 % of the data) as testing samples and used the remaining nine subsets
(90 % of the data) to fit the model. Predictions of the held-out subset (10 % of the data)
were made from the fitted model. The process was repeated ten times until every sub-
set was tested. Statistical indicators such as R2, MPE, and RMSPE were calculated10

between the CV predicted concentrations and the observations. The model over-fitting
assessment was conducted by the comparison between CV and model-fitting statistics.
A relative accuracy value was also calculated for each year to make validation results
comparable among different years.

The daily PM2.5 concentrations were estimated using the model for each year individ-15

ually. The maps of annual mean PM2.5 concentrations as well as the changes between
2001 and 2010 for the study domain and the Atlanta metro area were generated us-
ing the daily estimates to visually examine spatial trends of PM2.5 levels from 2001 to
2010. Moreover, time series analyses were conducted by year and month, respectively
to quantitatively investigate the 10 yr temporal trends of fine particle levels in the study20

domain and the Atlanta metro area. Finally, an examination of the impact of wild and
prescribed fires on PM2.5 levels was also conducted on two test sites.

3 Results

3.1 Descriptive statistics

The descriptive statistics of variables used in fitting the models are listed in Table 1.25

The annual mean PM2.5 concentrations ranged from 11.03 to 15.63 μgm−3 between
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2001 and 2010, the highest occurred in 2005, and the lowest appeared in 2009. The
annual mean AOD values ranged from 0.20 to 0.28 during the same period of time.
Table 1 also shows that land use variables and meteorological fields vary from year to
year within the data.

3.2 Results of model-fitting and validation5

The model-fitting and CV statistics (e.g. R2, MPE, and RMSPE) are listed in Table 2.
The results show that R2 ranges from 0.71 to 0.85, MPE is from 1.73 to 2.50 μgm−3,
RMSPE ranges from 2.75 to 4.10 μgm−3, and relative accuracy ranges from 72.9 %
to 80.7 %, which indicate a good fit between predicted values from the fitted models
and the observations. In addition, CV statistics results suggest that model over-fitting10

is present; that is, R2 decreases, while MPE and RMSPE increase from model fitting to
cross validation, yet the differences are relatively small for all the years. For instance,
R2 and relative accuracy have an average decrease of 0.08 and 4.21 %, respectively,
while MPE and RMSPE have an average increase of 0.39 and 0.60 μgm−3, respec-
tively through all the years. Moreover, a regression with zero intercept (Fig. 2) was15

performed to fit the predicted values against the observations. The figure shows that
at high concentration levels, both model fitting and cross validation under-predicted the
PM2.5 concentrations by 3–7 % (e.g. fitted/CV PM2.5 =97 % to 93 % observed PM2.5).

3.3 Spatial trends of PM2.5 concentrations

Figure 3 illustrates the PM2.5 concentration estimates at 1 km spatial resolution in the20

study area. The annual mean estimated concentrations are 13.97, 13.90, 13.35, 13.31,
15.19, 13.73, 13.22, 11.34, 10.58, and 11.22 μgm−3 for year 2001 though 2010, re-
spectively. The patterns of PM2.5 distribution are very similar for all the years. High
concentrations appear in large urban centers and along major highways, while low con-
centrations occur in rural and mountainous areas. In addition, high PM2.5 levels also25

occur in the south of the study domain. This area is primarily occupied by agriculture
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land, and high agricultural emissions may lead to high concentrations of fine particles.
As reported by previous studies, ammonia (NH3) and nitrogen oxides (NOx) generated
by agricultural activities, such as farm vehicles, domestic and farm animals, and fertil-
izer applications, can significantly increase the number of suspended particles (Kurvits
and Marta, 1998). In addition, biomass burning also contributes to emissions of fine5

particles in the region (Zhang et al., 2010). Figure 4 shows that the pattern of ground
PM2.5 measurements from FRM monitors corresponds well with that of our estimated
concentrations.

To take advantage of the high spatial resolution of the MAIAC data, a map of PM2.5
estimates in Atlanta metro area was also generated for each year (Fig. 5). The annual10

mean estimates from 2001 to 2010 are 15.10, 14.64, 14.00, 14.54, 15.63, 14.39, 14.14,
11.78, 10.98, and 11.65 μgm−3, respectively. Those maps distinctly show that high
PM2.5 levels occur in areas with high urban land use and along major highways, while
low concentrations appear in forest and recreational areas, suggesting an underlying
positive relationship between air pollution levels and urban development.15

Figure 6 shows the percent changes in PM2.5 concentrations from 2001 to 2010.
Figure 6a illustrates the spatial trend of changes in PM2.5 levels in the study region. The
results show that PM2.5 levels in most of the areas decreased from 0 to 25 %, and large
parts of the areas had decreases exceeding 25 % and up to 50 %. Larger decreases
occurred in areas with generally higher pollution levels such as Atlanta metro area20

and along major highways, which might be due to recently enacted emission reduction
program (EPA, 2011), since majority of the emission sources are located in or near
urban areas and along major highways. Mitigation of fine particles has been effected
through control of direct PM2.5 emissions from both stationary and mobile sources
(e.g., through installation of scrubbers and filters and the use of alternative fuels and25

electric vehicles) (EPA, 2007). One exception is the mountainous area in the northeast
of our domain with generally low PM2.5 levels. The decreases of PM2.5 concentrations
in this region from 2001 to 2010 were also phenomenal, PM2.5 levels decreased from
25 % to 50 % in most of the region, and some areas had decreases exceeding 50 %.
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By checking 2002 and 2008 EPA NEI facility emissions reports, this is probably due
to dramatically reduced number of emission sources in the region during the period.
Figure 6b illustrates the percent changes in PM2.5 levels in the Atlanta Metro area.
Once again, the spatial trend shows that larger decreases (25 % to 50 %) primarily
occurred in urban built-up areas and along major highways, while small decreases (05

to 25 %) appeared in forest or recreational areas with generally lower pollution levels.
It is reasonable because the increase or decrease of emissions from emission sources
might be the major driver causing fluctuations of PM2.5 levels in this region, while most
of those sources are unlikely to be located in forest and recreational areas. Two pixels
with large changes (increasing more than 25 % and decreasing more than 50 %) were10

identified (in blue and red circles). The large decrease of PM2.5 concentration in the
blue pixel was because of the large reduction of particle emissions from power plants
located within that pixel during the period between 2001 and 2010. Likewise, the large
increase of PM2.5 concentration in the red pixel was due to the addition of one emission
source that did not exist in year 2001.15

3.4 Temporal trends of PM2.5 concentrations

A time series analysis was conducted to quantitatively examine temporal trends of
PM2.5 levels in the study area as well as the Atlanta metro area during the period
between 2001 and 2010 (Fig. 7). The results show that the estimated PM2.5 concentra-
tions are smaller than the monitored observations, and underestimation by our model20

has occurred, especially in areas with high pollution levels (e.g., the Atlanta metro
area), which agrees with our model validation results. The average underestimation
is 0.99 μgm−3 for the study domain and 1.82 μgm−3 for the Atlanta metro area. The
PM2.5 levels in the study region as well as the Atlanta metro area followed a generally
declining trend, especially after year 2005. From 2001 to 2010, the annual mean PM2.525

concentration decreased about 20 % in the study area and 23 % in the Atlanta metro
area, which is in line with the findings documented in the US EPA report on particle
pollution (EPA, 2011). Both EPA’s and our results illustrate a peak of PM2.5 levels in
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year 2005, and this phenomenon might be attributed to the increase of sulfate con-
centrations emitted from electric utilities and industrial boilers during the warm months
(e.g, from May to September) of 2005 (EPA, 2008b). In addition, the steady decrease
of PM2.5 levels after year 2005 is due to the emissions reduction programs that have
been enacted recently (EPA, 2011, 2007).5

3.5 The impact of wild and prescribed fires on PM2.5 concentrations

Zeng et al. (2008) suggested that prescribed fire emissions can result in a daily in-
crease of PM2.5 mass up to 25 μgm−3, indicating high impact of fires on PM2.5 levels.
Figure 8 illustrates the seasonal distribution of the number of fires in the study region,
which shows that most wild and prescribed fires occurred in spring and fall, and the10

highest number of fires appeared in spring 2007. To assess the impact of fires on PM2.5
levels, we selected year 2007 to conduct a case study as fires in the southeastern US
in 2007 has been examined by previous research using ground monitoring data (Zhang
et al., 2010). The differences of number of fires and annual mean PM2.5 concentrations
between two test sites were calculated and illustrated in Fig. 9. It shows that in most15

of the cases, the peaks and valleys of the differences of number of fires correspond
well with the peaks and valleys of the differences of PM2.5 concentrations (indicated by
black arrows), indicating an underlying positive relationship between fires and PM2.5
concentrations and suggesting that the fires may have impact on fine particle levels in
the south of our study region. However, exceptions exist. For example, in April 2007,20

a day in which a large difference of number of fires occurred did not show a higher
difference of PM2.5 concentrations than its neighboring days. In addition, in many days
in which there are no differences of number of fires, the differences of PM2.5 concen-
trations between two test sites still exist. Such situations might be attributed to several
factors: first, due to the lack of data, our analysis only used the number of fires without25

fire scale and intensity information and thus might be biased. Second, although the
contributions of fires to PM2.5 levels are quite significant (∼13 % annually) and vary by
seasons in the southeastern US, fires might not be major drivers and there are other,
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often more substantial, contributors to PM2.5 concentrations in the region (Zhang et al.,
2010).

4 Discussion

A major strength of this study is that we used 1 km spatial resolution PM2.5 estimates
derived from 1 km resolution MAIAC AOD to investigate spatiotemporal trends of PM2.55

concentrations in the study area as well as in the Atlanta metro area. PM2.5 estimates
at finer resolutions are more suitable for investigation of spatial trends than those at
coarser resolutions derived from other AOD products (e.g., MODIS and MISR), be-
cause estimates at coarser scales inevitably omit local spatial details. Our results are
capable of showing PM2.5 concentrations and changes within a 1×1km2 area, which10

are very useful for air pollution studies at local scales. For instance, spatial trends of
changes in PM2.5 concentrations in the Atlanta metro area show distinct patterns of
higher PM2.5 reduction in areas with generally higher pollution levels (e.g., urban built-
up areas and along major highways). Some of the changes may be directly associated
with the occurrence or disappearance of one or more emission sources as well as the15

increase or decrease of emissions from those sources. Although high resolution PM2.5
estimates can provide more details to examine spatial trends, difficulties lie in validation
to ground monitoring. More ground measurements at specific locations are needed to
further validate the results.

Our results of temporal trends of PM2.5 concentrations correspond well with EPA’s re-20

sults (EPA, 2011). However, results also show that our predicted PM2.5 concentrations
underestimated the ground measurements for almost all the years, which is expected.
Most of the EPA FRM monitors are located in or near urban areas with generally high
PM2.5 levels. On the other hand, the temporal trends of PM2.5 concentrations estimated
from satellite AOD include the entire study domain and account for both urban and ru-25

ral estimates, and therefore might more thoroughly represent the true fluctuations of
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regional fine particle levels, and further research will continue to explore these associ-
ations.

In addition, long-term PM2.5 estimates at high spatial resolutions might be better
suited for incorporating fire data in order to examine the impact of fires on fine particle
levels, since fires might occur far away from ground monitors. Our results show that5

fires, to some extent, contribute to PM2.5 concentrations in our study region. However,
they might not be the major contributors to fine particle levels. It should be noted that
our results are preliminary and might contain a certain degree of bias, since no fire
scale and intensity data were incorporated in the analysis. However, in this paper, we
primarily attempt to examine the 10 yr spatial and temporal trends of fine particle levels10

in the region using high spatial resolution PM2.5 estimates as well as the possible
causes for high PM2.5 concentrations in the south of our domain. Hence, quantification
of the contribution of fires to PM2.5 levels was beyond the scope of this analysis.

5 Conclusions

In this paper, we used a two-stage spatiotemporal model incorporating MAIAC AOD15

data, meteorological fields, and land use variables to estimate PM2.5 concentrations at
1 km spatial resolution and investigated the 10 yr spatial and temporal trends of PM2.5
levels in our study region. The results show a reasonable spatial pattern of PM2.5 levels
in the study area as well as in the Atlanta metro area. For instance, high concentra-
tions occur in large urban centers and along major highways, while low concentrations20

appear in rural and mountainous area. PM2.5 estimates at high spatial resolutions can
provide more details in small geographic regions and reduce exposure misclassifica-
tion in air pollution and epidemiological studies. The spatial trends of changes in PM2.5
concentrations indicate that higher pollution reduction occurred in areas with generally
higher PM2.5 levels (e.g. in urban areas and along major highways), while areas with25

generally lower pollution levels (e.g., in forest and recreational areas) had lower and
moderate reduction of fine particle concentrations.
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Our time series analysis results indicate that the PM2.5 levels decreased about 20 %
in the study region and 23 % in the Atlanta Metro area during the period between 2001
and 2010, especially after year 2005. In addition, an analysis of the impact of wild
and prescribed fires on PM2.5 concentrations shows that the peaks and valleys of the
differences of the number of fires corresponds well with the peaks and valleys of the5

differences of PM2.5 levels between two test sites, suggesting a positive relationship
between fires and fine particle exposure that merits further investigation.
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Table 1. Descriptive statistics (2001–2010).

Var. Min Std. dev. Max Mean

PM2.5 (μgm−3) 2.0–2.6 5.31–8.64 50.1–145.0 11.03–15.63
Boundary layer height (m) 215–464 347–493 2605–3405 1146–1464
Relative humidity (%) 13.9–26.2 8.7–11.3 86.8–93.1 46.8–59.9
U-wind (ms−1) −9.44 to −6.30 2.62–3.20 10.22–16.85 0.82–1.47
V-wind (ms−1) −12.60 to −9.34 2.62–3.00 8.45–11.84 −0.74 to −0.09
Wind speed (ms−1) 0.03–0.12 1.81–2.13 12.76–18.06 3.48–3.99
Forest cover 2001 0 0.16–0.18 0.83 0.14–0.17
Forest cover 2006 0 0.15–0.17 0.79 0.14–0.16
Road length (m) 0 187.29–230.81 1012.97–1078.09 58.05–82.92
Elevation (m) 46.78 126.82–141.65 811.63–822.82 227.74–249.10
Point emissions 2002 (tyr−1) 0 56.64–70.39 364.42 11.13–16.46
Point emissions 2005 (tyr−1) 0 150.89–188.63 985.48 26.90–40.84
Point emissions 2008 (tyr−1) 0 15.89–19.72 101.74 3.14–4.54
AOD 0–0.01 0.16–0.26 1.42–1.96 0.20–0.28
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Table 2. Model validation.

Year Model fitting Cross validation
R2 MPE

(μgm−3)
RMSPE
(μgm−3)

Relative
accuracy (%)a

R2 MPE
(μgm−3)

RMSPE
(μgm−3)

Relative
accuracy (%)a

2001 0.78 2.50 4.10 72.9 0.67 3.01 5.00 67.0
2002 0.84 2.10 2.98 80.7 0.75 2.62 3.75 75.7
2003 0.85 1.95 2.77 80.4 0.76 2.42 3.47 75.4
2004 0.85 1.97 2.77 80.3 0.77 2.40 3.37 76.1
2005 0.84 2.23 3.17 79.7 0.78 2.64 3.76 75.9
2006 0.85 2.02 2.90 80.6 0.78 2.43 3.49 76.6
2007 0.79 2.26 3.75 74.0 0.71 2.64 4.39 69.6
2008 0.74 1.93 3.13 75.4 0.67 2.21 3.53 72.3
2009 0.71 1.73 2.88 73.9 0.62 2.00 3.28 70.3
2010 0.73 1.90 2.75 77.6 0.66 2.15 3.12 74.5

a Relative accuracy is defined as 100 % – RMSPE/the mean PM2.5 concentration.
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Fig. 1. Study area and two test sites.
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Fig. 2. Model validation. (a) Model fitting; (b) cross validation.

25641



ACPD
13, 25617–25648, 2013

10 yr trend of PM2.5

concentrations in the
southeastern US

X. Hu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

Fig. 3. Annual mean PM2.5 concentration predictions in the study area.
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Fig. 4. Annual mean PM2.5 concentration measured from ground FRM monitors.
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Fig. 5. Annual mean PM2.5 concentration predictions in the Atlanta metro area.
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Fig. 6. The percent change of PM2.5 concentrations in the study area (a) and the Atlanta metro
area (b) from 2001 to 2010.
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Fig. 7. Time series analysis of annual and monthly PM2.5 concentrations. (a) Study area; (b) At-
lanta metro area.
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Fig. 8. Time series analysis of number of fires that occurred in the study area from 2001 to
2010.
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Fig. 9. Time series analysis of relationship between differences of number of fires and differ-
ences of PM2.5 concentrations for year 2007 (Only months with differences of number of fires
were plotted, and the coincidences were indicated by black arrows).
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