Transient thermoelectric solution employing Green’s functions
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1. Objective: 2. What are Green’s Functions?
This study works to formulate convenient solutions to the problem of a thermoelectric The Gre.en s function |s.an integral kernal Whlc,h allows for simple
. . . . . . . expression of the solution for the problem of interest [1].
couple operating under a time varying condition. Transient operation of a thermoelectric , , 0 .
. . . . . . * Method applies to the linear operator L and the adjoint operator L
device will become increasingly common as thermoelectric technology permits new
applications such as automotive and aerospace energy harvesting. In an effort to generalize oy £(x)
the thermoelectric solution, Green’s functions are employed. This allows arbitrary time ¥
varying boundary conditions to be applied to the system without reformulation. The
solution demonstrates that in thermoelectric applications of a transient nature Thermal
Diffusivity Factor, Inductance Factor, and leg length ratio must be taken into account.
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3. The Transient Couple:  Tu®, 04 D. L7G(x,8) = 0(x = §)
* New applications of thermoelectrics 77777777777 /// 7777777
demand transient operation. x T + Ay o, o i J
. BYEB,»
. L Suka =
A number of numerlcail efforts have A aka Sk : C. u(x) = f G(x,&)f(&)dE
successfully characterized transient i ParCy, ’
. pBGCB
couples[2,3] but an analytic approach 70 | o |
. . . . / Fig. 1- a. the desired inhomogeneous problem to be solved. b. the corresponding problem to be solved
prowdes POWE rful dES|gn gwdelmes. / | gL to obtain the Green’s function. c. The desired solution in terms of the inhomogeneous function.
* Unlike the steady state couple, the /.f — i I
transient couple depends additionally Te(), @c,, (&) L= VWY
. . . R (Oh i 1\vi .
on material density and specific heat, o) L, <t 4. Thermal Diffusivity Factor:
which must be captured in Thermal e 2 * An On/Off cycle is studied, using a unit "  Diffusivi
. o ig. 2- Sketch of a transient thermoelectric couple, See : .
DIfoSIVIty Factor and Inductance Factor. “Nomenclature” section for clarification. Subscripts: (A dimensionless heat flux on the hot shoe Thermal Di usIvity ractor
& B) are n- and p-type legs, (C & H) are cold and hot and fixed temperature on the cold shoe. Aavg Lfl B
shoes, (avg) Is leg to leg average. * Solution introduces a new dimensionless [ap = ay L2y,
y parameter, Thermal Diffusivity Factor (I).
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: pl€- Heat Flux = Cy sin(w - t) + C; Time (sec) Time (sec)
* The behavior of a couple under a sinusoidal Fig. 3- Study of three geometrically and electrically similar couples under On/Off heat flux cycles;
heat flux is interesting for applications such 280 . parameter of study is the Thermal Diffusivity Factor (I'). a. Hot shoe temperature. inset. Applied heat
: : 1100 - flux. b. Electric power.
as energy harvesting on a pulse detonation .
engine. o 1000 -
e Solution introduces the Inductance Factor (B) 2 g0 i e Cycle conversion
a dimensionless parameter with strong effect s 7.4- — A efficiency is optimized
. S 800- N - . T
on amplitude and phase angle between = . 23 B for =1.
: = 700- Transient Periodic = :
thermal and electrical response. > * For selected materials
! Startup Steady ~ 79 .
* B and frequency are not found to alter 600 - LC>>‘ . the leg length ratio can
periodic steady average values. ) S 7.1 ) | be optimally designed
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< 0.04 - < 0.04 - Fig. 4- Cycle conversion efficiency as a function of Thermal Diffusivity
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2 2 The analytic solution of a transient couple leads to the introduction of a
0.01- 0.01- Thermal Diffusivity Factor (I') and an Inductance Factor (B). The behavior
of couples as a function of these parameters has been investigated and for
0.00 — 0.00 — T the case of I an optimal design point exists. This optimal I leads to the
0.0 - 0.4 0.6 0.8 1.0 0 2 4 6 8 10 design guideline for the selection of optimal leg length ratio.
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Fig. 6- a. Power amplitude dependent on Inductance Factor (B) for 0.1 Hz. b. Set of power curves for a range of Inductance The authors would like to thank: Ben Kowalski, Tom Sabo, and Ray Babuder
Factors (B). c. Power amplitude dependent on frequency for B 0.001. d. Set of power curves for a range of frequencies. NASA Cooperative Agreement: NNXOSAB43A
Refe rences: Nomenclatu re: T — Temperature L — Leg Length S — Seebeck Coef ficient p — Density
A —Leg Area o — Electrical Conductivity ¢, — Specific Heat
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