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MOTIVATION



Motivation

NASA Core Body
Temperature

= Design a low profile, conformal,
tunable antenna for biomedical
applications B A

= Portable radiometer applications: s

* Health monitoring sensor —
astronauts, sports medicine, etc.

Missions

>

 Remote Underground Thermal
Detection




. . I
Motivation(Cont.) SYamr

= Antenna Requirements for |
Radlometez‘:_—‘ Sense/Tune ’
wearable radiometer: SRS W

= Minimize back-side radiation
= Large bandwidth (~100 MHz)  uauiscrstspoiymerorsoms ™ ess ayer

Low-Density / Honeycomb Plastic

= Low profile and conformal (flexible) Ground Plane/ hielding

" Low weight, low cost & low
complexity

27 mm height
~\/8 at 1.4 GHz

Cavity-Backed Slot
Antenna (CBSA)*
Cons: Bulky, heavy.

(CBSA) for close proximity biomedical sensing applications,” in IEEE Microwaves,
Communications, Antennas and Electronics Systems, 2009
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Antenna Structure

Top View Bottom View
Dipole High Impedance Surface
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Broadband or dual response
Tunable: Several parameters
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1-D Varactor based Tunable Antenna

Helght N}\/45 at 2.4 ELPSOD Ground plane
GHz NN

Bias and fabrication /
simplicity

Minimize the use of FSS

vias (potentially
conformal nature) DC Bias ‘ 1 KQ resistors and ground’
High front-to-back | /
radiation pattern ratio
Ability to dynamically
adjust the center
frequency




Common bias applied

Non-uniform bias voltages

5
% -15 -
» 25 - e (Config A
-40 T T T | 35 | | | - -Clonfig B |
2 2.2 2.4 2.6 2.8 3 2 2.2 2.4 2.6 2.8 3
Frequency (GHz) Frequency (GHz)
] 0
Config | V.V, Vy | V, Ve | Vg V-, Vg
300
A 30V |30V| 30V |30V 30V
70 90
5 40 GHz B 70V |70V | 30V | 70V 0V
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Operation using non-uniform bias voltages with
Human Core Model (HCM)

Config. |V,V,| Vi |V,Ve| V. |V, V,

B . D(NoHCM) | 30V | 30V | 30V | 30V 30V

E(wHCM) | 30v | 30v |30V | 30v | 30V
F(wHCM) | 10v [ 30v | 30V | 30v | 20V
G (w/HCM) | 50v |30V | 30v | 30V | 50V

H(w/HCM) | 100V |100V | 100V | 100V | 100V

0
_5 -
/\'10 T
% .15 - _
= -20 - =
D o5 - : = e==(Config’¥ (HCM)
30 «==Config D (Free spa = 5s
e==Config E (HCM) ===Config G (HCM)
'35 T T T T 1 —30 7 ='C0nﬁgH(HCM)
2 2.2 2.4 2.6 2.8 3 _35 | | | | |
Frequency (GHz) 2 2.2 2.4 2.6 2.8 3

Frequency (GHz)
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BST Varactor Based antenna

Height ~“A/45 at 2.4
GHz

Bias and fabrication
simplicity

Take advantage of the
C-V symmetry curve
Avoid the use of vias
(potentially conformal
nature)

High front-to-back
radiation pattern ratio
Ability to dynamically
adjust the center
frequency

Effective Capacitance (pF)
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DC Voltage (Volts)
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FSS Layer Using Barium Strontium Titanate (BST)
Varactors

| 86 mm |
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Operation using non-uniform bias voltages with
Human Core Model (HCM)

Impedance match
adjustment in:

" Close proximity
toa HMC

= At contact with
HMC

0
-10 -

g-?ﬂ -
30 -
5 “4) e o - Cnnﬁg A (FI'EE SpﬁCE)
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GaAs vs. BST antenna

Mass Total Cost per Area Eff. Tunable
Antenna _ _ Cost
(gms) | devices device (mm?2) (%) BW (MHz)
GaAs 188 56 50 USS High 15600 50-80 520
BST 87 56 0.1 USS Low 7900 30-60 425

= GaAs vs BST varactor based antenna

* Both - low profile

* Both - Easily tunable

 BST - Reduced planar size and mass compared to
GaAs

e BST- Cost effective

e BST - Compact and robust
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I
Summary SVAMP

A low profile, tunable dipole antenna using BST varactors

has been demonstrated

The total antenna thickness is “A/45 when using 1-D

varactor-loading

A tunable frequency response from 2.2 to 2.55 GHz

Cost effective, compact, robust, easily tunable and
low profile antenna

BST varactor antenna enables:
dSmall bias Network voltages
JPotential use of flexible substrates
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Add. 1 BST Varactor
C Characterization

Schematic for diode simulation.

\y\ 3" layer
<::| Gold layer
/\ h; =800 nm
09 d
g, 2" layer
« BST layer
£=200 to 350
h,= 350 nm
1% layer
Alumina layer
8r1=9.8
hz =500

Ceff (pF)
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Add. 2

K (Kﬂend)
Cona = 4ANs(2 + M)€,pq80 K (% gon) 54% (4.9)
Oend
o error
T K(Kpend
Cona = 215 (2 + =) €enato ( Oen ) 6 % (4.10)
2 K(E Dend) error
Measured Measured Permittivity | Permittivity | Permittivity
Number of Effective Effective extracted at | extracted at extracted at
Fingers Capacitance at | Capacitance | 0OVand 90V | 0V and 90 0V and 90V
0 volts at 90 volts (HFSS) (Eq. 4.09) (Eq. 4.10)
3 1.17 pF 0.88 pF 800-500 400-250 750-510
5 2.1 pF 1.5 pF 750-500 450-270 770-500
7 3.2 pF 22 pF 750-500 470-270 800-520
Measured Measured | Permittivity | Permittivity | Permittivity
Number of Effective Effective | extracted at | extracted at | extracted at
Fingers Capacitance | Capacitance | 0V and 90 0Vand 90 | OV and 90V
at 0 volts at 90 volts | V (HFSS) (Eq.4.09) (Eq.410)
3 0.75 pF S5 pF 350-230 160-70 350-200
5 1.4 pF 0.98 pF 350-230 180-90 360-210
7 2.1 pF 1.45 pF 350-230 200-100 370-220
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