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Abstract 48 
49 

The recent US National Academies report “Assessment of Intraseasonal to Interannual 50 

Climate Prediction and Predictability” was unequivocal in recommending the need for the 51 

development of a North American Multi-Model Ensemble (NMME) operational predictive 52 

capability. Indeed, this effort is required to meet the specific tailored regional prediction and 53 

decision support needs of a large community of climate information users.  54 

The multi-model ensemble approach has proven extremely effective at quantifying 55 

prediction uncertainty due to uncertainty in model formulation, and has proven to produce better 56 

prediction quality (on average) then any single model ensemble. This multi-model approach is 57 

the basis for several international collaborative prediction research efforts, an operational 58 

European system and there are numerous examples of how this multi-model ensemble approach 59 

yields superior forecasts compared to any single model.  60 

Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and 61 

April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction 62 

system has been developed and is currently delivering real-time seasonal-to-interannual 63 

predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast 64 

and real-time prediction data is readily available (e.g., 65 

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC 66 

(http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the 67 

NMME forecast are already currently being used as guidance for operational forecasters. This 68 

paper describes the new NMME effort, presents an overview of the multi-model forecast quality, 69 

and the complementary skill associated with individual models.70 
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Capsule Summary: The paper describes the North American Multi-Model Ensemble prediction 71 

experiment include how to access the data in digital and graphical form, and some discussion of 72 

forecast quality. 73 

74 

1. Introduction 75 

After more than three decades of research into the origins of seasonal climate 76 

predictability and the development of dynamical model-based seasonal prediction systems, the 77 

continuing relatively deliberate pace of progress has inspired two notable changes in prediction 78 

strategy, largely based on multi-institutional international collaborations. One change in strategy 79 

is the inclusion of quantitative information regarding uncertainty (i.e., probabilistic prediction) in 80 

forecasts and probabilistic measures of forecast quality in the verifications (e.g., Palmer et al. 81 

2000; Goddard et al. 2001; Kirtman 2003; Palmer et al. 2004; DeWitt 2005; Hagedorn et al. 82 

2005; Doblas-Reyes et al. 2005; Saha et al. 2006 among many others). The other change is the 83 

recognition that a multi-model ensemble strategy is a viable approach for adequately resolving 84 

forecast uncertainty (Palmer et al. 2004; Hagedorn et al. 2005; Doblas-Reyes 2005; Palmer et al. 85 

2008), although other techniques such as perturbed physics ensembles (currently in use at the 86 

UK Met Office for their operational system) or stochastic physics (e.g., Berner et al., 2008) have 87 

been developed and appear to be quite promising. The first change in prediction strategy 88 

naturally follows from the fact that climate variability includes a chaotic or irregular component, 89 

and, because of this, forecasts must include a quantitative assessment of this uncertainty. More 90 

importantly, the climate prediction community now understands that the potential utility of 91 

climate forecasts is based on end-user decision support (Palmer et al., 2000; Morse et al. 2005; 92 

Challinor et al. 2005), which requires probabilistic forecasts that include quantitative information 93 
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regarding forecast uncertainty. The second change in prediction strategy follows from the first, 94 

because, given our current modeling capabilities, a multi-model strategy is a practical and 95 

relatively simple approach for quantifying forecast uncertainty due to uncertainty in model 96 

formulation, although it is likely that the uncertainty is not fully resolved.97 

 More recently, there has been a growing interest in forecast information on time scales 98 

beyond 10 days, but less then a season.  For example, the Climate Prediction Center of the 99 

National Centers for Environmental Prediction (NCEP/CPC) in the United States currently 100 

makes “outlook” type forecasts for extended weather forecast ranges (i.e., two weeks) such as 101 

the NCEP/CPC Global Tropical Hazards/Benefits Assessment provides forecasts of anomalous 102 

tropical temperature and precipitation. The U.S. Hazards Assessment product, also issued by 103 

NCEP/CPC, includes outlooks of potential hazards in the U.S up to 16 days. At present such 104 

outlook-style forecast products are based on a subjective combination of various statistical and 105 

dynamical methods, although there is momentum to make the process more objective using real-106 

time dynamic model forecasts (Gottshalck 2008).  These developments demonstrate the demand 107 

for such dynamical forecast information. 108 

 This week 2-4 time scale is coupled to the seasonal time scale1 and is often viewed as a 109 

source of predictability for seasonal time scales, yet the mechanisms for predictability on this 110 

time scale are less well understood (as compared to say, ENSO). Despite this, there is substantial 111 

evidence for dynamic sub-seasonal predictions that are of sufficient quality to be useful (e.g., 112 

Pegion and Sardeshmukh, 2011) and evidence that a multi-model approach will enhance forecast 113 

quality on this time scale (see the coordinated Intraseasonal Variability Hindcast Experiment; 114 

ISVHE; http://iprc.soest.hawaii.edu/users/jylee/clipas/).115 

                                                
1 Any dynamical seasonal prediction system (e.g., coupled atmosphere-ocean model) must “pass through” the sub-
seasonal time scale.  
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Given the pragmatic utility of the multi-model approach, there is multi-agency (NOAA, 116 

NSF, NASA, and DOE) support for a North American Multi-Model Ensemble (NMME) Intra-117 

seasonal to Seasonal to Inter-annual (ISI) prediction experiment. This experiment leverages an 118 

NMME team that has already formed and began producing routine real-time multi-model 119 

ensemble ISI predictions since August 2011. The forecasts are provided to the NOAA Climate 120 

Prediction Center (CPC) on an experimental basis for evaluation and consolidation as a multi-121 

model ensemble ISI prediction system. The experimental prediction system developed by this 122 

NMME team is as an “NMME of opportunity” in that the seasonal-to-interannual prediction 123 

systems are readily available and each team member has independently developed the 124 

initialization and prediction protocol. We will refer to the NMME of opportunity as phase 1 125 

NMME (or NMME-1). The NMME-1 focuses on season-to-interannual time-scales in that the 126 

data that is exchanged is monthly. 127 

The newly funded multi-agency experiment will develop a more “purposeful NMME” in 128 

which the requirements for operational ISI prediction will be used to define the parameters of a 129 

rigorous reforecast experiment and evaluation regime. This will be phase 2 NMME (or NMME-130 

2). The NMME team will design and test an operational NMME protocol that will guide future 131 

research, development and implementation of the NMME beyond what can be achieved based on 132 

the NMME-I project. 133 

The NMME-2 experiment will: 134 

i. Build on existing state-of-the-art US climate prediction models and data assimilation 135 

systems that are already in use in NMME-1, as well as upgraded versions of these 136 

forecast systems, introduce new forecast system, and ensure interoperability so as to 137 

easily incorporate future model developments. 138 
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ii. Take into account operational forecast requirements (forecast frequency, lead time, 139 

duration, number of ensemble members, etc.) and regional/user specific needs. A focus of 140 

this aspect of the experiment will be the hydrology of various regions in the US and 141 

elsewhere in order to address drought and extreme event prediction. An additional focus 142 

of NMME-2 will be to develop and evaluate a protocol for intra-seasonal or sub-seasonal 143 

multi-model prediction. 144 

iii. Utilize the NMME system experimentally in a near-operational mode to demonstrate the 145 

feasibility and advantages of running such a system as part of NOAA’s operations.146 

iv. Enable rapid sharing of quality-controlled reforecast data among the NMME team 147 

members, and develop procedures for timely and open access to the data, including 148 

documentation of models and forecast procedures, by the broader climate research and 149 

applications community.  150 

This paper describes the ongoing NMME-1 project including a preliminary multi-model 151 

forecast quality assessment and our strategy for evaluating how the multi-model approach 152 

contributes to the forecast quality. We also describe how NMME-2 will evolve from NNME-1 153 

and the coordinated research activities and data dissemination strategy envisaged.  154 

155 

2. The Phase 1 NMME156 

Based on two Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 157 

2011) a collaborative and coordinated implementation strategy for a NMME prediction system 158 

(NMME-1) was developed. The strategy included calendar year 2011 (CY2011) experimental 159 

real-time ISI forecasting (summarized below) that leveraged existing CTB partner activities. 160 

161 
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a. Hindcast and Real-time Experimental Prediction Protocol162 

The CY2011 NMME experimental predictions have been made in real-time since August 163 

2011. As part of the development of the real-time capability, the NMME partners agreed on a 164 

hindcast and real-time prediction protocol. Some of the key elements of this protocol include: 165 

� Real-time ISI prediction system must be identical to the system used to produce hindcasts. 166 

This necessarily includes the procedure for initializing the prediction system. The number 167 

of ensemble members per forecast, however can be larger for the real-time system.  168 

� Hindcast start times must include all 12 calendar months, but the specific day of the month 169 

or the ensemble generation strategy is left open to the forecast provider. 170 

� Lead-times up to 9 months are required, but longer leads are encouraged. 171 

� The target hindcast period is 30 years (typically 1981-2010).  172 

� The ensemble size is left open to the forecast provider, but larger ensembles are considered 173 

better. 174 

� Data distributed must include each ensemble member (not the ensemble mean). Total fields 175 

are required (i.e., systematic error corrections to be coordinated by MME combination lead, 176 

NOAA/CPC). Forecast providers are welcome to also provide bias-corrected forecasts and 177 

to develop their own MME combinations. 178 

� Model configurations – resolution, version, physical parameterizations, initialization 179 

strategies, and ensemble generation strategies – are left open to forecast providers. 180 

� Required output is monthly means of global grids of SST, 2-meter Temperature (T2m), and 181 

precipitation rate. More fields will be added based on experience and demand. It is also 182 

recognized that higher frequency data is desirable and this will be implemented as feasible. 183 

� Routine real-time forecast data must be available by the 8th of each month. 184 
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The NMME-1 activity began in February 2011 and became an experimental real-time system 185 

in August 2011. Specifically, on August 8th, NCEP (CPC and EMC) collected from the 186 

respective ftp sites of the NMME partners the real time seasonal predictions. In the months 187 

before August 2011 the hindcast data were collected, and climatologies and skill assessments for 188 

each model to be applied to subsequent real time predictions were calculated. Graphical forecast 189 

guidance based on the NMME was prepared and given to NOAA operational forecasters in time 190 

for the CPC seasonal prediction cycle. The graphical forecast guidance includes North American 191 

and global domains, and T2m (T), Precipitation (P) and SST fields, and the plots are for monthly 192 

and seasonal means with and without a skill mask applied.  All NMME forecasts are bias-193 

corrected (making use of the hindcasts) using cross-validation (see Kirtman and Min 2009 for 194 

details of how to make the bias correction).195 

The effort is significant because, although experimental, the NMME protocol adheres to 196 

CPC’s operational schedule, so the forecasters can use the information for operational guidance. 197 

The scripts for the data ingest and graphical outputs are intended to be robust, i.e. any number of 198 

models, with any number of ensemble members can be used. A major element of the NMME 199 

experiment is to continue this effort for the benefit of operations. Meanwhile we have built up a 200 

“live” hindcast data set of about 30 years that is open to anybody, and can be used for research. 201 

Quite probably, this NMME data set is now the most extensive multi-model seasonal prediction 202 

archive currently available that includes models that are continuing to make real-time 203 

predictions. The following table summarizes the NMME-1 hindcast data sets and identifies the 204 

point of contact for each prediction system.  205 

In addition, NOAA/CPC has agreed to evaluate the hindcasts, combine the forecasts, 206 

perform verification, provide an NMME web site (http://cpc.ncep.noaa.gov/products/NMME/)207 
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and make the real-time NMME forecast delivery to NOAA forecasters. CPC is also maintaining 208 

a NMME newsletter. The hindcast data and real-time forecast data is also available for download 209 

or analysis at the IRI (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). The CPC site 210 

primarily serves the real-time needs of the project, and the IRI site, along with the analysis tools 211 

that are being developed at the IRI 212 

(http://iridl.ldeo.columbia.edu/home/.tippett/.NMME/.Verification/), primarily serves research 213 

needs in terms of assessing the prediction skill and predictability limits associated with NMME-I214 

and in terms of designing the NMME-II experimental protocol. While the NMME-I data is 215 

limited to monthly mean data, it is a research tool (or test-bed) that is proving extremely useful in 216 

supporting the basic prediction and predictability research needs of the project participants. This 217 

database also serves as “quick look” easy access data that is the external face of the NMME 218 

experiment to the research community. 219 

220 

b. Results – NMME-1  221 

Here we show some results from 28 years of hindcasts that cover a common period (i.e., 222 

1982-2009) for all the models, and the real-time experimental forecast from the NMME of 223 

opportunity (i.e., NMME-1). The results help provide evidence of the benefit of a multi-model 224 

ensemble of predictions, as compared with the ensemble predictions of just one high performing 225 

model. Figure 1 shows the range spanned by the individual ensemble members from each 226 

forecast system in NMME-1, for 0.5-month lead2 hindcasts for the Nino3.4 SST index. This 227 

presentation of the range assumes that each ensemble member of each model is equally likely to 228 

occur. In order to calculate anomalies, the forecast bias or systematic error has been removed and 229 

                                                
2 The real-time forecasts are issued on the 15th of the month, so that, for example a January 2013 monthly mean 
forecast issued on 15 January 2013 is the 0.5 month lead, and the February 2013 monthly mean forecast issued on 
15 January 2013 is 1.5 month lead and so on. The retrospective forecasts also follow this convention. 
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is calculated separately for each model using all ensemble members for that particular model. 230 

See Saha et al. (2006) or Kirtman and Min (2009) for discussion of how the systematic error is 231 

removed. At this short lead-time the hindcasts tend to agree with one another and with the 232 

observations, to a great extent, although there is also some disagreement, particularly at certain 233 

times (e.g. near the end of 1988 and in the middle of 1998). However, it is worth noting that 234 

nowhere do the observations lie noticeable outside the envelope of the predictions. 235 

Figure 2 shows the same results except for 5.5-month lead predictions, with appropriately 236 

greater uncertainties shown by the larger range - often in excess of 2�C. We will show that it is 237 

just such dispersion in the individual predictions that best reflects forecast uncertainty, as well as 238 

the “best guess” multi-model mean prediction.  239 

Figure 3 shows the spatial distribution of the anomaly correlation between the 5.5-month 240 

lead of the grand ensemble monthly mean hindcast and observed SST over 1982-2009. Here the 241 

grand ensemble mean is defined as the average of all the hindcasts assuming that each ensemble 242 

member of each model is equally probable. This is distinct from assuming that each model 243 

should be weight equally. High skill is evident in the central and eastern tropical Pacific Ocean, 244 

as well as portions of the tropical Atlantic and Indian oceans and some isolated regions in the 245 

extratropics.  246 

One of the important motivating factors for both phases on the NMME project is to 247 

understand the complementary sources of skill among the models. Essentially, we seek to 248 

understand the “where and why” in how the multi-model approach improves forecast quality. 249 

Here we show the first step in this process – simply documenting how the multi-model compares 250 

to any single model.  For example, Fig. 4 shows scatterplots of the root mean squared error of the 251 

SSTA for individual models 0.5-to-5.5 month lead ensemble mean hindcasts versus the 252 
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corresponding multi-model ensemble mean hindcasts for tropical SST for September starts. The 253 

percentage noted in each panel corresponds to the number of points where the individual model 254 

beat the multi-model. For every single individual model most of the points are above the 255 

diagonal (i.e., the percentage of points below the diagonal is less than 50%), indicating that the 256 

multi-model tends to have smaller errors than the individual models. Generally, the models 257 

cluster around 26-48%. CCSM3 is an outlier, and is being replaced with CCSM4 in NMME-2. 258 

Preliminary examination (not shown) has suggested that in general, the individual model 259 

having highest anomaly correlation skill is CFSv2. However, this identification of the generally 260 

best model does not suggest that the other models, when allowed to contribute to the multi-model 261 

mean forecast, do not further enhance the performance. To demonstrate the benefit reaped by 262 

using the multi-model ensemble over the single best performing model, the Ranked Probability 263 

Skill Score (RPSS)3 of the multi-model ensemble hindcasts and the CFSv2 hindcasts of SST for 264 

DJF for forecasts initialized in early July are shown in Fig. 5, while those for JJA initialized in 265 

early January are shown in Fig. 6. In the case of both seasons, the multi-model ensemble 266 

produces higher mean skill. There are isolated areas where CFSv2 outperforms the multi-model 267 

ensemble, such as in the DJF forecasts (Fig. 5) just south of the equator near 85�, south of Sri 268 

Lanka. However, the multi-model ensemble has higher, and more reliably positive, skill in over 269 

most of the globe that of any of the individual model forecasts—even the best of them.  270 

The comparatively better RPSS results of the multi-model ensemble hindcasts than those 271 

of the CFSv2 forecasts are not limited to SST hindcasts, but generalize to predictions for land 272 

surface temperature and precipitation as well. Figure 7, for example, shows the spatial 273 

distribution of RPSS for land surface temperature for JJA initialized in early January for the 274 
                                                
3 RPSS is a probabilistic forecast skill metric (see Weigel et al. 2007 for details). The RPSS evaluates the hindcasts 
probabilistically (using tercile-based categories, and using the equal-odds climatology forecasts as the reference 
forecast). A good rule of thumb is that an RPSS of 0.08 corresponds to deterministic correlation of 0.4.
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multi-model ensemble (top) and CFSv2 (bottom). Again, the multi-model mean has considerably 275 

less area with negative skill while maintaining the skill levels at many of the areas where CFSv2 276 

has highest skill. Multi-model skill at the locations of the most extreme peaks of CFSv2 skill 277 

tends to be slightly attenuated (e.g. northeastern Brazil, parts of the Middle East), but mean skill 278 

is clearly enhanced.  279 

Figure 8 shows the spatial distribution of RPSS for hindcasts of precipitation for DJF 280 

(initialized in July) over North America using (left) the multi-model ensemble and (right) CFSv2 281 

alone. Figure 9 is the same a Fig. 8, but for JJA season (initialized in Janurary). The comparative 282 

superiority of the multi-model forecast over CFSv2 alone is noted for both seasons. This is most 283 

obvious in the relative lack of negative skill in the multi-model hindcasts, but also in the 284 

maintenance or even enhancement of areas of peak skill. Additional results for NMME are 285 

shown in Yuan and Wood (2012). 286 

It is worth noting that in the case of probabilistic verification, a larger ensemble size has a 287 

stronger positive influence on skill than it does for deterministic verification (e.g., using anomaly 288 

correlation). This ensemble size effect is described in detail in Richardson (2001), and this 289 

greater sensitivity in probability forecasts is due to the larger role of sampling variability in 290 

defining tercile probabilities (particularly when done by counting the fraction of ensemble 291 

members falling into each category) than in forming an ensemble mean. Indeed, Richardson 292 

(2001) shows that a Brier Skill Score (BSS) of, say 0.2 for a 100 member ensemble of a single 293 

model would be about 0.1 for a 10-member ensemble and 0.17 for a 25-member ensemble.   294 

Hence, in addition to the balancing or cancellation of individual model biases, a secondary 295 

reason for the relatively better performance of the multi-model hindcasts than CFSv2 is the much 296 

larger ensemble size of all the models together than of any single model.297 
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A tool used to diagnose a set of probabilistic forecasts is reliability analysis, which 298 

measures the correspondence between the forecast probabilities and their subsequent observed 299 

relative frequencies, spanning the full range of issued forecast probabilities for each of the three 300 

climatologically equi-probable categories (below, near, or above normal). If one collected all 301 

instances of forecasts of 45% probability for “above normal”, for example, and that category 302 

were actually later observed in 45% of the cases, the forecasts for that particular probability bin 303 

would be shown to have perfect reliability. Results of reliability analysis for forecasts initialized 304 

in October and verifying in the following JFM for 2-meter temperature anomalies over the globe 305 

are shown in Fig. 10 for the multi-model ensemble hindcasts over the 28-year period for the 306 

below-normal and above normal categories. The light dotted line denotes perfect reliability.  307 

Two aspects of common interest in reliability diagnosis are (1) the overall position of the 308 

lines relative to the ideal 45� line, and (2) the slope of the lines relative to unity. The general 309 

positions of the lines in Fig. 10 are near that of the ideal line, but the line representing above 310 

(below) normal forecasts is just slightly higher (lower) than ideal. This indicates a slight 311 

tendency to under-forecast above normal and over-forecast below normal temperature. The 312 

observed mean relative frequency of occurrence of the categories, shown as colored dots on the 313 

y-axis, indicates that above normal occurred in about 39% of cases, while below normal (and 314 

near normal) occurred in about 30% of cases. However, this weak shift toward above normal 315 

temperature in the mean climate over the 28-year period was induced by a slight offset in the 316 

base period of the observations and the model hindcasts: for the observations the period is 1981-317 

2010, while for the model forecasts it is 1982-2009. Thus, the overall position of the reliability 318 

curves, while usually indicative of the model bias, is influenced here by the slight model versus 319 

observational base period offset.  320 
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 The slope of the lines is related to the confidence level of the probability forecasts. Lines 321 

with slopes of less than 1 indicate forecast overconfidence, with greater relative differences in 322 

forecast probability than the corresponding differences in observed frequencies. A bias toward 323 

overconfidence has been noted in many individual dynamical models. Figure 10 indicates that 324 

this problem, while present, is very mild in the multi-model ensemble hindcasts compared to the 325 

individual models shown in Fig. 11. The amelioration of the overconfidence problem is 326 

undoubtedly a consequence of partial cancellation of somewhat conflicting signals that are 327 

overconfident in many of the individual models, resulting in an appropriately more 328 

probabilistically conservative forecast when the models are combined. 329 

The offsetting of potentially overconfident forecasts of individual models when combined 330 

into a multi-model ensemble is illustrated by an example of a recent real-time prediction of the 331 

Nino3.4 SST index (Fig. 12). The predictions of the individual ensemble members express the 332 

uncertainty distribution within each model, while the overall plume of forecasts express the 333 

uncertainty of the full multi-model ensemble. It is noted that the uncertainty distributions of the 334 

individual models is smaller than that of the collection of members of all models. The multi-335 

model ensemble is probabilistically less overconfident than the ensembles of most of the 336 

individual models, because each individual model is imperfect, but has a higher than realistic 337 

confidence level in its “model world”. Combining many models serves to offset differing biases, 338 

resulting in a more balanced, probabilistically reliable prediction. 339 

One measure of the success of the NMME project is that whether it will advance 340 

hydrologic applications, which include streamflow and drought forecasting.  Drought forecasting 341 

includes not only meteorological drought but also agricultural and hydrological drought.  342 

Meteorological drought is assessed through precipitation deficits with indices like the 343 
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Standardized Precipitation Index (SPI) determined over a window centered on the initial forecast 344 

date.  Agricultural drought focuses on soil moisture deficits or indices such as their percentiles 345 

(Sheffield et al., 2004) and hydrological drought on streamflow.  Collectively under the NMME 346 

project seasonal hydrologic forecasting will include drought forecasting as well as related 347 

hydrological seasonal forecasting such as persistent wet conditions.  Since hydrological 348 

applications usually require information at smaller spatial scales than that provided by the 349 

seasonal forecast models, the climate forecasts from the multi-model ensemble will be 350 

downscaled and bias corrected, using the approach of Luo et al. (2007), and used to drive a 351 

calibrated land surface model.  The output of the land surface model is then used to for 352 

hydrologic forecasts, including drought.  This approach has been well developed (Lou and 353 

Wood, 2007, 2008; Yuan et al., 2013).  Figure 13 shows the results for streamflow forecast skill 354 

from NMME relative to the skill from the often used Extended Streamflow Prediction (ESP) 355 

approach where hydrological model forcings come from historical resampling.  The results are 356 

presented over the National Drought Information System (NIDIS) Colorado and SE US testbeds.  357 

For the Colorado domain, NMME is more skillful than ESP, particularly in the summer with the 358 

skill coming primarily from increased precipitation skill.  Not shown is the comparison between 359 

CFSv2 alone and NMME in which CFSv2 has slightly lower precipitation skill.  For the SE 360 

NIDIS domain, ESP is more skillful in for month-1 leads due to low NMME precipitation skill, 361 

but the situation changes for longer leads when the full resolution dowscaled, bias corrected 362 

forecasts are used in the hydrological model.  For both ESP and NMME hydrological forecasts, 363 

observed hydrologic initial states are used at the initial forecast time.  These can be provided 364 

from the National Land Data Assimilation System (NLDAS) (Mitchell et al., 2004).   365 
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For meteorological drought assessed at continental-to-global scales, the 1-degree NMME 366 

model precipitation forecasts can be used.  Figure 14 shows the NMME 6-month SPI (SPI6) 367 

forecast initiated on the 1st of June 2011 and 2012 for 6 models (ensemble mean), the equally 368 

weighted multi-model mean, and the observed SPI6 from the CPC merged gauge-radar 369 

precipitation analysis.  As is done with SPI forecasts, observed MAM precipitation is combined 370 

with JJA precipitation forecasts to provide the SPI6 forecast. This methodology of combining 371 

50% observational data with 50% forecast data is described in Quan et al. (2012). 372 

373 

3. The Phase 2 NMME 374 

 The NMME-2 project was awarded in August 2012 so results to present here are limited. 375 

However, there are some specific issues to highlight here. In particular, we provide some 376 

preliminary results indicating that both modeling system improvements and data assimilation 377 

system improvements will contribute to improved NMME-2 forecast quality. We also describe 378 

an example of how some lessons learned regarding the retrospective forecast protocol in 379 

NMME-1 contribute to the NMME-2 forecast protocol. Finally, we provide some details 380 

regarding the data dissemination strategy on NMME-2. 381 

382 

a. Prediction System Improvement 383 

The NMME team will transition from CCSM3 (T85) to CCSM4 (0.9x1.25_g1v6 384 

resolution), although if CCSM3 continues to be a useful contributor to the NMME, we will 385 

continue the real-time predictions. CCSM4 has significant improvements in the simulation of 386 

tropical variability relative to CCSM3.0 (Neale et al. 2008; Jochum et al. 2008; Gent et al. 2009). 387 

The initialization procedure differs from CCSM3 in that we will use the operational CFSR 388 
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ocean, land and atmospheric states to initialize CCSM4 as opposed to ocean only initialization 389 

using optimal interpolation from GFDL (i.e., Derber and Rosati 1989). We have begun testing 390 

the CFSR ocean states in CCSM4 hindcast experiments, and Fig. 15 shows the hindcast SSTA 391 

correlation for a parallel set of experiments using CCSM3 with the original GFDL ocean states 392 

(bottom panel) and using the CFSR ocean states (top panel). The correlation is noteable larger 393 

with CCSM4 using CFSR ocean states. We separately examined the impact of the model 394 

changes (i.e., CCSM3 vs. CCSM4) and the changes associated with the different ocean state. 395 

Both changes contribute to the increases in the correlation, but are dominated by the model 396 

changes. We have also developed procedures for using CFSR data for the atmosphere and land 397 

initial states (e.g., Paolino et al. 2012).398 

The GFDL NMME contribution will transition from the CM2.1 model to the high-399 

resolution coupled model CM2.5 (described below). The atmospheric component of CM2.5 is 400 

derived from the atmospheric component of the GFDL CM2.1 coupled model. The horizontal 401 

resolution has been refined from roughly 200 km to approximately 50 km. The ocean model is 402 

substantially different from that used in CM2.1. The ocean grid is considerably finer, with 403 

horizontal spacing varying from 28 km at the equator to 8 km in high latitudes. In addition, the 404 

grid boxes maintain an aspect ratio close to one, in contrast to CM2.1 where the aspect ratio can 405 

exceed 2 at high latitudes due to the convergence of the meridians. The ocean component uses 50 406 

levels in the vertical as in CM2.1. The land model (Dunne et al. 2013) in CM2.5 is called “LM3” 407 

and represents a major change from the land model used in CM2.1. LM3 is a new model for land 408 

water, energy, and carbon balance. The sea ice component used in CM2.5 is almost identical to 409 

that used in CM2.1, called the GFDL Sea Ice Simulator (SIS).  410 

411 
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b. Data Dissemination Strategy 412 

One of the major challenges for both NMME-1 and NMME-2 is to provide rapid and 413 

open access to all the hindcasts and the real-time forecasts. The strategy developed includes two 414 

major components. First, NOAA/CPC will obtain and store the monthly mean data (hindcasts 415 

and real-time forecasts) for the three (expanding to eight; that is SST, precipitation, T2m, 500 mb 416 

geopotential, Tmax, Tmin, Soil Moisture and Runoff) required variables from all the 417 

participating models and the IRI will maintain a NMME web site serving this minimal data set to 418 

the broader research and applications communities in real-time. This rapid and open access to the 419 

data is a critical element distinguishing the NMME activity. The second component of the 420 

approach recognizes that the data and possibly the number of participating models will grow, a 421 

more robust centralized data strategy is required to meet the needs of the broader research and 422 

applications communities. As such, we have developed an NMME-2 data server to be housed at 423 

the new NCAR Wyoming Supercomputing Center (NWSC). This NMME-2 data server will 424 

include high frequency (e.g., 3-hourly and daily) and a much more complete three-dimensional 425 

distribution of the data.  426 

427 

4. NMME-2 Research 428 

A major challenge to the NMME experiment is to quantitatively document the success of 429 

the project. Here we briefly summarize some elements of our strategy, but also welcome the 430 

broader research community to rigorously assess and use the data. Indeed, we assert that making 431 

the data readily available to all interested parties is the best approach for evaluating the utility of 432 

the multi-model approach advocated here. The measures of success envisioned by the NMME-2 433 

team include a spectrum of quantitative metrics such as forecast skill assessment as a function of 434 
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number of models and ensemble members to identifying complementary skill among the models 435 

to assessing phenomenological skill.  436 

For example, to determine the forecast skill as a function of the number of models and 437 

the number of ensemble members, and we will assess a hierarchy of methods of varying 438 

complexity using a variety of deterministic and probabilistic verification measures. The 439 

deterministic verifications will be applied to the multi-model ensemble mean forecast, while the 440 

probabilistic verifications will be applied to the forecast probabilities of tercile-based categories 441 

(hereafter called terciles) and of the extreme 15% tails of the climatological distribution. To 442 

facilitate this analysis the NMME project is developing an open access “verification map room” 443 

(http://iri.columbia.edu/~tippett/NMME/) that will also be easily accessible via smart phone. The 444 

reader is also encouraged to visit this web site and the developing reliability web site 445 

(http://iri.columbia.edu/~shuhua/mis-html/Reliability_nmme.html) both of which are already 446 

delivering results. 447 

The above forecast skill assessment is applied without any mechanistic or 448 

phenomenological perspective. A second important measure of success is the extent to which we 449 

provide a better understanding of the mechanisms and sources of predictive skill. In this second 450 

category we confront the forecasts with observations from a mechanistic and phenomenological 451 

perspective that also has the advantage of entraining some additional user communities into the 452 

skill assessment. We already have in place commitments to use the NMME data for the US 453 

drought briefing, to derive standardized drought precipitation indices (K. Mo personal 454 

communication) and for the emerging Global Drought Information System (GDIS). Feedback 455 

from these applications will aid in assessing forecast skill from a drought user perspective, and 456 

the use of the NMME data in this regard is a clear measure of success. 457 
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 An NMME, or any combination of forecast methods, begs the question as to how many 458 

models and ensemble members we really need for the problem at hand (this question also comes 459 

up in the IPCC context).  For example, does the N+1 models always provide more skill than N 460 

models? The NMME phase-2 hindcasts provide an excellent opportunity to research this issue 461 

for sub-seasonal to seasonal time scales (beyond 2 weeks, excluding the weather prediction 462 

portion of each forecast period). Well-known notions with respect to the effective number of 463 

degrees of freedom in space and time (often approximated by how many EOFs it takes to explain 464 

say 90% of the variance of a data set) can be applied here where an additional dimension ‘space’ 465 

is taken to be across all the ensemble members. This way we could find that it takes only n466 

models with k ensemble members to describe 90% of the information we have generated by K467 

members of N models. This information content approach can be applied straightforwardly and is 468 

directly related to the notion of orthogonality/independence.  It will take more originality to 469 

combine this with the skill of the forecasts, i.e. add the observational data set (1 single 470 

realization) to arrive at those components of a huge forecast data set that are orthogonal with 471 

respect to their ability to add skillful information. These questions and many others can be 472 

addressed with the NMME phase-2 data that will be available to researchers beyond the NMME 473 

team. 474 

475 

5. Concluding Remarks 476 

 The purpose of this paper is to introduce the weather and climate research and 477 

applications communities to the NMME experiment. Here we have provided a description of the 478 

NMME project and its expected evolution over the next 18 to 24 months (i.e., NMME-II). Part of 479 

the description emphasized both deterministic and probabilistic retrospectives in forecast480 



 21 

verification. We chose to compare the NMME system (which includes the NOAA operational  481 

CFSv2) to CFSv2 alone. This choice was pragmatic and based on addressing the question of 482 

whether the NMME project can enhance the NOAA operational system. Overall, the various 483 

skill metrics (correlation, RMSE, RPSS and reliability) all suggest that the NMME system 484 

improves the skill over the CFSv2. Admittedly, we have not clearly shown whether the 485 

improvement is due to a larger ensemble size or the use of the multiple models (or both);486 

nevertheless, the distribution of the forecast production to a number of different groups and 487 

centers is an effective strategy for economically increasing the forecast skill.  488 

 The assertion that the use of multiple models is an important aspect of the improved skill 489 

is supported by a number of previous efforts (e.g., CHFP4, NAEFS5, TIGGE6, DEMETER7,490 

ENSEMBLES8). Indeed, much like the NMME activity, the International Multi-Model Ensemble 491 

(IMME)9 is motivated by the results of these early studies. The distinction of the NMME project 492 

is two fold. First, the previous efforts focus entirely on retrospective forecasts, whereas the 493 

NMME project includes both real-time and retrospective forecasts. Second, the NMME project is 494 

committed to provide easy access to all the data (in near real-time), whereas the access to data is 495 

restricted in the IMME project. There is an important caveat here, namely, while multi-models 496 

approaches are pragmatic approach, we recognize that they do not adequately resolve the 497 

uncertainty due to model formulation. 498 

 Finally, we note that the NMME models that are retained as we enter phase-2 of the 499 

project are from major national modeling centers (i.e., NOAA-GFDL, NOAA-NCEP, NASA, 500 

                                                
4 http://www.wcrp-climate.org/wgsip/chfp/index.shtml 
5 http://www.emc.ncep.noaa.gov/gmb/ens/NAEFS.html 
6 http://tigge.ecmwf.int/ 
7 http://www.ecmwf.int/research/demeter/index.html 
8 http://www.ecmwf.int/research/EU_projects/ENSEMBLES/index.html 
9 The IMME project is an expansion of the EUROSIP 
(http://www.ecmwf.int/products/forecasts/d/charts/seasonal/forecast/eurosip/) to include the CFSv2. 



501 NCAR, CMC) and it is our expectation is that these efforts have critical mass in terms of human
�
502 resources for continued evaluation and testing, and that participation by the various NMME
�
503 partners is mutually beneficial. For example, the project leverages all the model, assimilation and
�
504 data development activities at the various centers. The various centers, in turn, test their models
�
505 against other state-of-the-art prediction systems in both retrospective and real-time mode, and
�
506 potentially have a much wider user community examine the predictions in various applications.
�
507 We also believe that this continual enhanced collaboration among a broad base of researchers
�
508 will lead to improved specific operational prediction products. Just as important, the core
�
509 research collaboration that is at the heart of the NMME project will lead to a better
�
510 understanding of mechanism of and sources for predictability and better estimates of the inherent
�
511 limits of predictability. Moreover, some of these national efforts have distinct science missions,
�
512 and the NMME project provides common experimental framework to evaluate model
�
513 performance. Nevertheless, it remains a challenge to demonstrate that the research results from
�
514 the NMME experiment feedback to model development, and the success of the project should be
�
515 evaluated in this regard.

�
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7. Figure Captions 628 

Figure 1: Nino34 (area averaged SSTA 170W-120W, 5S-5N) plumes – for 0.5 months lead: 629 

1982-1995 on top and 1996-2010 on bottom. 630 

631 

Figure 2: Same as Fig. 1 but for 6.5 month lead 632 

633 

Figure 3: SSTA correlation coefficient – each ensemble member weighted equally. Retrospective 634 

forecasts are initialized in August 1982-2009 and verifying in following February (i.e., 5.5 635 

month lead). 636 

637 

Figure 4: SSTA Root Mean Squared Error (RMSE) 20S-20N for each individual model 638 

compared to the multi-model mean, September starts 1982-2009, leads 0.5-5.5. The x-axis 639 

ranges from 0 to 2oC and corresponds to the NMME RSME and the y-axis ranges from 0 to 2oC640 

and corresponds to the individual model RMSE. Dots above the diagonal imply NMME has 641 

smaller RMSE. The percentage of points below the diagonal is noted in each panel. 642 

643 

Figure 5: SSTA Rank Probability Skill Scores (RPSS) for the grand NMME multi-model 644 

ensemble (top panel) and for CFSv2 (bottom panel). The skill is based on hindcasts initialized in 645 

July 1982-2009 and verifying the following DJF seasonal mean for tercile forecasts. Positive 646 

values indicate probabilistic skill that is better then climatology and negative values indicate 647 

probabilistic skill that is worse than a climatological forecast. Global averaged RPSS is noted on 648 

the figure. 649 

650 
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Figure 6: SSTA Rank Probability Skill Scores (RPSS) for the grand NMME multi-model 651 

ensemble (top panel) and for CFSv2 (bottom panel). The skill is based on hindcasts initialized in 652 

January 1982-2009 and verifying the following JJA seasonal mean for tercile forecasts. Positive 653 

values indicate probabilistic skill that is better then climatology and negative values indicate 654 

probabilistic skill that is worse than a climatological forecast. Global averaged RPSS is noted on 655 

the figure. 656 

657 

Figure 7: Surface atmospheric temperature (2 meter) Rank Probability Skill Scores (RPSS) for 658 

the grand NMME multi-model ensemble (top panel) and for CFSv2 (bottom panel). The skill is 659 

based on hindcasts initialized in January1982-2009 and verifying the following JJA seasonal 660 

mean for tercile forecasts. Positive values indicate probabilistic skill that is better then 661 

climatology and negative values indicate probabilistic skill that is worse than a climatological 662 

forecast. Global averaged RPSS is noted on the figure. 663 

664 

Figure 8: Precipitation forecast Rank Probability Skill Scores (RPSS) for the grand NMME 665 

multi-model ensemble (left panel) and for CFSv2 (right panel). The skill is based on hindcasts 666 

initialized in July 1982-2009 and verifying the following DJF seasonal mean for tercile forecasts. 667 

Positive values indicate probabilistic skill that is better then climatology and negative values 668 

indicate probabilistic skill that is worse than a climatological forecast. 669 

670 

Figure 9: Precipitation forecast Rank Probability Skill Scores (RPSS) for the grand NMME 671 

multi-model ensemble (left panel) and for CFSv2 (right panel). The skill is based on hindcasts 672 

initialized in January 1982-2009 and verifying the following JJA seasonal mean for tercile 673 
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forecasts. Positive values indicate probabilistic skill that is better then climatology and negative 674 

values indicate probabilistic skill that is worse than a climatological forecast. 675 

676 

Figure 10: NMME reliability diagram for 2-meter temperature anomalies throughout the globe. 677 

The reliability corresponds to forecasts initialized in October 1982-2009 and verifying in 678 

following JFM season. 679 

680 

Figure 11: Reliability diagram for 2-meter temperature anomalies throughout the globe from a681 

sample of individual models. The reliability corresponds to forecasts initialized in October 1982-682 

2009 and verifying in following JFM season. 683 

684 

Figure 12: Real-time NINO3.4 predictions initialized in May 2013. 685 

686 
Figure 13:  Percent difference in RPSS skill of streamflow forecasts over the Colorado NIDIS 687 

testbed (left panel) and SE US NIDIS testbed (right panel) with lead times out to 6 months.  Skill 688 

differences above 0 indicates NMME forecasts are more skilful than ESP.  “Full resolution” 689 

indicates using the downscaled 1/8th degree, daily seasonal climate model variables; “Avg Time” 690 

indicates the forecasts are averaged over the lead time; and “Avg Time and Space” indicates that 691 

the forecast are averaged over the lead times and domain.692 

693 

Figure 14:  NMME SPI6 forecasts initialized June 1, 2011 and Jun1, 2012.  Observed MAM 694 

precipitation is combined with JJA model ensemble mean forecast.  The NMME forecast is the 695 

equally weighted ensemble model average.696 

697 
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Figure 15: SSTA correlation coefficient for forecasts initialized in early January and verifying 698 

for May (1982-2000). The top panel shows results using CCSM4 and CFSR initial states for the 699 

ocean and the bottom panel shows results for CCSM3 using MOM3 ODA initial states.700 

701 

702 
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Table 1: NMME partner models and forecasts 703 
Model Hindcast 

Period
Ensemble 
Size

Lead Times Arrangement 
of Ensemble 
Members

Contact and 
reference

CFSv1 1981-2009 15 0.5-8.5 
Months

1st 0Z +/-2
days, 21st0Z 
+/-2d, 11th

0Z+/- 2d

Saha (Saha 
et al. 2006)

CFSv2 1982-2010 24(28) 0.5-9.5 
Months

4 members 
(0,6,12,18Z) 
every 5th day

Saha (Saha 
et al. 2013)

GFDL-
CM2.2

1982-2010 10 0.5-11.5 
Months

All 1st of the 
month 0Z

Rosati 
(Zhang et al. 
2007)

IRI-
ECHAM4-
f10

1982-2010 12 0.5-7.5 
Months

All 1st of the 
month 0Z

DeWitt 
(DeWitt 
2005)

IRI-
ECHAM4-a2

1982-2010 12 0.5-7.5 
Months

All 1st of the 
Month 0Z

DeWitt 
(Dewitt 
2005)

CCSM3.0 1982-2010 6 0.5-11.5 
Months

All 1st of the 
Month 0Z

Kirtman 
(Kirtman 
and Min 
2009)

GEOS5 1981-2010 1111 0.5-9.5 
Months

1 Member 
every 5th day

Schubert 
(Vernieres et 
al. 2011)

CMC1-
CanCM3

1981-2010 10 0.5-11.5 All 1st of the 
month 0Z

Merryfield
Merryfield 
et al. (2013)

CMC2-
CanCM4

1981-2010 10 0.5-11.5 ALL 1ST of 
the month 
0Z

Merryfield
Merryfield 
et al. (2013)

704 

                                                
10 Real-time forecasts terminated in July 2012. 
11 The number of forecast and hindcast ensemble members is not constant during the period.  It has grown from 6 for 
the initial August of 2011 forecasts (and associated hindcasts), to 11 starting with our June 2012 forecasts.  The 
additional (beyond 6 initialized every 5th day) ensemble members are based on breeding and other perturbations 
applied on the day closest to the beginning of the month. 
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Figure 1: Nino34 (area averaged SSTA 170oW-120oW, 5oS- 5oN) plumes – for 0.5 month lead: 6 
1982-1995 on top and 1996-2010 on bottom. 7 
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Figure 2: Same as Fig. 1 but for 6.5 month lead. 14 
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 17 
 18 
Fig. 3: SSTA correlation coefficient – each ensemble member weighted equally. Retrospective 19 
forecasts are initialized in August 1981-2010 and verifying in following February (i.e., 5.5 20 
month lead).  21 
  22 
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 23 
Fig. 4: SSTA Root Mean Squared Error (RMSE) 20S-20N for each individual model compared 24 
to the multi-model mean, September starts 1982-2009, leads 0.5-5.5. The x-axis ranges from 0 to 25 
2oC and corresponds to the NMME RSME and the y-axis ranges from 0 to 2oC and corresponds 26 
to the individual model RMSE. Dots above the diagonal imply NMME has smaller RMSE. The 27 
percentage of points below the diagonal is noted in each panel. 28 
 29 
  30 
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 31 
Figure 5: SSTA Rank Probability Skill Scores (RPSS) for the grand NMME multi-model 32 
ensemble (top panel) and for CFSv2 (bottom panel). The skill is based on hindcasts initialized in 33 
July 1982-2009 and verifying the following DJF seasonal mean for tercile forecasts. Positive 34 
values indicate probabilistic skill that is better then climatology and negative values indicate 35 
probabilistic skill that is worse than a climatological forecast. Global averaged RPSS is noted on 36 
the figure. 37 
 38 
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 40 
Figure 6: SSTA Rank Probability Skill Scores (RPSS) for the grand NMME multi-model 41 
ensemble (top panel) and for CFSv2 (bottom panel). The skill is based on hindcasts initialized in 42 
January 1982-2009 and verifying the following JJA seasonal mean for tercile forecasts. Positive 43 
values indicate probabilistic skill that is better then climatology and negative values indicate 44 
probabilistic skill that is worse than a climatological forecast. Global averaged RPSS is noted on 45 
the figure.. 46 
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 48 
Figure 7: Surface atmospheric temperature (2 meter) Rank Probability Skill Scores (RPSS) for 49 
the grand NMME multi-model ensemble (top panel) and for CFSv2 (bottom panel). The skill is 50 
based on hindcasts initialized in January1982-2009 and verifying the following JJA seasonal 51 
mean for tercile forecasts. Positive values indicate probabilistic skill that is better then 52 
climatology and negative values indicate probabilistic skill that is worse than a climatological 53 
forecast. Global averaged RPSS is noted on the figure. 54 
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 55 
Figure 8: Precipitation forecast Rank Probability Skill Scores (RPSS) for the grand NMME 56 
multi-model ensemble (left panel) and for CFSv2 (right panel). The skill is based on hindcasts 57 
initialized in July 1982-2010 and verifying the following DJF seasonal mean for tercile forecasts. 58 
Positive values indicate probabilistic skill that is better then climatology and negative values 59 
indicate probabilistic skill that is worse than a climatological forecast. 60 
 61 

 62 
Figure 9: Precipitation forecast Rank Probability Skill Scores (RPSS) for the grand NMME 63 
multi-model ensemble (left panel) and for CFSv2 (right panel). The skill is based on hindcasts 64 
initialized in January 1982-2010 and verifying the following JJA seasonal mean for tercile 65 
forecasts. Positive values indicate probabilistic skill that is better then climatology and negative 66 
values indicate probabilistic skill that is worse than a climatological forecast. 67 
 68 
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 71 
Figure 10: NMME reliability diagram for 2-meter temperature anomalies throughout the globe. 72 
The reliability corresponds to forecasts initialized in October 1982-2009 and verifying in 73 
following JFM season. 74 
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 76 

 77 
Figure 11: Reliability diagram for 2-meter temperature anomalies throughout the globe from a 78 
sample of individual models. The reliability corresponds to forecasts initialized in October 1982-79 
2009 and verifying in following JFM season.  80 
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 81 
Figure 12: Real-time NINO3.4 predictions initialized in May 2013. 82 
 83 

84 
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 85 
Figure 13:  Percent difference in RPSS skill of streamflow forecasts over the Colorado NIDIS 86 
testbed (left panel) and SE US NIDIS testbed (right panel) with lead times out to 6 months.  Skill 87 
differences above 0 indicates NMME forecasts are more skilful than ESP.  “Full resolution” 88 
indicates using the downscaled 1/8th degree, daily seasonal climate model variables; “Avg Time” 89 
indicates the forecasts are averaged over the lead time; and “Avg Time and Space” indicates that 90 
the forecast are averaged over the lead times and domain. 91 
  92 
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 93 
Figure 14:  NMME SPI6 forecasts initialized June 1, 2011 and Jun1, 2012.  Observed MAM 94 
precipitation is combined with JJA model ensemble mean forecast.  The NMME forecast is the 95 
equally weighted ensemble model average. 96 
 97 
 98 
 99 
 100 
  101 
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 103 

 104 
Figure 15: SSTA correlation coefficient for forecasts initialized in early January and verifying 105 
for May (1982-2000). The top panel shows results using CCSM4 and CFSR initial states for the 106 
ocean and the bottom panel shows results for CCSM3 using MOM3 ODA initial states.  107 
 108 


