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Long-duration surface missions to the Moon or Mars will require life support systems 

that maximize resource recovery to minimize resupply from Earth. To address this need, 

NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the 

Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon 

dioxide. Bosch processes have the added benefits of the potential to recover oxygen from 

atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby 

eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial 

design for an S-Bosch development test stand that incorporates two catalytic reactors in 

series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation 

Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and 

assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was 

completed to compare performance with design models. Continued testing of Lunar and 

Martian regolith simulants provided sufficient data to design a CFR intended to utilize these 

materials as catalysts. Finally, a study was conducted to explore the possibility of producing 

bricks from spent regolith catalysts. The results of initial demonstration testing of the 

RWGS reactor, results of continued catalyst performance testing of regolith simulants, and 

results of brick material properties testing are reported. Additionally, design considerations 

for a regolith-based CFR are discussed.  
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Nomenclature 

CDEA = Carbon Dioxide Extraction Assembly 

CFR = Carbon Formation Reactor 

CFRA = Carbon Formation Reactor Assembly 

CM = Crew Member 

FAA = Fluid Analysis Assembly 

FFCA = Fluid Feed Control Assembly 

FRVA = Fluid Recycle and Vent Assembly 

GSA = Gas Supply Assembly 

HEA = Hydrogen Extraction Assembly 

HT = Heater 

MBR = Moving Bed Reactor 

MSFC = Marshall Space Flight Center 

RFMBR = Radial Flow Moving Bed Reactor 

RHXR = Regenerative Heat Exchanger 

RWGS = Reverse Water-Gas Shift 

RWGSRA = Reverse Water-Gas Shift Assembly 

S-Bosch = Series-Bosch 

SLPM = Standard Liters per Minute 

TRL = Technology Readiness Level 

WSA = Water Separation Assembly 

 

I. Introduction 

T the end of 2013, NASA released the Space Technology Roadmaps
1
, the culmination of a three year effort in 

which fourteen technology areas were identified, assessed for key challenges, and evaluated for impact to space 

and terrestrial missions. The roadmaps provide a universally available reference for future planning and technology 

development for NASA. One of the major challenges identified for Atmosphere Revitalization in the roadmap for 

the area of Human Health, Life Support, and Habitation Systems (TA06), is that of increased oxygen recovery from 

metabolic carbon dioxide. The roadmap specifies two milestones with respect to advancing O2 recovery by physico-

chemical methods to a Technology Readiness Level (TRL) of 6 as described in NASA NPR 7123.1B.
2
 Specifically, 

75% O2 recovery capability is targeted by the end of 2014 and 100% O2 recovery is targeted by the end of 2019. For 

this reason, NASA continues to explore the Bosch process as a method of maximizing oxygen recovery.  

 The Bosch process has been described in detail previously.
3-6

 Briefly, in the first step, the Reverse Water-Gas 

Shift (RWGS) reaction converts carbon dioxide and hydrogen to carbon monoxide and water (Eq. 1). In the second 

step, two carbon formation reactions proceed in parallel to convert the carbon monoxide to solid carbon, water, and 

some byproduct carbon dioxide (Eqs. 2 and 3). Previous testing has shown that during carbon formation the 

Boudouard reaction is the primary reaction occurring. Very small quantities of H2 maintain a well-reduced surface 

allowing the CO to react.  Thus, very little water is actually formed during this step. The overall Bosch process is 

shown in Eq. (4).  

 

Step 1: 

RWGS           CO2 + H2    H2O + CO            (1) 

 

Step 2: 

CO Hydrogenation                                              CO + H2    H2O + C(s)            (2) 

 

Boudouard                 2CO     CO2 + C(s)            (3) 

 

Overall: 

Bosch Process         CO2 + 2H2    2H2O + C(s)               (4) 

 

 Historically, the Bosch process has been conducted over iron, nickel or cobalt catalysts. However, the carbon 

product eventually fills the reactor, leaving the catalyst thinly dispersed as micro- or nano-scale particles, and 

A 
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catalyst replacement is generally required. For long-duration space missions, this catalyst has always been assumed 

to be resupplied from Earth, resulting in significant resupply cost.  

 In recent years, development at Marshall Space Flight Center (MSFC) has focused on a Series-Bosch (S-

Bosch) approach, outlined in Figure 1, in which each step in the chemical process occurs in a dedicated reactor at 

optimized temperatures and pressures and with unique catalysts. The integrated system will include an RWGS 

reactor, a modular membrane assembly for CO2 separation (Polaris), a modular membrane assembly for H2 

separation (Proteus), a carbon formation reactor, a compressor, and a water separation system. The entire system 

will be operated at sub-ambient pressures to protect the crew from potential leaks of CO. 

In the first (RWGS) step of the process, no carbon is produced, and the catalyst life span is sufficiently long that 

it is not considered a consumable. With this in mind, a nickel foam catalyst was selected based on CO2 conversion 

efficiency and resistance to carbon fouling, and an RWGS reactor was fabricated in 2012.
6
 This RWGS reactor is 

intended to operate between 3 and 8 psia.   

When integrated with the greater Atmosphere Revitalization architecture, CO2 will be provided from the Carbon 

Dioxide Management System (CO2 compressor combined with CO2 holding tanks as used on the International 

Space Station).  As seen in Figure 1, prior to entering the RWGS reactor, the CO2 will be used as a sweep gas for the 

H2 separation membrane.  H2 will be provided directly from the Oxygen Generation System (when available) and 

will be analogously used as a sweep gas for the CO2 separation membrane before entering the RWGS reactor. The 

sweep-sides of both membrane assemblies are intended to operate at 3-8 psia (shown in Figure 1 as the green and 

orange lines), while the retentate sides of the membranes, along with the carbon formation reactor, are intended to 

operate at 8-13 psia (shown in Figure 1 as purple lines). This will provide both concentration and pressure gradients 

across the membranes, along with effective dilution and removal of the permeate species from the sweep side of the 

membranes, in order to drive the separations.  

Downstream of the membrane assemblies, the sweep gas streams are combined and fed to the RWGS reactor. 

The product gases from the RWGS reactor mix with a carbon dioxide-rich recycle stream from the CFR, then pass 

through a compressor, increasing the pressure by approximately 4 psi. Water is condensed out of the gas stream in a 

water separation assembly, and the dry gas is then passed through both of the membrane assemblies described above 

– where CO2 and H2 are separated out of the stream – before flowing into the carbon formation reactor. The gas 

exiting the carbon formation reactor is recycled back to the compressor inlet, where it mixes with the RWGS reactor 

effluent, and another cycle begins. Because no H2 storage is currently available in the SOA architecture, membrane 

sweep gases will only be used when H2 is available. When the OGS is not operating, the membranes will have only 

a pressure differential to separate CO2 and H2. The effect of this on system operation has yet to be characterized. 

However, testing is currently scheduled for this purpose (results not provided here).  

As mentioned previously, by the end of 2012 the S-Bosch test stand had been designed, the RWGS reactor had 

been fabricated, and the modular membrane assemblies had been purchased and were awaiting integration. Because 

the carbon formation catalyst had not yet been selected, CFR design and manufacture were not completed at that 

time. Additionally, several commercial entities had previously completed Phase I Small Business Innovative 

Research projects involving Bosch technology. These efforts resulted in various concepts for carbon formation 

 
Figure 1. Series-Bosch Approach for Oxygen Recovery. 
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reactors. Therefore, the interfaces to the CFR were designed to accommodate integrated testing of any number of 

carbon formation reactor approaches, including NASA’s regolith-based approach.  

At the same time S-Bosch design was proceeding, MSFC was testing Martian and Lunar regolith simulants as 

possible catalysts for carbon formation reactors.  Once initial testing of these materials proved the feasibility of the 

concept, it was determined that one of these materials would be selected for an initial carbon formation reactor 

design. For reasons described in Section IV, Martian regolith simulant was chosen as the baseline catalyst. 

Additionally, because a crew of four will produce approximately 1.1 kg C/day (2.4 lbs C/day), disposal of the solid 

product material poses a real design and logistics challenge, as well as an opportunity to utilize the considerable 

carbon mass. Thus, it was proposed that the solid regolith-and-carbon mixture produced by the CFR might be 

repurposed in the production of bricks for surface construction.  

This paper provides the current status of the S-Bosch test stand assembly, the initial results from RWGS reactor 

testing, discussion of design considerations for a regolith-based carbon formation reactor, and the results of regolith 

brick testing. 

II. Series-Bosch Test Stand Hardware Description 

 In 2012, a process design for an S-Bosch test stand was produced.  The design effort was discussed previously.
6
 

The test stand was designed based on a modular approach to allow flexibility in testing individual components and 

sub-assemblies. This design incorporated nine sub-assemblies, including a 

Gas Supply Assembly (GSA), a Fluid Flow Control Assembly (FFCA), an 

RWGS Reactor Assembly 

(RWGSRA), a Fluid 

Recycle and Vent 

Assembly (FRVA), a 

Water Separation 

Assembly (WSA), a 

Carbon Dioxide Extraction 

Assembly (CDEA), a 

Hydrogen Extraction 

Assembly (HEA), a 

Carbon Formation Reactor 

Assembly (CFRA), and a 

Fluid Analysis Assembly 

(FAA). With the exception 

of the CFRA, a test 

development unit for each 

of these sub-systems was 

fabricated and assembled.  

The GSA, shown in Figure 2, was ultimately built to provide gas 

supply to multiple test stands. The GSA provides compressed He, 

Ar, N2, CO2, CO, H2, and CH4. Two cylinders of each compressed 

gas are installed, and a valve is used to switch between the two 

supply cylinders whenever one becomes empty.  This enables 

continuous supply for long-duration testing.  

The FFCA, the RWGSRA, the FRVA, the WSA, and the FAA 

were assembled and integrated, as shown in Figure 3, for initial 

RWGS Reactor testing (discussed below).  The RWGS Reactor 

insulation was custom prepared by Promat, Inc. (Mayville, TN) 

using Microtherm Super G insulation. Unifrax Fiberfrax blankets 

were layered across the insulated reactor to limit losses through 

insulation couplings.  

The CDEA, shown in Figure 4, and HEA are physically 

identical with the exception of the specific membrane used in each 

and the arrangement of heaters and insulation on the membrane 

 
Figure 2. Gas Supply Assembly 

for S-Bosch. 

 

 
Figure 3. S-Bosch Test Stand. As 

assembled, the test stand includes the 

FFCA, RWGSRA, FRVA, WSA, and FAA. 

 

 
Figure 4. Carbon Dioxide Extraction 

Assembly. CDEA and HEA are 

physically identical with the exception of 

the membrane material. 
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packages’ surfaces – due to different expected operating temperatures. (The heaters and insulation had not been 

installed at the time of submission.) Both were assembled but remain separate from the integrated test stand. These 

sub-assemblies will be integrated into the test stand following stand-alone testing.  

While a CFRA has yet to be designed or assembled, the modularity of the S-Bosch test stand enables any CFRA 

with appropriate interfaces to be integrated. As a result of the modular design approach, the CFRA may be easily 

integrated directly to the FFCA for stand-alone testing, or to several combinations of the other sub-assemblies for 

partially-integrated testing. Additionally, connections are also available to the FAA to enable gas analysis during 

testing.   

 

III. RWGS Reactor Stand-Alone Testing 

Once the S-Bosch test stand, as shown in Figure 3, was fully assembled and shake-down testing complete, two 

tests were planned to evaluate the performance of the RWGS reactor. The first test, the Thermal Profile Test, was 

designed to characterize the thermal profile of the reactor at various combinations of temperature and flow rate. The 

second test, the RWGS Stand-Alone Performance Test, was designed to evaluate the reaction performance of the 

reactor at various inlet feed ratios, temperatures, and pressures. Details of this testing are described below.  

A. RWGS Reactor Stand-Alone Testing Materials and Methods 

The S-Bosch test stand was used to test the the RWGS reactor 

for both the Thermal Profile Test and the RWGS Stand-Alone 

Performance Test. The RWGS reactor was equipped with three 

band heaters evenly spaced axially along the reactor.  These heaters 

can be independently controlled with set points between 25-850°C.  

Initially, gas pre-heating was intended to be performed using a 

regenerative heat exchanger (RHXR). However, during shake-down 

testing it became clear that the lengthy tubing sections between the 

RWGS reactor and RHXR could not be sufficiently insulated to 

provide significant pre-heating of the RWGS reactor inlet. Thus, a 

rope heater  (set-point temperatures 25-400°C) was installed on the 

inlet tube and insulated.  Heat input from this pre-heater simulates 

the presence of an effective RHXR. It is assumed that future 

modifications to the assembly design will enable regenerative 

heating, thereby eliminating the long-term need for the heater wrap. 

Required efficiency factors for a future RHXR design can be 

determined from pre-heater temperature data. 

The RWGS reactor catalyst bed is five inches in diameter, eight 

inches in length, and was equipped with nine thermocouples to 

monitor temperatures within the catalyst bed during testing. The 

approximate location for each thermocouple is shown in Figure 5. 

Each thermocouple is identified first by its axial location and 

second by its radial location (e.g. Outlet Mid).  

 

1. Thermal Profile Testing 

The Thermal Profile Test was completed in two parts. In Part I, the goal of testing was to observe the thermal 

profile of the reactor at various wall temperature setpoints (controlled by the three external heaters). The reactor was 

maintained at 8 psia and fed 1, 5, or 10 SLPM of pure nitrogen. Hydrogen and CO2 were not used for this testing 

due to concerns with H2 safety in a test stand that had not been thermally tested. The RWGS band heaters (HT1, 

HT2, and H3) were independently set at temperatures ranging from 25-800°C. The pre-heater was not used for this 

testing, so reactor inlet gas was at room temperature. The setpoints for each run were maintained until steady state 

was reached before recording each data point.  

For Part II, the goal of testing was to characterize the thermal profile within the reactor under more realistic 

operating conditions, in which the reactor inlet gas was above room temperature. The reactor was again maintained 

at 8 psia, but fed 5 or 10 SLPM of pure nitrogen. Again, the RWGS band heaters were independently set at various 

temperatures. The pre-heater was initially set at 50°C and varied until the center inlet thermocouple was within 15°C 

of the inlet wall temperature. The pre-heater was then varied until the center inlet thermocouple was within 10°C of 

 
Figure 5. Thermocouple placement in 

the RWGS reactor. Reactor shown as 

blue rectangle, thermocouple locations 

indicated with orange circles. 
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the inlet wall temperature. Pre-heater set-points and the inlet temperatures achieved by these set-points were 

documented for later data analysis.  

 

2.  RWGS Reactor Stand-Alone Performance Testing 

The purpose of the RWGS Reactor Stand-Alone Performance Test was to evaluate the performance of the 

reactor when fed various quantities and ratios of CO2 and H2 at various temperatures and pressures. For each test 

point, using results from the Thermal Profile Test, the reactor heaters and pre-heater were held at temperatures 

which would provide the most uniform catalyst bed temperature distribution as possible, with target temperatures of 

650°C, 700°C, and 750°C. The reactor was maintained at pressures of 3psia, 5psia, 8psia, or 14.7 psia. CO2 was fed 

to the reactor at 1-crew member (CM), 2-CM, or 4-CM flow rates. The H2:CO2 molar feed ratio was set at 4:1, 3:1, 

or 1:1. For each setpoint, the run parameters were maintained until steady state was reached.  

 

B. RWGS Reactor Stand-

Alone Testing Results and 

Discussion 

The RWGS Reactor 

Thermal Profile Testing was 

completed as planned. Details 

are provided below.  RWGS 

Reactor Stand-Alone 

Performance Testing has been 

delayed due to H2 safety 

concerns. Testing will 

commence as soon as a Test 

Readiness Review has been 

completed.  
 

1. Thermal Profile Testing 

Part I 

As stated previously, the 

purpose of Part I of the 

Thermal Profile Test was to 

observe the thermal profile of the reactor at 

various wall temperatures and gas flow rates. 

Figure 6 shows a contour plot of  the measured 

temperatures at each thermocouple in the 

reactor for all flow rates when the heaters were 

set to 700°C. Note that the plot shows one half 

of the reactor cross-section. The plots were 

made by interpolating between points using 

cubic spline in MATLAB. A similar profile 

was observed for all temperatures tested. The 

effect on temperature distribution of increasing 

gas flow rate can more clearly be seen in 

Figure 7. The maximum radial temperature 

difference for a given flow rate, axial  position, 

and heater temperature was calculated by 

taking the heater temperature and subtracting 

the lowest observed temperature at the same 

axial position. The displayed “average 

maximum” radial temperature difference 

values were obtained by taking the mean of the 

maximum values at every heater temperature 

for each axial position. Error bars indicate 

standard deviation. As can be seen, when flow 

 
Figure 6. Effect of Gas Flow Rate on Temperature Distribution in RWGS 

Reactor with no Pre-Heater. All reactor heaters set to 700°C. 

 
Figure 7. Average maximum radial temperature difference 

observed at Inlet, Center, and Outlet axial locations in the 

RWGS reactor. Error bars indicate standard deviation (n=5). 

No statistical difference was observed at the Center and Outlet 

for the three flow rates tested (p>0.05). Values observed at the 

Inlet were statistically different (p<<0.05). 
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rates were sufficiently low, conduction dominated the thermal transfer within the reactor as demonstrated by 

relatively low radial thermal gradients in the reactor. When flow rates were increased, convective thermal transfer 

was more dominant as demonstrated by the increasing radial thermal gradients at the reactor inlet. It is important to 

understand thermal gradients within the reactor, as temperature plays an important role in determining the rates and 

equilibrium points of the RWGS and side reactions, and thus the operating temperature profile will be considered in 

optimizing the reactor performance.  The RWGS reaction is mildly endothermic (dHrxn = 41 kJ/mol) so will likely 

only affect the thermal profile slightly. Additionally, since the kinetics and thermodynamics of the RWGS reaction 

are enhanced by higher temperatures (dG<0 at temperatures > 828°C), it will likely be desirable to operate the 

reactor at the highest achievable temperatures.  Cooler areas near the inlet will represent under-utilized catalyst bed 

volume.  Thus, it is expected that pre-heating the inlet gas will lead to higher temperatures at the inlet mid and center 

points, thereby improved bed volume 

utilization.  

Data from testing also demonstrated cooler 

temperatures at the bed outlet mid and outlet 

center points. It is believed that this 

phenomenon is due to a particularity of this 

reactor design. The reactor is sealed at the 

outlet by a large end cap, and we expect that 

this feature acts as a significant heat sink.  

Future iterations of the RWGS reactor will 

consider alternative design approaches to limit 

the cooling near the reactor outlet.  

As shown in Figure 8, gas exiting the 

reactor is hotter at higher flow rates.  This is 

expected since higher flow rates would require 

proportionally higher heat rejection to achieve 

the same temperature decreases. Any future 

effort at RHXR design will need to include this 

effect as part of the analysis. 

 

2. Thermal Profile Testing Part II 

Based on the data collected in Part I testing, it was clear that regenerative heating of the RWGS reactor influent 

is desirable. However, due to the challenges associated with the existing RHXR, it was decided that near-term 

testing would include a gas pre-heater to simulate an RHXR. As stated above, the pre-heating temperature was 

recorded and can be readily correlated to input requirements for an equivalent regenerative heating design. A heater 

wrap was installed on the inlet gas tube to the 

RWGS reactor for this purpose. Thus, the goal 

of Part II testing was to characterize the effect 

of inlet temperature on temperature distribution 

within the reactor.  

 

 The effect of the addition of the pre-heater 

was observed for 5 SLPM and 10 SLPM of 

nitrogen flow.  Expected realistic conditions 

for the system will be approximately 5-10 

SLPM total gas feed. Thus, 1 SLPM was 

omitted from this final testing. As before, the 

maximum radial temperature difference at each 

axial position was calculated by taking the 

heater temperature and subtracting the lowest 

observed temperature at that axial location. 

The pre-heater provided sufficient heat to 

decrease the observed radial variations in the 

reactor for both flow rates. Figure 9 shows the 

effect of pre-heating the inlet gas to ~250°C on 

the radial temperature differences at the inlet, 

 
Figure 8. Temperature downstream of RWGS reactor at 

various gas flow rates. Reactor heaters set at 700°C. 

 

 
Figure 9. Effect of Incoming Gas Pre-Heated to 250°C on 

the Maximum Radial Temperature Differences observed in 

the RWGS reactor. Nitrogen fed to the reactor at 10 SLPM. 
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center, and outlet of the reactor at 

10 SLPM nitrogen flow. Although 

less pronounced, a similar effect 

was observed for the 5 SLPM 

nitrogen flow test. This may be 

more easily understood by 

examining the contour plots shown 

in Figure 10. These plots compare 

the effect of a pre-heater on the 

modeled thermal profile of the 

reactor when gas flow is 10 SLPM, 

reactor heaters are set to 700°C, 

and the incoming gas is not pre-

heated, is preheated to ~200°C, or 

is preheated to ~250°C. A clear 

concern from this test is the fact 

that an increase in gas temperature 

of 250°C only reduced the 

measurable variation in temperature at the inlet by about 33°C. This lends additional support to the hypothesis that 

there are significant cold regions between the inlet of the reactor and the first thermocouples. As mentioned 

previously, these colder regions are effectively unutilized, or underutilized regions of the reactor and will result in a 

corresponding reduction in the chemical efficiency when the reactor is used for CO2 conversion to CO. Due to 

design limitations, the incoming gas cannot be heated to temperatures greater than 250°C at the 10 SLPM flow rate. 

Thus, only extrapolations can be made to predict the incoming gas temperature required to achieve higher catalyst 

bed inlet temperatures, as well as greater theoretical chemical conversions when CO2 and H2 are introduced. 

Ultimately, there were two key outcomes from the pre-heater test. First, data was gathered that will enable us to 

better understand the thermal characteristics of the reactor and system and enhance the thermal model fidelity. 

Secondly, the operational testing limits of the reactor inlet temperature for the current design have been identified. 

The next step will be to determine if this capability adequately represents what can reasonably be achieved from a 

RHXR.  

 

 

IV. Regolith-Based Carbon Formation Reactor 

Based on the data gathered in 2012 for Lunar and Martian regolith simulants, it was determined that a regolith-

based carbon formation reactor was feasible in a surface Bosch system. Thus efforts began to design a ¼ -CM sized 

reactor. Several considerations have been taken into account for the design: 

1. Regolith Specifications:  

  While Lunar and Martian regolith simulants were both tested, Martian regolith was chosen as the 

baseline catalyst for the reactor. This was done for several reasons. First, of the mapped regions of the 

Martian surface, the minimum observed iron concentration is ~10 wt%. The observed range is 10-20 

wt%.
7
 Comparatively, while some areas of the Lunar surface contain as much as 20wt% iron, the 

majority of the Lunar surface contains <5 wt%.
8
 Thus, a regolith-based carbon formation reactor for a 

Martian surface mission would be possible regardless of landing location, while only certain regions of 

the Lunar surface would permit the use of regolith as a catalyst. Second, a Martian surface mission is 

still an acknowledged long-term goal of NASA. Finally, while this approach could be made to work for 

certain Lunar missions, the availability of atmospheric CO2 on the Martian surface makes the Bosch 

process a much more attractive approach for life support oxygen recovery.  

  In addition to type of regolith, it was important to select a size range of regolith to be used in the 

reactor. Martian regolith, like Earth’s soil can vary dramatically in size. To limit  pressure drop across 

the reactor while still maximizing surface area, a particle range of 355um to 1mm was chosen.  

 

2. Gravity Dependence: 

  Existing oxygen recovery technology is designed to operate independent of gravity for the ISS 

application where only microgravity effects the hardware. However, for surface missions, it will be 

 
Figure 10.  Effect of inlet gas temperature on thermal profile of 

RWGS reactor. Wall heaters set to 700°C.  
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possible to take advantage of available gravity. Because the CFR application discussed here uses a 

planetary regolith as catalyst, it is possible that gravity may be influencing the reactor. Thus, for the 

carbon formation reactor, it was assumed that gravity is influencing the reactor when regolith is used as 

a catalyst, though no distinction was made between Earth and Martian gravity. For transit missions, 

regolith is not anticipated to be the catalyst of choice. Thus, microgravity is assumed for non-regolith 

catalyst materials. 

 

3. Reactor Approach: 

  Martian regolith simulant is very similar to Lunar regolith simulant  in texture. While no data is 

available for the flowability of Martian regolith simulant, Lunar regolith simulant has been more 

thoroughly studied. Thus, it was assumed that Martian regolith, like Lunar regolith, is cohesionless/free-

flowing (ffc>10).
9
 With this in mind, several reactor approaches were considered including a packed 

bed reactor, a fluidized bed reactor, a moving bed reactor (MBR), and a radial-flow moving bed reactor 

(RFMBR).  

  The packed bed reactor approach was immediately eliminated due to the observed pressure drop 

across the Martian regolith simulant at the particle sizes chosen for this application. In sub-scale testing, 

significant pressure drop (>5 psid) was observed at Reynold’s numbers as low as 5 with only 3-4 inches 

of catalyst. Because the system is intended to be operated at sub-ambient pressure to protect the crew 

from any leaks, significant pressure drops make the approach unviable.  

  A fluidized bed reactor approach was also considered but rejected for two reasons. First, in sub-

scale testing, it was determined that the velocities required to achieve fluidization were unachievable 

with the operational quantities of gas available unless very small quantities of the simulant were used. 

Second, if the system was designed to use very small quantities of catalyst, the high frequency of 

catalyst change-out required would demand an unrealistic quantity of crew time and attention.  

  The third approach considered was that of a MBR. Moving bed reactors are set-up as a packed bed 

reactor would be, but the solid catalyst is constantly added and removed such that the catalyst is 

continuously, or nearly continuously replaced. The gas flow can either be co-current or counter-current 

to the catalyst flow.
10

 This approach, like the packed bed reactor approach, was eliminated due to 

pressure drop concerns. 

  The final approach considered was that of a 

RFMBR. In this approach, the reactor is built of three 

concentric cylinders as depicted in Figure 11. The 

center-most and outer-most cylinders are for gas flow 

into and out of the reactor. The intermediate cylinder 

is used to hold the catalyst material. The catalyst can 

then be continuously (or nearly continuously) added 

and removed from the system. This approach 

eliminates the concern with pressure drop because the 

catalyst volume perpendicualar to the gas flow is 

significantly lower than it would be in a traditional 

MBR design.
10-14

 Realistic volumes of gas may be 

used with this approach and because catalyst material 

may be pressure fed into the heated portion of the 

reactor, automation of the system will limit the 

required crew time.Thus, a RFMBR was chosen as the 

baseline design approach for the regolith-based carbon 

formation reactor. 
  

4. Heating Method: 

  Based on the assumption that the carbon 

formation reactor would be modeled after a RFMBR design, three approaches to heating were 

considered: external band heaters, an internal core heater, or a combination of both. Thermal modeling 

is required to determine the best approach.  All three are still under consideration.  

 

 
Figure 11. General design for a Radial-

Flow Moving Bed Reactor. 
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Mechanical design of the Martian regolith simulant-based carbon formation reactor is still ongoing. This design 

will be based on the above mentioned assumptions, data from sub-scale regolith testing, COMSOL modeling, and 

thermal modeling. The resulting design will be fabricated and tested in the S-Bosch test stand. 

It should be noted that other design considerations must be identified including the method of introducing 

catalyst, the method of removing the catalyst material, where to put the spent catalyst until it can be disposed of or 

reused. Other logistical challenges must also be considered including regolith collection and sieving on the Martian 

surface. With time, all of these will be addressed and considered as the approach is more fully developed. 

  

V. Regolith Brick Testing 

Because Bosch technology produces considerable quantities of solid carbon as a byproduct, there is an 

opportunity to repurpose the carbon into a useful product. One potential product is regolith bricks for surface 

construction. A study was undertaken for two purposes: to determine the best method of producing bricks from 

regolith containing carbon, and to determine the effect of the carbon material on brick mechanical properties. Details 

of this study are provided below. 

A. Regolith Brick Testing Materials and Methods 

Regolith Brick Testing was conducted in two parts: Brick Preparation Evaluation and Brick Mechanical 

Properties Evaluation. The Materials and Methods for each are provided below. 

 

1. Brick Preparation Evaluation Materials and Methods 

Three methods of producing Martian regolith bricks were explored. The first method was based on sintering,
14

 

the second used sulfur as a binder,
15

 and the last used polyethylene as a binder.
16

 

 All methods used stainless steel 304 brick forms produced in-house at MSFC. The walls were made of 1/16” 

thick flat stock that was subsequently welded together to produce 1”W x 3”L x 1”H forms. SS 304 was chosen due 

to a low sensitivity to sulfur. JSC Mars-1AC Martain regolith simulant was purchased from Orbitec and sieved to 

include particles from 355µm to 1mm.  Two furnaces were used to prepare the bricks. A Blue M Electric Company 

M-25A-1A standard furnace was used for non-vacuum applications. For vacuum applications, a Thermolyne 59300 

High Temperature Tube Furnace equipped with a Varian SD-300 mechanical vacuum pump was used.  

For the sintering method, Martian regolith simulant was placed into the brick forms and vibrated to settle the 

material. The forms were then placed in a high temperature furnace for two hours at 500°C at ambient pressure. 

After two hours of baking, the furnace was evacuated and heated to 1100°C. After two hours at the higher 

temperature, the furnace was powered off and allowed to cool at the natural cooling rate of the furnace. Bricks were 

removed when the furnace temperature reached <45°C.  

For efforts using sulfur as the binder, a mixture of 80 wt% regolith simulant and 20 wt% sulfur (purchased from 

Sigma Aldrich) was pre-mixed and placed in the brick forms. The forms were placed in the standard furnace at 160C 

for 30 minutes and allowed to cool at the natural cooling rate of the furnace. Bricks were removed when the furnace 

temperature reached <45°C. 

For efforts using polyethylene as a binder, the brick forms were lined with parchment paper to facilitate removal 

of the completed bricks. 70 wt% regolith simulant and 30 wt% polyethylene (purchased from Sigma Aldrich), was 

pre-mixed and placed in the brick forms. The forms were placed in the standard furnace, slowly heated to 150°C, 

and maintained at temperature for four hours. The bricks were allowed to cool at the natural cooling rate of the 

furnace and removed when the temperature reached <45°C. 

 
2. Brick Mechanical Properties Evaluation Materials and Methods 

Based on the results (discussed below) of the Brick Production Evaluation, only the polyethylene-based regolith 

simulant bricks were tested for mechanical properties. Mechanical tests included compression testing, tensile 

strength testing, modulus of elasticity testing using the 3-point bending test, and freeze-thaw cycling. 

Compression, tension, and bending tests were completed using an Instron 5960 Dual Column Tabletop Universal 

Testing Systems. Freeze-thaw testing was attempted using a Pulser/Receiver Olympus Model 5077 instrument . This 

strategy used an ultrasonic ‘sonometer-type’ analytical method with the following evaluation conditions:  

 

• Output - 400 Volts  

• PRF (Hz) – 100  

• Frequency Setting – 0.5MHz  
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• Gain – 50 dB (40 dB from pre-amp)  

• Panametric probes (V101 0.5 MHz/1.0”’ & A101R 0.5MHz/1.0’’)  

 
Probes were set up in a through-transmission arrangement, and an additional Perspex stepped-cylinder delay line 

was used as known reference.  

 

B. Regolith Brick Testing Results and Discussion 

Three methods of producing bricks were explored. Once a best method was identified for preparing the bricks, 

four mechanical properties tests were conducted to determine the effect of carbon contained in regolith bricks. The 

results and a discussion of this testing are provided below. 

 

1. Regolith Brick Preparation Testing Results and Discussion 

The three regolith brick preparation methods explored were a sintering method, a sulfur-binding method, and a 

polyethylene-binding method.  

The sintering method, which requires relatively high teperatures, and correspondingly high power, was 

eliminated first as a possibility for a Martian surface mission. The tested samples were either too heated or not 

heated enough, as seen in Figure 12, even within the same experiment due to variations in temperature inside the 

furnace. Because high quality bricks were difficult 

to achieve repeatedly, and given the large power 

requirements necessary to prepare the sintered 

bricks, the sintering approach was eliminated from 

consideration.  

Sulfur was considered for martian simulant 

because it is readily available on the martian 

surface.  Sulfur has a relatively limited working 

temperature and pressure range and sublimation 

easily occurs.  Despite all attempts to control and 

monitor the temperature in the furnace, most of the 

sulfur sublimated before melting to form the bricks.  

Additionally, as seen in Figure 13, the products of the sulfur 

experiments were very brittle (friable). Thus, a sulfur-binding 

method was eliminated from consideration.   

Polyethylene-binding was ultimately chosen as the preferred 

method for brickmaking. Polyethylene was considered 

originally for its radiation shielding properties, its relatively low 

melting temperature, and its abundant availability in flight due 

to packaging that can be repurposed. Although temperature 

variations in the furnace resulted in uneven heating, as 

evidenced in Figure 14 by uneven discoloration, the resulting 

bricks were consistent in external texture and size, but were not 

homogenous as observed when bricks were broken in half. 

Additionally, shrinkage of the bricks was universally observed 

and due to the nature of the mechanical testing equipment, 

 
Figure 12. Sintered regolith simulant bricks. Variations in sintering observed as a result of position in high 

temperature furnace. 

 

 
Figure 13. Sulfur-bound regolith simulant bricks. 

Rapid sublimation of the sulfur resulted in brittlenses of 

the brick products. 

 

 
Figure 14. Polyethylene-bound regolith 

simulant bricks. Uneven discoloration 

indicates uneven temperature distribution in 

the furnace. 
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required additional processing. Specifically, after formation in the furnace, the edges of the bricks were not parallel. 

The edges of the bricks were shaved using a rotary mechanical cutting bit. Figure 15 provides images of the bricks 

before and after shaving. Future preparation of the bricks will use larger forms so that unparallel sides may be cut or 

shaved to produce a geometrically preferable brick shape in the desirable dimensions.  

Once the polyethylene-binding method was chosen, four bricks were produced using Martian regolith simulant 

containing no carbon material as controls. Martian regolith simulant containing carbon was produced via the Bosch 

process as described previously for 1 hour, 4 hours, or 16 hours.
6
 Four bricks were made from the product of each 

testing duration. The mechanical properties of these bricks were then evaluated and compared to the control.   

 

2. Brick Mechanical Properties Evaluation Results and Discussion 

Compressive strength, modulus of elasticity, tensile strength tests, and freeze-thaw testing were planned for 

bricks containing regolith simulant only (control) and regolith simulant containing carbon from 1-hr, 4-hrs, and 16-

hrs of reaction. The results of this testing are provided below.  

 

Compressive and Tensile Strength Evaluation 

 For the compressive strength evaluation, two control bricks were tested and three bricks each of the 1-hr, 4-

hr, and 16-hr samples. For the tensile 

strength evaluation, only one control 

brick was tested and two each of the 

1-hr, 4-hr, and 16-hr samples. Figure 

16 shows the results of that testing. 

Each point represents the average of 

the tested bricks and error bars 

indicate standard devation. Due to 

high variation between samples, there 

was no significant difference observed 

for compressive strength between any 

of the samples tested. For tensile 

strength testing, the control brick 

showed much higher strength; 

however, a lack of duplicates makes it 

it impossible to draw statistically 

significant conclusions. Thus, at this 

time, it cannot be shown that the 

presence of carbon in the regolith 

simulant improved the mechanical 

properties of the resulting bricks. 

However, it is possible that any 

positive effect of the carbon material 
was overshadowed by the non-homogeneity of the samples. Future testing may improve upon polyethylene/regolith 

simulant mixing thus providing more accurate results. 

 Another consideration for the use of regolith bricks is that of suitability for structures. On Earth, most large 

structure masonry is completed using concrete. The required compressive strength of concrete in structures is 

 
Figure 15. Martian regolith simulant brick before (left) and after (right) edge shaving. 

 

 
Figure 16. Compressive and tensile strength testing results for 

unreacted Martian regolith simulant (control) and samples 

containing carbon from 1-hr, 4-hr, and 16-hr Bosch processing. 
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dependent on several factors including the type of mortar used, the climate, the design of the structure itself, etc. At 

a minimum, concrete must demonstrate a compressive strength of 1,900 psi to be used in the building of structures.
17

 

Cold climates, such as those anticipated on the surface of Mars, may increase that minimum to 4,800 psi. Clearly the 

polymer bricks produced in this study would not provide the necessary strength for an Earth application. However, 

because polymers have been shown to provide radiation shielding properties, strength may be less of a concern on 

the Martian surface. Design of structures will ultimately need to take this into consideration and to make the 

necessary concessions. 

 

Modulus of Elasticity Evaluation 

  For the modulus of elasticity testing, one control brick was tested and two bricks each of the 1-hr, 4-hr, and 

16-hr samples. Like the results from the compression and tensile strength test, there was significant variation 

between samples. As mentioned previously, this was likely due to the non-homogeneity of the brick samples. Thus, 

no conclusions could be made regarding the effect of carbon on the modulus of elasticity.  

 

Freeze-Thaw Cycle Evalaution 

Several attempts were made to conduct the freeze-thaw cycle testing. However, while running the tests, the 

results routinely showed significant levels of both signal attenuation (e.g., 500kHz leaving the transmitter, and less 

than 100kHz at the receiver) as well as signal variability tied to end-to-end positioning within each sample. This is 

believed to be due to the plastic-rich nature of these samples, and their apparently high non-homogenous 

morphology. Thus, the samples were unsuited to using this test for quantitative purposes and freeze-thaw data was 

not obtained. 

 

VI. Future Work 

The considerable progress made in desiging, fabricating, and assemblying the S-Bosch test stand has enabled the 

capability to test various carbon formation reactors. It is anticipated that testing of the regolith-based carbon 

formation reactor will be completed by the end of FY14. While catalytic activity of the regolith has been 

demonstrated, further analysis of the material to determine specific properties (e.g. iron surface area, iron 

distribution, specific carbon capacity, etc) will be useful for comparison with traditional catalysts and is expected to 

be completed in follow-on work. Additionally, regolith as a catalyst assumes a surface system. However, for 

Martian transit missions, a more traditional catalyst will be necessary. The reactor design discussed here may also 

accommodate iron beads, thus future testing will be conducted to explore performance including carbon handling.  

Based on results from FY14 testing, a redesign and upscaling of the reactor may be pursued in the future. 

Additionally, testing of commercially produced carbon formation reactors may be attempted given available timing 

and personnel support. Finally, based on the lessons learned from the regolith brick mechanical testing, this effort 

may be repeated with an improved method and materials. 
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