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Introduction

* Advanced Exploration Systems (AES) Program:

 pioneering approaches for rapidly developing prototype
systems

e validating concepts for human missions beyond Earth orbit

* Atmosphere Resource Recovery and Environmental
Monitoring Project (ARREM):
* mature environmental subsystems
e derived directly from the ISS subsystem architecture
* reduce developmental and mission risk
e demonstrate concepts for human missions beyond Earth orbit
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Carbon Dioxide Removal Assembly (CDRA)

* Goal: Predictive model of the CDRA
* Here, focus on the Desiccant Beds (1D)
* Need sorbent behavior (isotherms, LDF, etc.)
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Cylindrical Breakthrough Test (CBT)

e Multiple sorbents: RK38, 13X G544, 5A G522, SG G40, SG B152
* Multiple sorbates: CO,, H,0
 Variable flow rates, concentrations, and temperatures

* Well
diagnosed
(TCs, FCs,
DPs, PTs,
masses)

* Insulated
e Surrogate
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Modeling Approach

* Use Toth isotherms from other work

e Use dimensionless correlations (Re, Nu, Pe, Pr, Sc)
* Derives mass dispersion and thermal transfer coefficients

* Assume binary mass diffusion is valid

* Assume constant porosity

* Use Rumpf-Gupte permeability relationship

* 1D ‘plug flow’ style model with wall corrections

* Fit the single remaining model parameter using CBT data
e Across-the-board validity of the 1D LDF model?

* Apply predictively to POIST data
* Use for CDRA parameter study (size, flow, temperature)
* Use COMSOL Multiphysics Code to solve the PDEs



Model

Solve 7 PDEs:
* 1t order Ergun equation for interstitial velocity
* Gas pressure assuming ideal gas law
* Sorbate concentration
* Pellet loading
e Sorbent temperature
* Gas temperature
* Wall housing temperature

e BCs tricky in COMSOL (applied only to flux terms)

* Time-dependent inlet conditions (flow rate, T ,,, concentration)
* Temperature-dependent material properties

e Adsorption and Desorption half-cycles with changing BCs



The PDEs
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P, (kPa)

Example H,O CBT Results
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* Flow is at 8 SLPM with an inlet dew point of 0.5°C
e Residuals dominated by experimental error in dew point sensors
e Variability of testing conditions evident in temperature

* Model has early temperature adsorption hump not seen in data
* Not evident with higher flow rates or inlet dew points
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P, (kPa)

Example CO, CBT Results
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* Flow is at 16 SLPM with an inlet CO, partial pressure of 2.5 Torr
* Model has breakthrough ‘foot’ occurring very quickly

 Model has higher, steeper temperature rise at exit

* CO, models consistently worse than H20

* Inaccurate isotherms
e CO,/H,0 competitive adsorption
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Tgas (degC)
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* Cyclic model with 155 minute adsorption and desorption half-cycles

* Not as well diagnosed as CBT (e.g., sorbent masses unknown)

e Flux inlet BC in COMSOL causes small shift in vapor pressure

* Note small rise in vapor pressure at SG exit (simulation and data overlay)
 Dominated by test uncertainties

e Used CBT-derived LDF parameters



Integrated CDRA-3 Testbed Results
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e Guard bed is fully loaded (never desorbs)
* Minimal loading at very front of 2"4 13X bed
* SG bed at ~half capacity with nominal CDRA operation



CDRA Application

* |SS CDRA-3 silica gel coming back with impaired capacity
* |f SG is ‘poisoned’, can 13X still capture the water vapor?
* CBT showed B125 ~ G40 in capacity, performance

e But not dusting or poisoning sensitivity

* Had to assume Sorbead ~ G544 13X
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oot A
CDRA-4 model (with testbed ™ S6 B 125
BCs) says ‘yes’, but with a ' L G
reduced half-cycle time 13X Zeolite

ISS CDRA-4 Desiccant Bed



Summary

* Have constructed a predictive desiccant bed model
* Applied to CBT
 Various sorbates, sorbents, flow rates, concentrations
* Applied to CDRA-3 testbed
* Matches data to within the experiment unknowns
* Applied to CDRA-4 ISS desiccant bed issue
e Used to help inform ISS half-cycle decision
* Being used for sorbent decisions (13X vs SG)



Future Work

* Generalize PDEs to 2D and 3D

* Determine if COMSOL modules more efficient

* Inform CDRA Cycle |l testing parameters

* Apply same model methodology to CDRA Sorbent Beds

e Complex 3D geometry

* Including heaters

e Uses vacuum desorption

 Have to model H,0/CO, sorption competition

—>Full System Predictive CDRA Model!



