Si-Ge Nano-structured with Tungsten Silicide Inclusions

Jon Mackey
Mechanical Engineering,
University of Akron

Alp Sehirlioglu
Materials Science and Engineering,
Case Western Reserve University

Fred Dynys
RXC, NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A
Objectives

- Investigate composite strategies with proven Si/Ge thermoelectrics.
- Validate theoretical modeling for silicide inclusion in Si/Ge, requires 10nm inclusions.
- Develop reliable uncertainty analysis for thermoelectric transport properties.
- Study thermal stability of composites.

Material ZT

\[
ZT = \frac{\alpha^2 \sigma}{\lambda} T
\]

\[
\lambda = \lambda_{Elec.} + \lambda_{Lattice}
\]

Test Matrix

<table>
<thead>
<tr>
<th>Si/Ge at% Ratio</th>
<th>2% Dopant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P-Type, B</td>
</tr>
<tr>
<td>70/30</td>
<td>0%</td>
</tr>
<tr>
<td>80/20</td>
<td>1%</td>
</tr>
<tr>
<td>90/10</td>
<td>2%</td>
</tr>
</tbody>
</table>

Tungsten Silicide Volume Fraction

- 0%
- 1%
- 2%
- 5%
Objectives

• Investigate composite strategies with proven Si/Ge thermoelectrics.
• Validate theoretical modeling for silicide inclusion in Si/Ge, requires 10nm inclusions.
• Develop reliable uncertainty analysis for thermoelectric transport properties.
• Study thermal stability of composites.

Material: $ZT = \frac{\alpha^2 \sigma}{\lambda} T$

$\lambda = \lambda_{\text{Elec.}} + \lambda_{\text{Lattice}}$

Test Matrix

<table>
<thead>
<tr>
<th>2% Dopant</th>
<th>P-Type, B</th>
<th>N-Type, P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si/Ge at% Ratio</td>
<td>70/30</td>
<td>80/20</td>
</tr>
<tr>
<td>Tungsten Silicide Volume Fraction</td>
<td>0%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Si-Ge with Tungsten Silicide Inclusions
Si-Ge with Tungsten Silicide Inclusions

Powder Processing

- Planetary Milling
 - 8 Hours @ 300-580 rpm
 - Ball to powder ratio 3-5
- Spark Plasma Sintering (AFRL)
 - 800-1100°C @ 70-90 MPa
 - 5-10 min Hold

SEM

XRD

1” Diameter
Sources of Error

<table>
<thead>
<tr>
<th>Source</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple radius</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>Sample uniformity</td>
<td>±0.1 mm</td>
</tr>
<tr>
<td>Thermocouple separation</td>
<td>±0.1 mm</td>
</tr>
<tr>
<td>Caliper resolution</td>
<td>0.01 mm</td>
</tr>
<tr>
<td>Statistical variation</td>
<td>Calculated</td>
</tr>
<tr>
<td>DAQ voltage uncertainty</td>
<td>50ppm+1.2µV</td>
</tr>
<tr>
<td>DAQ current uncertainty</td>
<td>0.2%+0.3mA</td>
</tr>
<tr>
<td>Cold-finger effect</td>
<td>Calculated</td>
</tr>
<tr>
<td>Wire Seebeck variation</td>
<td>±3 %</td>
</tr>
<tr>
<td>Statistical variation</td>
<td>Calculated</td>
</tr>
<tr>
<td>Absolute temperature</td>
<td>±2 K</td>
</tr>
<tr>
<td>DAQ voltage uncertainty</td>
<td>50ppm+1.2µV</td>
</tr>
<tr>
<td>DAQ temp. uncertainty</td>
<td>50ppm+1.2µV</td>
</tr>
</tbody>
</table>
Si/Ge at% Ratio

- 70/30
- 80/20
- 90/10

Tungsten Silicide Volume Fraction

- 0%
- 1%
- 2%
- 5%

2% Doped
- P-type, B
- N-type, P

Error Bars

Typical
Si-Ge with Tungsten Silicide Inclusions

Si/Ge at% Ratio
- 70/30
- 80/20
- 90/10

Tungsten Silicide Volume Fraction
- 0%
- 1%
- 2%
- 5%

2% Doped
- P-type, B
- N-type, P

<table>
<thead>
<tr>
<th>Si/Ge at% Ratio</th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten Silicide Volume Fraction</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Si-Ge with Tungsten Silicide Inclusions

2% Doped
- P-type, B
- N-type, P

Si/Ge at% Ratio
- 70/30
- 80/20
- 90/10

Tungsten Silicide Volume Fraction
- 0%
- 1%
- 2%
- 5%

Oxygen (at%)
- Melt P-Type
- SPS P-Type
- SPS N-Type

RTG P-Type
- RTG N-Type

Temperature (Celsius)

Results
Si-Ge with Tungsten Silicide Inclusions

<table>
<thead>
<tr>
<th>Tungsten Silicide Volume Fraction</th>
<th>Si/Ge at% Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>70/30, 80/20, 90/10</td>
</tr>
<tr>
<td>1%</td>
<td>X, X, X</td>
</tr>
<tr>
<td>2%</td>
<td>X, X, X</td>
</tr>
<tr>
<td>5%</td>
<td>X, X, X</td>
</tr>
</tbody>
</table>

2% Doped
- P-type, B
- N-type, P

Figure of Merit (ZT)
Si-Ge with Tungsten Silicide Inclusions

2% Doped
- P-type, B
- N-type, P

<table>
<thead>
<tr>
<th>Si/Ge at% Ratio</th>
<th>70/30</th>
<th>80/20</th>
<th>90/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten Silicide Volume Fraction</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>0%</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

2% Doped
- P-type, B
- N-type, P

<table>
<thead>
<tr>
<th>Si/Ge at% Ratio</th>
<th>70/30</th>
<th>80/20</th>
<th>90/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten Silicide Volume Fraction</td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>0%</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Si-Ge with Tungsten Silicide Inclusions

Introduction

Processing

Uncert.

Results

Si/Ge at% Ratio

<table>
<thead>
<tr>
<th>Si/Ge at% Ratio</th>
<th>70/30</th>
<th>80/20</th>
<th>90/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>X</td>
<td>♦</td>
<td>X</td>
</tr>
<tr>
<td>1%</td>
<td>X</td>
<td>♦</td>
<td>X</td>
</tr>
<tr>
<td>2%</td>
<td>X</td>
<td>♦</td>
<td>X</td>
</tr>
<tr>
<td>5%</td>
<td>X</td>
<td>♦</td>
<td>X</td>
</tr>
</tbody>
</table>

Tungsten Silicide Volume Fraction

- 0%
- 1%
- 2%
- 5%

Carrier Concentration (cm^-3)

N-Type

- Start
- End
- Reset

P-Type

- Start
- End
- Reset

- Never fully recovers

- Dopant Segregated
- Dopant Re-distributed

Resistivity (Ohm-cm)

Temperature (Celsius)

- Cooling
- Heating

Doped

- P-type, B
- N-type, P

2% Doped

- P-type, B
- N-type, P
Si-Ge with Tungsten Silicide Inclusions

Conclusion

• Silicide phase successfully reduces lattice thermal conductivity.
• Increased ZT for silicide composites as compared to baseline Si/Ge.
 • Need to control oxygen contamination to match baseline Si/Ge to RTG.
• Tungsten silicide phase offers tuning of carrier concentration.
• Silicide phase does not hinder thermal stability.

Acknowledgements

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross
NASA Glenn Research Center

Dr. Michael Cinibulk
AFRL Wright Patterson Air Force Base

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial
JPL

NASA Cooperative Agreement:
NNX08AB43A