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Using a support vector machine and a land1

surface model to estimate large-scale passive2

microwave temperatures over snow-covered3

land in North America4

Barton A. Forman and Rolf H. Reichle5

Abstract6

A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is7

employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land8

in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The9

capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented10

in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically-11

and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during12

the training procedure and subsequently averaged across the North American domain over the 9-year study period, the13

root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater.14

When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested,15

the root mean squared error was reduced by more than 18% while the anomaly correlation coefficient was increased16

by more than 52%. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM17

more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a18

superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.19
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I. Introduction and Background22

Snow is a critical component of the hydrologic cycle because of its influence on land surface albedo [19], its23

control on land surface water and energy balances [31], and its impact on weather and climate [4], [17]. Snow24

also serves as the dominant source of freshwater supply for more than one billion people globally [3], [16].25

Direct quantification of the mass of snow, or snow water equivalent (SWE), however, is complicated by significant26

spatial and temporal variability such that sparse, ground-based observation networks can not always capture the27

spatiotemporal heterogeneity of SWE. In response, researchers have begun using space-based instrumentation in28

conjunction with land surface models (LSMs) in an effort to better quantify this vital resource.29

Data assimilation can be used to merge satellite-derived measurements with physically-based LSMs [9], [10],30

[13], [29] by weighing the uncertainties in each in order to yield a merged estimate superior to the measurements or31

the model alone [25]. In this process, it is necessary to map the relevant model state variables into the corresponding32

measurement space: In the context of snow data assimilation, this can involve mapping model state variables into33

passive microwave (PMW) brightness temperature (Tb) space [2], [10], [12] using a physically-based radiative34

transfer model (RTM) [27], [35], [36]. However, LSMs operating at regional and continental scales do not possess35

the fidelity to provide the necessary inputs required by the RTM [11], and as such, previous PMW Tb studies have36

been limited to point-scale or basin-scale applications [2], [10], [12].37

Recent research has explored the use of machine learning as an efficient alternative to a RTM in order to map38

model state variables into PMW Tb space. It was shown that an artificial neural network (ANN) could effectively39

diagnose PMW Tb at multiple frequencies and multiple polarizations across regional and continental scales [14].40

Further, these results were unbiased over the 9-year study period, demonstrated significant skill during both the41

accumulation (i.e., when the snow is relatively dry) and ablation (i.e., when the snow is relatively wet) phases of the42

snow season, and yielded a domain-averaged root mean squared error (RMSE) less than 10 K at all frequency and43

polarization combinations investigated in the study. The findings of [14] were the first to demonstrate the potential44

of using an ANN as a measurement operator to estimate PMW Tb over snow-covered land with the eventual goal45

of applying it in a large-scale SWE data assimilation framework.46

This current study expands on the work of [14] by investigating an alternative form of machine learning. Namely,47

the objective of this study is to explore the utilization of a support vector machine (SVM) for nonlinear regression48

as applied to PMW Tb estimation over snow-covered land, and to contrast the results against those generated by the49

ANN presented in [14]. SVMs are similar to ANNs in that both forms of machine learning are skilled at reproducing50

nonlinear processes [8], [26], [39]. However, there are also differences in performance between SVMs and ANNs.51

For example, if the problem is strictly convex, then the solution to the SVM optimization problem is unique. With52

convex constrained optimization problems, it has also been shown that SVMs are not plagued with the problem of53

local minima as are ANNs [32]. Further, a number of resampling procedures are available [8] that easily allow for54

the proper selection of SVM parameters without the need for an “expert” user to decide a priori what the SVM55

parameters should be, which is contrary to the general ANN application case.56
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The SVM methodology and experimental domain used in this study are outlined in section II and appendix, the57

approach to validate the results is discussed in section III, the results are presented in section IV, and the major58

findings and conclusions of this study are highlighted in section V.59

II. Methodology60

A. SVM Solution61

Consider an [1 × n] input vector, y, where n = 11 is the number of geophysical variables that characterize snow62

and near-surface environmental conditions at a given location in space and time. In this study, y is derived from a63

land surface model simulation (further details provided in section II-B). Once trained on Tb observations, a nonlinear64

SVM can be used to estimate Tb at a given frequency and polarization for a particular location in space and time65

as a function of y via the approximating function66

f (y) =

m∑

i=1

(
α∗i − αi

)
k(xi, y) + δ (1)

where α and α∗ are the [m × 1] set of dual Lagrangian multipliers, k(xi, y) is the radial basis kernel function67

computed as k(xi, y) = exp{−γ ‖xi − y‖2}, x is the [m × n] training matrix, δ is the “bias” coefficient, and m is the68

number of training targets. The variables αi, α
∗
i
, and δ along with the corresponding set of support vectors are all69

defined during training, which is discussed in more detail in the appendix. It is worth noting here that x and y are70

computed with the same land surface model, but that the two sets are drawn from different periods of time and can71

therefore be considered independent. Once the approximating function is specified and the SVM has been trained,72

equation (1) provides a straightforward and computationally inexpensive method to estimate Tb as a function of73

time given temporally varying near-surface conditions from the land surface model simulation.74

B. SVM Inputs and Outputs75

Inputs to the SVM are identical to those used in the ANN study. For brevity, only the essential details are discussed76

here with the acknowledgement that additional details may be found in [14]. Inputs to the SVM included a number77

of land surface state estimates derived from the NASA Catchment land surface model (Catchment) [21] and are78

listed in Table I. State variable estimates from Catchment, in general, are comprised of: 1) snow conditions and79

2) near-surface air, soil, and vegetation temperatures. The Catchment model was forced by surface meteorological80

fields acquired from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) product [30].81

Daily-averaged Catchment output was generated on the Equal Area Scalable Earth (EASE) grid at a 25km × 25km82

horizontal resolution. AMSR-E measurements used as training targets and as independent validation were derived83

on the same 25-km EASE grid; the AMSR-E Tb measurements are discussed in more detail in section II-C1. The84

LIBSVM library [6] was employed for all SVM training and estimation activities in this study.85

C. SVM Training86
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1) Training Targets: The SVM was trained using AMSR-E measurements collected at three different frequencies87

– 10.65 GHz, 18.7 GHz, and 36.5 GHz – at both horizontal and vertical polarization. The resulting combination88

of the three frequencies and two polarizations yielded a total of six different sets of training targets (or outputs) as89

listed in Table I. These frequency and polarization combinations were selected due to their sensitivity to snow [5],90

[16], [19] and because the same combinations were used in [14]. The latter enables a direct comparison between91

ANN and SVM performance, which is one of the main objectives of this study. Three additional AMSR-E channels92

– 6.9 GHz, 23.9 GHz, and 89.0 GHz – were available for use but were not employed in the SVM framework.93

This was done in part to maintain continuity with the ANN study and in part due to physical limitations associated94

with particular frequencies. For example, the 89.0 GHz channel was avoided due to significant atmospheric effects95

[7] and limitations associated with precipitating clouds [24]. In addition, even though the 23.9 GHz channel has96

a penetration depth into the snowpack that lies between that of the 18.7 GHz and 36.5 GHz channels, and could97

therefore provide additional information about snow conditions, its use was avoided due to significant interactions98

with atmospheric water vapor. Finally, as was similarly conducted in [14], the 6.9 GHz channel was excluded99

because its effective field of view (75km × 43km for the 3 dB footprint; [1]) is much greater than the grid spacing100

of the 25km × 25km EASE-grid product and because it is relatively insensitive to terrestrial snow [5]. Additional101

evidence suggests the 6.9 GHz channel is negatively impacted by radio frequency interference [18], which further102

motivates its exclusion from the selected training targets.103

It has been demonstrated that forest cover attenuates PMW emission from the underlying snowpack while104

simultaneously adding its own contribution to the radiation as measured by the radiometer [34]. Recent research105

has further shown that AMSR-E snow retrievals that employ PMW Tbs at 36 GHz are adversely impacted by106

forest effects and that correction strategies can be applied using radiation transfer theory [22]. In this present107

study, no such correction strategies have been applied. In other words, the AMSR-E Tb measurements used during108

training (as well as the Tb estimates generated by the trained SVM) over forested regions contain contributions109

from both the snow and the vegetative canopy. Vegetation corrections were excluded from this study in order to110

maintain continuity with the approach outlined in [14]. All AMSR-E Tbs used in this study were obtained from111

http://nsidc.org/data/nsidc-0301.html and are highlighted in [20].112

2) Training Approach: A SVM was generated for each Tb frequency and polarization combination listed in113

Table I. Each SVM was trained separately and independently at each grid cell on the 25 km EASE grid using the114

available measurements collected by AMSR-E during the 9-year period from 1 September 2002 to 1 September115

2011. This 9-year period encompasses approximately 98% of the available AMSR-E data prior to 4 October 2011116

when a problem associated with the rotation of the AMSR-E antenna occurred and regular science data collection117

ceased. Each SVM was trained for a two week (fortnight) period. This approach was used to address the strong118

seasonality in snow processes [14].119

For a given fortnight in a given year, training activities employed the AMSR-E observations for the given fortnight120

from the other eight years in the training record. That is, training cycled through the 9-year period withholding121

each year in turn. Consequently, the AMSR-E measurements for the year that were not used for training were later122
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utilized during validation activities discussed below in section III. An identical procedure to define the training123

dataset was similarly used in the ANN study as discussed in [14].124

Tests were conducted using less than eight years of training data; however, the results from these tests (not shown)125

suggested that, in general, SVM performance improved as more training data were made available. In addition,126

in order to enhance continuity from one fortnight to the next, a temporal overlap of two weeks was included at127

both the beginning and end of each training period. Only measurements collected during the nighttime AMSR-E128

overpass (roughly between 01:00 to 01:30 hours local time) were used during training in order to minimize wet129

snow effects.130

The SVM training procedure consisted of a two-fold training process (similar to that used during ANN training)131

in an effort to enhance SVM robustness. The two-fold procedure involved the selection of a subset (approximately132

50%) of the 8-year training data with which the SVM was first trained. (Note that the training data discussed here133

are separate from the independent validation data mentioned above and discussed below in section III.) The trained134

SVM was then used to reproduce the subset of training data, and the mean square error (MS E) was computed135

between the SVM estimates and the training data subset. The process employing the first subset of training data was136

repeated across a range of values for the SVM parameters ε and γ (Appendix), each time computing (and storing)137

the resulting MS E. This procedure was then repeated using the remaining (i.e., the other 50%) of the training138

data such that no reuse of training data occurred during the two-fold process. As conducted with the first subset of139

training data, the SVM was trained across a range of ε and γ values and MS E was computed. The combination of ε140

and γ values that yielded the closest agreement (in a mean-square sense) across the two training exercises conducted141

thus far was ultimately selected for use during the final SVM training procedure, which employed the entire (8-year)142

training data set. This final SVM was then used for the remainder of the comparisons described below. Additional143

tests ranging from a two-fold process up to a ten-fold process were conducted without any significant improvement144

found beyond the two-fold process. Therefore, the two-fold procedure was ultimately adopted as it incurred the145

least amount of computational expense without any sacrifice in SVM performance while also maintaining continuity146

with the ANN study.147

D. Study Domain148

The study domain shown in Figure 1 encompasses the North American continent poleward of 32◦N and is149

identical to that used in the ANN study [14]. This region was selected because the domain includes all the major150

snow classes – tundra, taiga, maritime, prairie, alpine, and ephemeral – as defined in [33]. The 9-year study period151

(1 September 2002 to 1 September 2011) corresponds to nearly the entire AMSR-E measurement record and is152

likewise identical to that used in the ANN study [14].153

III. Validation Approach154

Validation of the SVM-derived estimates involved the use of the original AMSR-E measurements not used155

during SVM training (see section II-C2 for more details). For any year of interest, the validation set of AMSR-E156
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measurements is completely separate and autonomous from the training datasets, and therefore constitutes a valid,157

independent comparison. Several different validation metrics were employed: 1) bias of the estimator, bias, 2) root158

mean squared error, RMS E, which includes the bias, and 3) anomaly correlation coefficient, anomaly R. The first159

two metrics were calculated from an original (i.e., “raw”) time series. The anomaly R metric, on the other hand,160

was calculated from an anomaly time series after the respective climatological (multi-year average) seasonal cycle161

was subtracted from each respective data set. Each metric was computed separately at each grid cell (based on162

daily data). Area-averaged metrics were computed by averaging the metrics across the snow-covered grid cells.163

In order to compute meaningful statistics, a number of constraints were enforced to ensure that time series of164

sufficient length were available. For example, snow must be present at a given location at least 5% of the year. As165

a result, the number of data points used in the statistical calculations shown for a grid cell ranged from a minimum166

of 164 along the southern boundary of the snow covered area to more than 2500 near the northern edge of the167

study domain. It is well recognized that the AMSR-E measurements contain error (standard deviation of ∼1 K168

according to http://nsidc.org/data/docs/daac/amsre instrument.gd.html), but this error is small when compared to169

the uncertainty in the SVM and ANN output (relative to the AMSR-E measurements) and is therefore neglected170

here. An identical approach was employed in [14] during the original ANN investigation and is similarly applied171

here to the SVM.172

IV. Results173

Assessment of SVM capability in estimating AMSR-E Tbs included comparisons of both SVM and ANN output174

relative to AMSR-E measurements not used during training activities. These comparisons included statistical maps175

for the 9-year study period, which yielded a large-scale analysis of SVM performance relative to the ANN (subsection176

IV-A). In addition, time series investigations (subsection IV-B) are provided at several different locations (location177

markers provided on Figure 1) over the course of an entire snow season. The time series investigation provided178

evidence as to the capability of the machine learning techniques at reproducing AMSR-E measurements during both179

the snow accumulation portion of a snow season and the subsequent ablation phase. Moreover, a brief investigation180

on the spatial and temporal variability of the machine learning estimates is provided in section IV-C in order to181

highlight each technique’s skill at reproducing the variability in the original AMSR-E measurements. Finally, the182

potential for employing the SVM within a data assimilation framework (subsection IV-D) is briefly highlighted via183

investigation of the resulting Kalman gain matrix. In an analogous manner as conducted in [14], most discussions184

focused on the 18V and 36V results because these channels are considered the most informative when viewed in the185

context of SWE estimation [5]. However, it is worth noting here that all frequency and polarization combinations186

listed in Table I were investigated and analyzed in a similar fashion as the 18V and 36V results.187

A. Cross-validation188

Figure 2 provides a large-scale overview of SVM versus ANN performance at 18V over the course of the 9-189

year study period. Each subplot represents a statistical map for either the SVM output (left column) or the ANN190
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output (middle column) computed relative to the AMSR-E measurements not used during training. The top row191

illustrates the bias in the SVM estimates (Figure 2a), the bias in the ANN estimates (Figure 2b), and the difference192

between the two (Figure 2c). Analogously, the middle row highlights the computed RMS E whereas the bottom row193

highlights the computed anomaly R.194

In terms of bias, both the SVM and ANN yield relatively unbiased estimates when averaged over the entire study195

domain across the 9-year study period. The SVM estimates contain approximately 1 K more positive bias (relative196

to the ANN estimates) in regions surrounding Hudson Bay, across northern Quebec, and in western Alaska near the197

Bearing Sea. Conversely, the SVM contains approximately 1-2 K more negative bias in regions covered by boreal198

forest. Figure 2c further highlights the increase in the magnitude of bias in the SVM output (relative to the ANN199

estimates), but this bias is small when compared to the temporal variability of the original AMSR-E measurements200

(further discussion provided in section IV-C) and, in general, falls within the estimated error standard deviation (∼1201

K according to http://nsidc.org/data/docs/daac/amsre instrument.gd.html).202

Despite the small increase in bias generated by the SVM relative to the ANN output, results provided in Figures203

2d-f show the SVM contains significantly less RMS E than the ANN. The reduction in RMS E within the SVM204

estimates is witnessed across the entire study domain, including regions with and without significant vegetative205

cover, and are most apparent in regions where sub-grid scale lakes (i.e., lakes smaller than the 25-km EASE pixel206

size) are common. Additional reductions in RMS E are also found along the southern periphery of the snow line207

where the snow pack is thin and ephemeral and where freeze-thaw cycles are relatively common [14].208

Figure 3a presents box plots of computed RMS E for all frequency and polarization combinations examined in209

this study. It is clear that the SVM yields a reduction in computed RMS E relative to the ANN results. When210

viewed from the perspective of the median value, SVM-derived RMS E is reduced, on average, by ∼20-25% from211

the ANN-derived results. In addition, the extreme values (i.e., the 90th-percentiles) are greatly reduced such that212

the SVM yields more stable and more accurate results when compared to the ANN estimates for the same study213

period and study domain.214

The final set of statistics provided in Figures 2g-i shows the computed anomaly R over the 9-year study period.215

Anomaly R is useful in that it focuses on the capability of each technique to capture the synoptic-scale and inter-216

annual variability of the Tb estimates across the entire spatial domain. As is clearly seen, the SVM-based estimates217

are superior to those derived from the ANN. In particular, the anomaly R in regions to the north and south of the218

boreal forest is nearly doubled from ∼0.4 to ∼0.8. Within forested regions, Tb as measured by AMSR-E includes219

PMW emission from the forest canopy [22]. The ANN benefits greatly from model-derived skin temperature, Tskin,220

within the forest canopy, which yields much greater anomaly R values in regions where significant forest cover221

is present [14]. However, in regions where significant forest cover is not present, ANN-based performance as a222

function of time is drastically reduced. The SVM, on the other hand, is able to better utilize the full set of input223

variables outlined in Table I across a broader range of conditions, including both forested and non-forested areas.224

The dramatic improvements in anomaly R values computed from the SVM for the other evaluated frequency and225

polarization combinations are further witnessed in Figure 3b. The SVM is clearly able to capture much more226
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of the temporal variability found in the original AMSR-E Tb measurements. As was the case with the RMS E227

results, the median anomaly R values based on the SVM estimates are better for the vertically-polarized channels228

when compared to the horizontally-polarized channels, but these differences are relatively small and suggest that,229

in general, the SVM outperforms the ANN across space and time at all frequency and polarization combinations230

evaluated in this study.231

B. Time Series Investigation232

Results presented thus far focused on the time-integrated behavior of the SVM over the 9-year study period and233

its performance relative to that of the ANN. A time series investigation is discussed here in order to better illustrate234

the performance of the SVM throughout the snow season at a handful of representative locations. The goal of this235

investigation is to highlight the capability of the SVM to estimate Tb during the snow accumulation season when236

the snow is dry (and hence acts as an efficient scatterer) as well as during the snow ablation season when the237

snow is relatively wet (and hence acts a relatively efficient emitter). The 2003 – 2004 snow season was selected238

for analysis because it is representative of a typical snow season during the 9-year study period.239

Figure 4 highlights Tb time series for three different locations (shown as red circles in Figure 1). These particular240

locations were chosen because they represent the most dominant snow classifications (in terms of North American241

coverage in Figure 1) and because these three locations represent a range of different vegetative covers as well as242

maximum snow depths at peak accumulation. Namely, the first subplot (Figure 4a) is for a location with relatively243

shallow snow and little vegetative cover, the second subplot (Figure 4b) is for a location with moderate snow depth244

and relatively thick vegetative cover, and the third subplot (Figure 4b) is for a location with relatively deep snow245

and a modest amount of vegetative cover. The short gap in all time series in early-November 2003 is due to missing246

AMSR-E observations. The presence of a solid line (ANN or SVM) indicates the presence of snow as modeled by247

Catchment.248

As is shown, both the ANN and the SVM do a reasonable job at reproducing the AMSR-E measurements not used249

during training. Both techniques of machine learning capture the large-scale features present in the AMSR-E Tb250

measurements, including both the accumulation and ablation phases of the snow season. However, clear differences251

between the ANN and SVM estimates are also seen. Namely, the SVM does a much better job of capturing the high252

frequency (i.e., day-to-day) variability associated with synoptic scale processes. The ANN estimates, on the other253

hand, often lack this high frequency variability as is witnessed by the step function-like features present during254

portions of the snow season at each of the three locations. These clear differences in the ANN versus SVM estimated255

variability over time scales of a few days to a week corroborate the anomaly R results highlighted in Figures 2g-i256

and Figure 3b. These findings suggest the ANN output is less sensitive to certain changes in the modeled inputs257

whereas the SVM output is significantly more sensitive to changes in the modeled inputs as a function of time,258

and hence, yield Tb estimates that capture more of the high frequency temporal variability. Similar features are also259

found in the 10H, 10V, 18H, and 36H Tb estimates (results not shown).260

An additional note of interest regards the presence of snow as modeled by Catchment, which is used as input to261
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both the ANN and SVM (Table I). The AMSR-E measurements shown in Figures 4a and 4b suggest the presence262

of snow when the difference between 18V and 36V is greater than zero. The Catchment model, in general, suggests263

the presence of snow only where ANN or SVM predictions are made available (i.e., by the solid lines). In Figures264

4a and 4b, the Catchment model predicts the complete melt of the snow pack several weeks earlier than is suggested265

by the AMSR-E measurements. The exact cause of the discrepancy is currently unknown (and beyond the current266

scope of work for this study). It remains to be seen whether such errors could be corrected through data assimilation.267

C. Output Variability268

The findings presented above demonstrate the ability of a SVM to yield relatively unbiased AMSR-E Tb estimates269

with a modest amount of RMS E and significant skill (in terms of anomaly R) over synoptic and seasonal time270

scales. Further, it was shown the SVM improves upon the ANN, in general, at all frequency and polarization271

combinations examined in this study. An important question that remains, especially when viewed in the context of272

a data assimilation framework, is whether the SVM estimates can reasonably represent the spatiotemporal variability273

of the AMSR-E Tb measurements.274

The bar plots in Figure 5 highlight the variability for both the ANN-derived and SVM-derived Tb estimates. The275

corresponding variability in the AMSR-E measurements not used during training is also included. In addition to276

showing results for all of the frequency and polarizations used in this study, the results are further stratified by277

snow class (Figure 1). Each of the six snow classes – tundra, taiga, maritime (abbreviated mari.), alpine, prairie,278

and ephemeral (abbreviated ephem.) – cover hundreds (or more) EASE grid cells. For the purpose of this analysis,279

variability is first computed as the spatial standard deviation for each day when snow is present and then averaged280

in time over the 9-year study period. As is shown in Figure 5, both the ANN and SVM variabilities agree quite281

well with the variability in the AMSR-E measurements for each frequency/polarization combination and for each282

snow class. However, it is clear the SVM agrees better with the AMSR-E measurements (relative to the ANN-283

based output) in almost every category. In addition, the SVM (and ANN) estimates capture many of the large-scale284

features witnessed in the AMSR-E measurements. For example, the variability in the horizontally-polarized estimates285

is generally greater than their vertically-polarized counterparts for a given snow class. This behavior can be partly286

explained by the increased sensitivity of horizontally polarized Tbs to the presence of internal ice layers and surface287

crust [24], [28]. Further, the variability in both the ANN and SVM estimates (and AMSR-E measurements) is288

generally greatest in the tundra and taiga regions where the boreal forest is located, which suggests the forest289

influences contained within the AMSR-E measurements [22] are reproduced by the machine learning techniques.290

However, the SVM estimates clearly match the AMSR-E measurements more closely (relative to the ANN) for291

all frequency, polarization, and snow class combinations. The increased variability in the SVM estimates (relative292

to the ANN) corroborates the previous results that showed the SVM captures much more of the high frequency293

variability at a given location (see Figure 4 for examples), which leads to the increased variability across space and294

time as witnessed in Figure 5.295
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D. Potential for Data Assimilation296

The development of the SVM was originally motivated so that it could eventually be included as an observation

operator within a data assimilation framework [25], [29] for the purpose of merging AMSR-E Tb measurements

with SVM-derived Tb estimates into a LSM. In order to assess the potential of the SVM within the data assimilation

framework, a brief investigation of the error covariance structure between the LSM and the SVM-based Tb estimates

is presented here. The error covariance is computed as a gain matrix, K, which represents a weighted average of

the uncertainty in the LSM-derived estimates of SWE along with the spectral difference in the Tb estimates at 18V

and 36V. The presence of a non-zero error covariance structure would suggest a degree of potential for a follow-on

data assimilation study employing the SVM. The gain K is computed as

K = Cyz (Czz + Cvv)−1 , (2)

where Cyz is the (sample) cross-covariance between the ensemble of prior land model states and the SVM- or297

ANN-predicted Tbs, Czz is the (sample) covariance of the predicted Tbs, and Cvv = 1 K2 is the Tb measurement298

error variance. The gain K is computed at each pixel between the modeled SWE and SVM-based estimates of299

ΔTb=18V-36V. The spectral difference ΔTb=18V-36V is employed here as it is commonly used to estimate SWE300

[15] and serves to represent the linkage between SWE and Tb. The larger the spectral difference, in general, the301

greater amount of SWE is present [5]. Catchment model perturbations were implemented using the methods of302

[13] and performed in an identical fashion as conducted in [14]. As a first approximation for demonstrating the303

potential for a non-zero error covariance structure, only the prior model estimate (without an analysis update step)304

is used here. Again, this simplified approach is merely to demonstrate the potential for future inclusion into a data305

assimilation procedure.306

Figure 6 shows the computed gain over snow-covered regions in the domain collocated with the presence of307

AMSR-E measurements on 1 February 2003 when SWE is near peak accumulation. The collocation with AMSR-E308

serves to highlight the spatial extent that could eventually be updated when using the Kalman filter. Figure 6a shows309

the gain using the ANN-based Tb estimates whereas Figure 6b show the computed gain using the SVM-based Tb310

estimates. If the difference between the AMSR-E measurements and the Tb estimates is +1 K, a gain of K=10311

mm K−1 translates to an increase of 10 mm in the posterior (updated) modeled SWE. Alternatively, if the gain is312

negative (e.g., K=-10 mm K−1) with a +1 K difference between the AMSR-E measurement and the estimated Tb313

would result in a decrease in the posterior SWE estimate of 10 mm.314

The large-scale structure in Figures 6a and 6b are similar in that relatively large, positive gains are found in315

the northeastern portion of the domain as well as throughout much of the Rocky Mountains. In both cases, this is316

due to relatively small values of Czz + Cvv in conjunction with relatively large values of Cyz. However, significant317

differences also occur as quantified by a modest pattern (spatial) correlation of R = 0.31 between the maps shown318

in Figure 6. More specifically, the ANN-derived gain in Figure 6a contains a series of unusual striations across the319

north-central portion of Canada. These striations are apparently the result of limited sensitivity in ANN output due320

to small perturbations in an ensemble of ANN inputs. The result is that neighboring cells, at times, yield similar321
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(or identical) values of K, which can, at times, result in the appearance of striated features. The SVM-based gain322

in Figure 6b, on the other hand, does not suffer from these striated features and, in turn, yields a more smooth and323

continuous estimate of the computed gain across space. The presence of negative gains is a particularly interesting324

feature given the first SWE retrieval algorithm originally presented by [5]. Namely, the earliest retrieval algorithm325

suggested a direct, linear relationship between SWE and ΔTb. However, the presence of positive and negative gains326

shown here suggests a non-linear relationship between SWE and ΔTb. More work is required to better understand327

this non-linear behavior, but is considered beyond the scope of the present study. Even though this simple exercise328

is far from the in-depth investigation of error covariance planned for a follow-on study, it does serve to demonstrate329

that a non-zero error covariance exists between the modeled SWE and the estimated ΔTb spectral difference and that330

this error structure could be leveraged within an ensemble filter framework in order to produce a merged (updated)331

model estimate of SWE that improves upon the original (prior) model estimate.332

V. Conclusions333

An SVM was developed in order to estimate AMSR-E Tb at specific frequencies and polarizations. The eventual334

use of the SVM is to serve as a measurement operator within an ensemble-based data assimilation framework for335

the purpose of improving SWE estimation at regional and continental scales. The model capability of the SVM was336

compared against an alternative form of machine learning – the ANN – originally presented in [14]. Quantitative337

comparisons are made to highlight the skill of the SVM relative to that of the ANN. Both the SVM and ANN utilize338

output from the NASA Catchment model (forced with MERRA surface meteorological fields) as input for generating339

Tb estimates. Horizontally- and vertically-polarized Tbs from AMSR-E at 10.65, 18.7, and 36.5 GHz supplied on a340

25km × 25km resolution equal area grid were used during training. Subsequent comparisons with SVM and ANN341

estimates employed AMSR-E measurements not used during the training activities so that independent verification342

activities could be conducted.343

When averaged across the North American study domain over the course of a 9-year study period, SVM-derived344

Tb estimates were found to be relatively unbiased (|bias| � 1 K), contain median RMS E values of less than 10345

K, and possess skill that yielded anomaly R values on the order of 0.8. The SVM technique outperformed the346

ANN in every major snow class (as defined by [33]) with a notable increase in the ability to reproduce the high347

frequency temporal variability present in the AMSR-E measurements. In addition, a brief inspection was made348

into the error covariance structure between modeled SWE (via the Catchment model) and a spectral difference in349

Tb as computed by the two different machine learning techniques. The results showed the presence of a non-zero350

covariance structure, which could eventually be leveraged within a data assimilation framework in order to improve351

regional- and continental-scale SWE estimates.352

In short, the trained SVM presented here is a superior alternative to the ANN originally presented in [14]. Even353

though the training data used by both techniques were identical, and all other relevant aspects during the learning354

process were held as equivalent as possible between the two different machine learning techniques, it is clear that355

the SVM as applied in this study yields better performance. One hypothesis is that the SVM learning procedure356
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focuses on a single frequency / polarization combination whereas the ANN simultaneously yields estimates for all357

of the frequency / polarization combinations. The reduction in the number of degrees of freedom in the ANN is a358

likely contributor to the reduced performance relative to the SVM. A series of tests (results not shown) using an359

ANN trained to estimate only a single frequency / polarization combination found improved performance relative360

to the multi-Tb presented in [14]. However, the level of improvement using the single Tb ANN framework still did361

not achieve the same degree of performance as found with the SVM. The increase in degrees of freedom in the362

SVM relative to the ANN, in part, helps explain why the SVM outperformed the ANN. An additional reason for363

this behavior could also be attributed the dependence of input from an “expert” user regarding the exact structure of364

the ANN (e.g., number of layers, number of hidden nodes per layer) prior to training that is not similarly required365

in the SVM setup.366

In an analogous manner as the ANN presented in [14], it is worthwhile to discuss and highlight some of the367

limitations of the SVM presented here. For starters, the Catchment model used to generate the inputs to the SVM368

does not account for ice crust on the surface of the snowpack, internal ice layers within the snowpack, or sub-grid369

scale lake ice underlying the snowpack. Hence, the SVM-derived estimates do not explicitly account for these effects,370

which limits the skill of the SVM-based Tb estimates. In addition, AMSR-E is no longer collecting measurements due371

to a problem associated with the rotation of the AMSR-E antenna. However, AMSR2 on-board the Japanese Global372

Change Observation Mission – Water (GCOM-W) satellite is currently collecting Tb measurements at comparable373

frequencies and polarizations as AMSR-E before its malfunction. Preliminary results to be presented in a follow-on374

study suggest the SVM (and ANN) can be trained on AMSR-E measurements and then used to subsequently predict375

AMSR2 Tbs. That is, the machine learning technique can be used to estimate measurements from one sensor using376

training targets from another sensor. This transferability could enable a continuous record forward in time even377

though AMSR-E science data collection is inactive.378

Despite some deficiencies in the SVM approach, it is worthwhile reiterating the skill in the SVM estimates and379

the clear improvements relative to the ANN-based approach in [14]. The SVM was shown to effectively reproduce380

AMSR-E Tbs at multiple frequencies and polarizations during both the accumulation phase when the snowpack381

relatively dry as well as during the ablation phase when the snowpack is relatively wet. Significant skill was382

demonstrated in both shallow and deep snow environments, in areas with and without vegetative cover, and across383

all six major snow classes common across North America (and the northern hemisphere as a whole). On-going384

studies are investigating the sensitivity of SVM-derived estimates to snow-related variables (most notably SWE)385

and preliminary results suggest a considerable amount of sensitivity is present in the SVM across the majority of386

the study domain. These findings suggest a trained SVM could serve as an effective and computationally efficient387

measurement operator within a data assimilation procedure for which it was originally constructed.388
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Appendix394

Consider an [m×n] training matrix, x, and an [m×1] vector of training targets, z, such that {(x1, z1) , . . . , (xm, zm)}.395

In the context of this study, x represents n = 11 geophysical variables that characterize snow and near-surface396

environmental conditions at a given location and at m different times as derived from a land surface model397

simulation (further details provided in section II-B). The vector z represents a corresponding series of m satellite-398

based measurements of PMW Tb at a given frequency and polarization (further details provided in section II-C1).399

Assume φ(x) is a nonlinear function that maps the geophysical inputs from the land surface model, x, into Tb space400

as401

f (w, δ) = 〈w · φ(x)〉 + δ (3)

where w is a vector of weights, 〈w · φ(x)〉 is the inner dot product of w and φ(x), and δ is a “bias” coefficient. For402

given parameters C > 0 and ε > 0, the standard (primal) form of nonlinear support vector regression [6], [37] may403

be written as404

minimize
w, δ, ξ, ξ∗

1

2
〈w · w〉 +C

m∑

i=1

(
ξi + ξ

∗
i

)
(4)

subject to 〈w · φ(xi)〉 + δ − zi ≤ ε + ξi,

zi − 〈w · φ(xi)〉 − δ ≤ ε + ξ
∗
i ,

ξi, ξ
∗
i ≥ 0, i = 1, 2, . . . ,m.

where m is the available number of Tb measurements in time (for a given location in space), zi is a Tb measurement405

at time i, and ξ and ξ∗ are slack variables. The values of w, δ, ξ, and ξ∗ are not specified a priori, but rather are406

determined as a result of the minimization process. The goal of the minimization procedure is to determine values407

for w, δ, ξ and ξ∗ such that the mapped inputs (computed as 〈w · φ(xi)〉 + δ) most closely agree with the training408

targets, z, provided in Tb space.409

The primal optimization is commonly solved in dual form [6], [32], [37], [40] by differentiating the primal form410

with respect to the primal variables (i.e., w, δ, ξ, and ξ∗) as follows:411

minimize
αi, α

∗
i

1

2

m∑

i, j=1

(
αi − α

∗
i

) (
α j − α

∗
j

)
〈φ(xi) · φ(x j)〉 (5)

+ε

m∑

i=1

(
αi + α

∗
i

)
−

m∑

i=1

zi

(
αi − α

∗
i

)

subject to

m∑

i=1

(
αi − α

∗
i

)
= 0,

αi , α
∗
i ∈ [0 , C] , i = 1, 2, . . . ,m
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where αi and α∗
i

are a dual set of Lagrangian multipliers, 〈φ(xi) · φ(x j)〉 is the inner dot product of φ(xi) and412

φ(x j), ε is the specified error tolerance, and C is a positive constant that dictates the penalized loss during SVM413

training. The Lagrangian multipliers, αi and α∗
i
, are nonzero for points equal to or outside of the ε-insensitive tube414

and alternatively vanish for points inside the ε-insensitive tube. The points with nonzero Lagrangian multipliers415

comprise the so-called “support vectors”. The process described here is similar to that employed by an ANN with416

a fundamental difference in that the SVM utilizes the weights (computed as αi − α
∗
i
) as a subset of the training417

patterns [32].418

The computation of 〈φ(xi)·φ(x j)〉 in feature space is often too complex to perform [32]. However, the computation419

may be conducted in input (land surface model) space using the kernel function k(xi, x j) = 〈φ(xi) ·φ(x j)〉 in order to420

yield the inner products in feature space, which helps avoid problems of computational infeasibility associated with421

directly evaluating the basis function in high dimensionality feature space. In this particular study, a radial basis422

kernel function, k(xi, x j), was employed that satisfies the expression k(xi, x j) = 〈φ(xi) · φ(x j)〉 = exp{−γ ‖xi − x j‖
2}423

where xi and x j are single instances of x (in time and space), ‖·‖ represents the Euclidean norm, and γ is proportional424

to the inverse square of the width parameter as described in [8]. The loss function was specified as ε-insensitive425

[37], [38]. Quadratic, Laplace, and Huber loss functions were also tested. Since no notable improvements over426

the ε-insensitive loss function were found, the ε-insensitive loss function was selected as the most appropriate. In427

addition, the regularization parameter, C, was defined as the range of the training targets (i.e., C = max {z}−min {z})428

using the methods outlined in [23]. An alternate formulation based on [8] was tested using C = 6σz, where σz is the429

standard deviation of the training targets, but no significant difference between the two different definitions of C was430

found. Hence, the former approach was employed such that C was set equal to the range of the training targets. Once431

the solutions for αi and α∗
i

are found, estimates of Tb can then be computed via Equation (1) using geophysical432

inputs (derived from the land surface model), y, that are distinct from the training data where x represents the433

training matrix and δ is computed as the average of the support vectors (i.e., the subset of the training data with434

nonzero Lagrangian multipliers).435
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TABLE I

SVM inputs and outputs (reproduced from [14]).

Inputs Symbol

Top layer snow density ρsn1

Middle layer snow density ρsn2

Bottom layer snow density ρsn3

Snow liquid water contenta S LWC

Snow water equivalenta S WE

Near-surface air temperature Tair

Near-surface soil temperature Tp1

Skin temperature Tskin

Top layer snow temperature Tsn1

Bottom layer snow temperature Tsn3

Temperature gradient index TGI

Outputs Symbol

Tb at 10.65 GHz, H-polarization 10H

Tb at 10.65 GHz, V-polarization 10V

Tb at 18.7 GHz, H-polarization 18H

Tb at 18.7 GHz, V-polarization 18V

Tb at 36.5 GHz, H-polarization 36H

Tb at 36.5 GHz, V-polarization 36V
a = Column-integrated quantity;
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Fig. 1. Study domain encompassing North America poleward of 32◦ N. Coloring represent the snow classification of [33]. The three red circles

represent the locations of the time series comparisons shown in Figure 4.
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Fig. 2. (Top row) bias, (middle row) RMS E, and (bottom row) anomaly R for the ANN and SVM (versus AMSR-E observations not used

during training) at 18V for the time period 1 September 2002 through 1 September 2011. Results include (left column) SVM metrics, (middle

column) ANN metrics, and (right column) computed difference between SVM and ANN metrics.
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Fig. 3. Statistical box plots of a) RMS E and b) anomaly R across the North American domain for the ANN and SVM from 1 September

2002 through 1 September 2011. Statistics are computed relative to AMSR-E measurements not used during training. Each box represents the

median along with the 25th- and 75th-percentiles while the whiskers illustrate the 10th- and 90th-percentiles.
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Fig. 4. Time series from 1 September 2003 through 1 Jun 2004 including AMSR-E observations, ANN estimates, and SVM estimates at 18V

and 36V. a) Location with shallow snow depth and no forest cover (max. SWE = 0.07 cm; FF = 0.0; lat = 66.5◦; lon = -66.7◦). b) Location

with moderate snow depth and high forest cover (max. SWE = 0.13 m; FF = 0.89; lat = 52.4◦; lon = -85.1◦). c) Location with large snow

depth and modest forest fraction (max. SWE = 0.22 m; FF = 0.02; lat = 67.6◦; lon = -151.6◦). See also Figure 1 for locations.
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Fig. 5. Spatial variability (σ) of (black) AMSR-E, (dark gray) ANN, and (light gray) SVM Tbs time-averaged by snow class according to [33]

for the 9-year study period for all frequency and polarization combinations.
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b)

a)

Fig. 6. Kalman gain for SWE versus ΔTb=18V-36V near peak SWE accumulation on 1 February 2003 for a) ANN-derived estimates and b)

SVM-derived estimates.
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