Arcjet Testing of Advanced Conformal Ablative TPS

Matthew Gasch and Robin Beck
NASA Ames Research Center, Moffett Field, CA, 94035

Parul Agrawal
ERC at NASA Ames Research Center, Moffett Field, CA, 94035

28 January 2014
Outline

• Technology Description
 – Conformal Ablative TPS
 – CA250 Project

• Arcjet Test Design
 – SPRITE

• Results
 – Temperature Response
 – Recession
 – Thermal Modeling

• Summary
Description: Conformal Ablative TPS

- **Substrate:** Low density carbon or polymer felts
 - High strain to failure eliminates need for strain isolation (SIP or large gap) upon attachment to rigid aeroshell (required for PICA & Si-based Tile)
 - Allows for large acreage application (reduced part count)
 - Reduced gaps and gap filler issues present with rigid TPS
 - Near-net-shape fabrication with preferred thermal orientation

- **Resin:** Modified phenolic (CPICA), modified silicone (CSICA), cyanate ester, etc.

- **First developed under Hypersonics EDL Project 2009-11**
 - Patent Pending 13/357,248

- **Transferred to CA250 Project in 2011**
CA250 TPS Project

• **Goal**
 – Development of Conformal PICA (CPICA) to TRL 5 by 2015

• **Activities**
 – 2013: Demonstrate (via ground testing) a conformal ablator capable to at least 250 W/cm²
 – 2014/15: Demonstrate process/fabrication scale-up via industrial partner

• **Motivation**
 – Commercially available felt systems come in 60-inch wide rolls
 • Larger parts, reduced part count
 (e.g. 30 pieces CA for MSL size vehicle vs. 120 PICA tiles)
 – Less complex to integrate across a variety of carrier structure
 • Insensitive to surface finish or rigidity of substructure
 • Does not require RTV or other “gap” filler between TPS segments
 – Less expensive “system” to manufacture and integrate
CA250 TPS Project

• **Goal**
 – Development of Conformal PICA (CPICA) to TRL 5 by 2015

• **Activities**
 – 2013: Demonstrate (via ground testing) a conformal ablator capable to at least 250 W/cm²
 – 2014/15: Demonstrate process/fabrication scale-up via industrial partner

• **Motivation**
 – Commercially available felt systems come in 60-inch wide rolls
 • Larger parts, reduced part count
 (e.g. 30 pieces CA for MSL size vehicle vs. 120 PICA tiles)
 – Less complex to integrate across a variety of carrier structure
 • Insensitive to surface finish or rigidity of substructure
 • Does not require RTV or other “gap” filler between TPS segments
 – Less expensive “system” to manufacture and integrate
Test Objectives

1. Assess the thermal performance of CPICA over a broad range of conditions
2. Develop TPS-C instrumentation for developing and validating thermal response models from TPS materials testing in the arcjet
3. Develop mid-fidelity material response model for CPICA that can predict recession and in-depth temp response in support of mission design and analysis
4. Address how to attach CPICA to a rigid structure while also evaluating seam designs between gore panels
CPICA Material Properties

- **Previous Work 2011-12**
 - Stagnation arcjet tests and screening test with SPRITE geometry 2 conditions
 - Limited material property data
 - Many properties guessed and/or scaled from those of PICA
 - Preliminary ablation and thermal response model developed for use with FIAT
- **Based on new 2013 data, the following were updated**
 - Small changes to
 - Virgin and char densities
 - Elemental composition
 - Preliminary CPICA FIAT model adjusted with new property data
 - Virgin specific heat
 - Virgin and char thermal conductivity
 - Recalculated based on above
 - Pyrolysis gas enthalpy
Aerothermal: MSL Peak Design

MSL Aerothermal Entry Environments

<table>
<thead>
<tr>
<th>Location</th>
<th>+3-sigma Value</th>
<th>09-TPS-02</th>
<th>Edquist, JPL D-34661, Rev B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Heat Rate (W/cm²)</td>
<td>Peak Shear (Pa)</td>
<td>Peak Pressure (atm)</td>
<td>Peak Heat Load (J/cm²)</td>
</tr>
<tr>
<td>HS Leeside Flank</td>
<td>220.1</td>
<td>393.4</td>
<td>0.246</td>
</tr>
<tr>
<td>HS Leeside Shoulder</td>
<td>225.7</td>
<td>465.4</td>
<td>0.242</td>
</tr>
<tr>
<td>HS Leeside Shoulder</td>
<td>203.2</td>
<td>490.2</td>
<td>0.208</td>
</tr>
<tr>
<td>Stagnation Point</td>
<td>59</td>
<td>5.4</td>
<td>0.332</td>
</tr>
<tr>
<td>HS Nose Apex</td>
<td>119.2</td>
<td>127.4</td>
<td>0.239</td>
</tr>
<tr>
<td>HS Windside Shoulder</td>
<td>114.4</td>
<td>216.7</td>
<td>0.242</td>
</tr>
<tr>
<td>HS Windside Shoulder</td>
<td>103.8</td>
<td>240.5</td>
<td>0.172</td>
</tr>
</tbody>
</table>

250 W/cm², 0.33 Atm, 490 Pa Shear
SPRITE Test Article Detail

SPRITE¹ – Small Probe Reentry Investigation for TPS Engineering

- 8-inch diameter
- 55° sphere cone

LI-2200 INSULATION RING (HIDDEN) TO BACK OF STING ADAPTER FLANGE (HIDDEN)

RTV 560

RTV only on bottom half of TPS

STING ADAPTER ATTACHES TO THIS SURFACE

TO BACK OF LI-2200 INSULATION RING

3.689
3.945
4.1945

SIZE
CAGE CODE
DWG NO.

B
25307
#
Pre-Test CFD

High Condition “MSL+”
~ 400 W/cm², ~ 24 kPa
Press. ~ 210 Pa shear on
Flank and ~ 550 Pa shear
On 0.8” Rₜ corner

CFD - Dinesh Prabhu
Test Description

- 8 Articles tested at 4 conditions: 40, 150, 180 & 400 W/cm\(^2\)
- Standard rigid PICA & CPICA: both 0.5-inch thick & 0.28g/cm\(^3\)
- 4-inch hemispherical calorimeters were used to characterize the flow
- 4 TR models had TC plugs in each TPS segment at depth of: 0.15, 0.30 & 0.50-inch
- 4 seam models had TC plug in PICA segment and TC’s at 0.50-inch behind CPICA segments

```
<table>
<thead>
<tr>
<th>Condition</th>
<th>Cold Wall Heat Flux (W/cm(^2))</th>
<th>Pressure (atm)</th>
<th>Shear (Pa)</th>
<th>Exposure Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition 1</td>
<td>400</td>
<td>0.25</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>Condition 2</td>
<td>180</td>
<td>0.15</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Condition 3</td>
<td>150</td>
<td>0.07</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Condition 4</td>
<td>40</td>
<td>0.09</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>
```
Detail: Seam Models
Models During Testing

Uniform Heating (Conditions 1-3)

Non-Uniform Heating due to RTV expansion and flow (Condition 4)
Model During Testing @ 400 W/cm² on flank

IR image of model during testing illustrating uniform heating on the flank
Post-Test – 400 W/cm^2, 30 sec

C-PICA

PICA

Thermal Response Model

Seam Model
Backface Temp – TR Model

Backface Temperature Response $q_{flank} = 400 \text{ W/cm}^2$, 30-s

- **Standard PICA**
 - $\Delta T = 318 \degree C$

- **Conformal PICA**
 - $\Delta T = 145 \degree C$
Backface Temp – Seam Model

Backface Temperature Response $q = 400 \text{ W/cm}^2$, 30-s

- Standard PICA
 - $\Delta T = 400 \degree C$

- Conformal PICA
 - $\Delta T = 150 \degree C$

Test Time sec

Backface Temperature $\degree C$
Post-Test Thermal Response

<table>
<thead>
<tr>
<th>Surface Temp</th>
<th>400 W/cm² – 30 sec.</th>
<th>180 W/cm² – 60 sec.</th>
<th>150 W/cm² – 80 sec.</th>
<th>40 W/cm² – 100 sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PICA</td>
<td>C-PICA</td>
<td>PICA</td>
<td>C-PICA</td>
</tr>
<tr>
<td>Temp C</td>
<td>2361</td>
<td>1039</td>
<td>677</td>
<td>151</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>25</td>
<td>124</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0.30”</td>
<td>0.50”</td>
<td>0.30”</td>
<td>0.50”</td>
</tr>
<tr>
<td></td>
<td>1374</td>
<td>966</td>
<td>628</td>
<td>213</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>15</td>
<td>66</td>
<td>33</td>
<td>10</td>
</tr>
</tbody>
</table>

TC’s at 0.15-in not listed as they all burned out
Post-Test Recession

<table>
<thead>
<tr>
<th>Material</th>
<th>Heat Flux (W/cm²)</th>
<th>Exposure Time (s)</th>
<th>Recession* (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICA</td>
<td>400</td>
<td>30</td>
<td>2.8</td>
</tr>
<tr>
<td>C-PICA</td>
<td></td>
<td></td>
<td>3.5 +/-0.17</td>
</tr>
<tr>
<td>PICA</td>
<td>180</td>
<td>60</td>
<td>4.1</td>
</tr>
<tr>
<td>C-PICA</td>
<td></td>
<td></td>
<td>4.7 +/-0.04</td>
</tr>
<tr>
<td>PICA</td>
<td>150</td>
<td>80</td>
<td>4.0</td>
</tr>
<tr>
<td>C-PICA</td>
<td></td>
<td></td>
<td>4.7 +/-0.37</td>
</tr>
<tr>
<td>C-PICA</td>
<td>40</td>
<td>100</td>
<td>3.0</td>
</tr>
<tr>
<td>C-PICA</td>
<td></td>
<td></td>
<td>3.4 +/-0.50</td>
</tr>
</tbody>
</table>

Laser Scan of Post-Test Model

Recession Analysis – Jose Santos
FIAT run with ±10% of nominal heating
 – Recession was ok at both nose and TC plug
 – Temperatures matched fairly well for Tw, TC1, and TC2
 – Could not match time TC3 response in this test series

*Temperature predictions for nose not shown (no data acquired)
CPICA – Condition 1

- Recession, Tw, and TC1 match model well
- Model a bit low for TC2, but high for TC3
Summary

- Fabricated CPICA using commercially available carbon felt
- Demonstrated applicability of CPICA on a curved structure at range of conditions from 40-400W/cm²
 - MSL-heat flux, pressure and shear
- Demonstrated advanced instrumentation of CPICA and gathered in-situ temperature & recession data in a representative shear environment
- Evaluated 5 seam designs between CPICA gores
 - All designs performed well
 - TPS performance not affected by any particular seam design
- CPICA material response model created based on new arcjet and thermal property data
 - Developed a mid-fidelity model that compares favorably with recession and temperature data
 - Errors tend toward over-prediction of surface recession and/or in-depth temperature, to be investigated
Initial and Ablated Shapes

- Models were scanned to get post-test shape in bisecting plane of each quadrant
- Although shape change around nose is significant, did not affect conditions on flank

[Graphs showing radial vs. axial coordinate for different power densities: 400 W/cm², 180 W/cm², 150 W/cm², 40 W/cm². Each graph compares PICA and CPICA results.]
DPLR – Pre & Post-Test

- For each arc jet condition, DPLR was run using the initial shape and the smoothed final shape
 - Results show only a small change in pressure and heat flux at the TC plug as a result of shape change