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1. Objective:
An uncertainty interval is required for the complete description of a material’s 
thermoelectric power factor. The uncertainty may contain sources of measurement 
error including systematic bias error and precision statistical error. This work focuses 
specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the 
methods apply to any measurement system. The analysis accounts for sources of 
systematic error including sample preparation tolerance, measurement probe 
placement, and thermocouple “cold-finger” effect; in addition to including statistical 
error. 
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8. Conclusion:

2. Seebeck and Resistivity Measurement:

• Systems like the ZEM-3 measure Seebeck 
coefficient by a potentiometric (4-probe, see Fig. 
1), differential method, using equilibrium or 
quasi-equilibrium measurements [1].

• Seebeck coefficient is calculated for a sample 
relative to the known Seebeck effect of the 
measurement probes.

• Stray interface voltages are accounted for by 
calculating Seebeck coefficient from the slope of 
a data set.

• Electrical resistivity is measured using a 
potentiometric (4-probe) arrangement, with 
electrical current passed through the sample in 
short pulses to avoid Peltier heating of the 
sample [2].

• A range of currents, often of different polarity, is 
used.

3. Sources of Uncertainty:

5. Cold-Finger Modeling:

4. Error Propagation:
• Error propagation can be estimated 

from a Taylor series expansion (see 
Fig. 3) of the Seebeck and resistivity 
functions[3].

• Relative uncertainty “e” from a set of 
sources can be combined with a sum 
of squares method, as shown to the 
right. As an example the power 
factor uncertainty is calculated.

• Statistical uncertainty can be 
estimated  for Seebeck and 
resistivity, a 95% C.I. is shown below.

6. Individual Uncertainty Sources:

7. Cumulative Uncertainty Study:

A conservative room temperature estimate of ±9% on power factor, and therefore 
minimum uncertainty on figure of merit, is calculated using a commercial 
measurement system. This room temperature error is dominated by the geometric 
errors involved in resistivity measurement. At higher temperatures the uncertainty is 
+9%/-15% due largely to the cold-finger effect on Seebeck measurements, this also 
impacts figure of merit. This uncertainty should be reported with all materials 
development.
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• The cold-finger effect results when heat 
is conducted through a thermocouple. 
As a result the measured temperature is 
lower than the actual sample 
temperature.

• Since the effect is stronger in one probe 
than the other the Seebeck coefficient is 
overestimated.   

Source Typical Values

Cold-Finger Effect‡ Calculated‡

Wire Seebeck Variation ±3 %

Statistical Variation† Calculated†

Absolute Temperature ±2 K

DAQ Voltage Uncertainty 50ppm+1.2µV

DAQ Temp. Uncertainty 50ppm+1.2µV

Source Typical Values

Thermocouple Tip 
Radius

0.25 mm

Sample Uniformity* ±0.1 mm*

Thermocouple 
Separation Length

±0.1 mm

Caliper Resolution 0.01 mm

Statistical Variation† Calculated†

DAQ Voltage
Uncertainty

50ppm+1.2µV

DAQ Current 
Uncertainty

0.2%+0.3mA
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Resistivity Measurement

Seebeck Measurement

*See Fig. 2 for examples
†See “Error Propagation” section

‡See “Cold-Finger Modeling” section
†See “Error Propagation” section

Fig. 2- Possible sample geometry 
uniformity issues.

Fig. 1- Sample measurement 
configuration.
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Nomenclature:
𝑆 − 𝑆𝑒𝑒𝑏𝑒𝑐𝑘 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝜌 − 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦 

𝑇 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
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Fig. 3- Demonstration of error propagation.
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𝑁 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒  

𝜈 − 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 

𝑡𝜈,𝑃 −  𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ′𝑠 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

Fig. 4- Demonstration of cold-finger effect during a 
theoretical Seebeck measurement, using FEA.

• Thermal FEA shows the magnitude of 
the effect on the temperature 
differences (Fig. 5).

• The model (Fig. 1) was discretized
using tetrahedral elements, a grid 
independence study demonstrated 
convergence.

• Sample ends were subject to fixed 
temperatures with all other faces 
subject to radiation, emissivity 0.7.

Fig. 5- Result of FEA study for a range of test delta 
temperatures and furnace temperatures.
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See “Nomenclature” section
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𝑤 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑖𝑑𝑡𝑕 

𝐷 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝐷𝑒𝑝𝑡𝑕 

𝐿 − 𝑃𝑟𝑜𝑏𝑒 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑛𝑔𝑡𝑕 

Data shown for high temperature Si/Ge system, similar to NASA GPHS-RTG


