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Introduction 

Outline 
 

• Spacecraft charging physics 

• Charging anomaly, failure mechanisms 

• History/examples of spacecraft 
charging anomalies and failures 

• High voltage solar arrays 

• Summary  

 

 

Space Environment Impacts on Space Systems 
Anomaly Diagnosis             Number      % 

---------------------------------------------------------------- 

ESD-Internal, surface       162          54.1 

   and uncategorized       

SEU (GCR, SPE, SAA, etc.)       85          28.4 

Radiation dose                            16            5.4 

Meteoroids, orbital           10            3.3 

   debris 

Atomic oxygen                                 1            0.3 

Atmospheric drag                           1            0.3 

Other                                           24             8.0 

---------------------------------------------------------------- 

Total                                         299       100.0% 

[Koons et al., 2000] 
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What is Charging? 

• The build up of current on or within 
spacecraft materials.  The sum of the 
currents = 0 at equilibrium. 

– Surface 

– Deep dielectric 

 incident ions 
 

incident electrons 
 

backscattered electrons 
 

conduction currents 
 

secondary electrons due to Ie 
 

secondary electrons due to Ii 
 

photoelectrons 
 

active current sources (beams, 
thrusters) 

(Garrett and Minow, 2004) 
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Surface charging 
 
 
 

Potential Distributions on Spacecraft Surfaces 

• Electrostatic potentials 
– Due to net charge density on spacecraft 

surfaces or within insulating materials due 
to current collection to/from the space 
environment 

 
 

• Electrodynamic (inductive) potentials 
– Modification of frame potentials without 

change in net charge on spacecraft 
– Plasma environment not required 
– Examples include 

• EMF generated by motion of 
conductor through magnetic field 

• Externally applied electric fields  
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Laboratory frame 

Spacecraft rest frame 

Forces equal in both 
frames! 

[c.f., Whipple, 1981; p. 272 Wangness, 1986;   
          p. 210 Jackson, 1975; Maynard, 1998] 
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Internal (deep dielectric) charging 
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Charging Anomaly and Failure Mechanism 

• Accumulation of excess negative charge or inductive re-
distribution of charge generates potential differences 
between spacecraft and space (frame potential) or 
between two points on the spacecraft (differential 
potential) 

 

• An electrostatic discharge (ESD) results when electric 
fields associated with potential differences (E = -) 
exceed the dielectric breakdown strength of materials 
allowing charge to flow in an arc 

 

• Damage depends on energy available to arc  

                        E = ½CV2 

 

• Charging anomalies and failures depend on 
– Magnitudes of the induced potentials and strength of the 

electric fields 

– Material configuration (and capacitance) 

– Electrical properties of the materials 
• Surface and volume resistivity, dielectric constant 

• Secondary and backscattered electron yields, 
photoemission yields 

• Dielectric breakdown strength 

 

PMMA (acrylic) charged by ~2 to 5 
MeV electrons 

ISS MMOD shield 1.3 m chromic acid 
anodized thermal control coating  
                                  (T. Schneider/NASA)  
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Impact of Charging on Spacecraft 

• Electrostatic discharge (ESD) currents 
– Compromised function and/or catastrophic destruction of sensitive electronics 
– Solar array string damage (power loss), solar array failures 
– Un-commanded change in system states (phantom commands) 
– Loss of synchronization in timing circuits  
– Spurious mode switching, power-on resets, erroneous sensor signals 
– Telemetry noise, loss of data 

 

• Electromagnetic interference (EMI)  
– EMI noise levels in receiver band exceeding receiver sensitivity 
– Communications issues due to excess noise 
– Phantom commands , signals 

 
• Material damage 

– ESD damage to mission critical materials including thermal control coatings, re-entry thermal 
protection systems, optical materials (dielectric coatings, mirror surfaces) 

– Re-attracted photo ionized outgassing materials deposited as surface contaminants 
 

• Other 
– Compromised science instrument, sensor function 

» Modified “Ion line” charging signature in ion spectrum 
» Photoelectron contamination in electron spectrum   

– Parasitic currents and solar array power loss (LEO) 
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Anomalies and Failures Attributed to Charging 

Spacecraft Year(s) Orbit Impact* Spacecraft Year(s) Orbit Impact* 

DSCS II 1973 GEO LOM Intelsat K 1994 Anom 

Voyager 1 1979 Jupiter Anom DMSP F13 1995 LEO Anom 

SCATHA 1982 GEO Anom Telstar 401 1994, 
1997 

GEO Anom/LOM 

GOES 4 1982 GEO LOM TSS-1R 1996 LEO Failure 

AUSSAT-A1, -A2, -A3 1986-1990 GEO Anom TDRS F-1 1986-1988 GEO Anom 

FLTSATCOM 6071 1987 GEO Anom TDRS F-3,F-4 1998-1989 GEO Anom 

GOES 7 1987-1989 GEO Anom/SF INSAT 2 1997 GEO Anom/LOM 

Feng Yun 1A 1988 LEO Anom/LOM Tempo-2 1997 GEO LOM 

MOP-1, -2 1989-1994 GEO Anom PAS-6 1997 GEO LOM 

GMS-4 1991 GEO Anom Feng Yun 1C 1999 LEO Anom 

BS-3A 1990 GEO Anom Landsat 7 1999-2003 LEO Anom 

MARECS A 1991 GEO LOM ADEOS-II 2003 LEO LOM 

Anik E1 1991 GEO Anom/LOM TC-1,2 2004 ~2GTO, GTO Anom 

Anik E2 1991 GEO Anom Galaxy 15 2010 GEO Anom 

Intelsat 511 1995 GEO Anom Echostar 129 2011 GEO Anom 

SAMPEX 1992-2001 LEO Anom Suomi NPP 2011-2014 LEO Anom 

*Anom=anomaly, LOM=Loss of mission, SF=system failure 
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Charging Failures are Expensive! 

Launch Failure 
40.3% 

Power 
31.0% 

Payload 
10.5% 

Propulsion 
9.3% 

T&C / Data handling 
4.6% 

Other 
2.8% 

ACS incl computer 
1.4% 

Space Weather Claims 

• Anik E1: USD 142.5m 

• Telstar 401: USD 132.0m 

Total claims (1994 – 2013) = USD 12,640m [Wade, 2014] 
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GEO Charging Examples 

[Thomson et al., 2013] 

Olsen [1983] 

Record ATS-6 charging event 
  ~ -19 kV 

I+,e- 
flux 

• GEO surface charging potentials to 1 to 10 kV 
• Surface charging most common in midnight through 

dawn sector 
• Internal charging independent of local time 
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GOES Solar Cycle 21 Internal Charging Anomalies 

Black: GOES phantom commands 
   2-day fluence (F2) > 2 MeV electrons   
Red: F2   109 e-/cm2-sr 
Amber: 109   >  F2   108 e- /cm2-sr 
Green: F2  < 108 e- /cm2-sr 
White: no data 

smoothed sunspot number 

[from Wrenn et al. 2002 ] 
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High Inclination LEO Charging Examples 

• Polar surface charging potentials to 1 or 2 kV 
• Surface charging caused by 10’s keV auroral 

electrons limited to high latitudes 

[adapted from Anderson, 2012] 

[Minow et al, 2014] 

[Minow et al, 2014] 
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Solar Array Arcing 

• Charging issues for low voltage PVA systems 
are typically limited to extreme LEO auroral 
and GEO charging environments 

 

• High voltage systems are at risk for ESD due to 
plasma currents collected on exposed high 
voltage components, arcing through insulators 

 

• Two types of solar array arcs: 

– Trigger arcs:  fast, transient arc 

• Damage limited to local capacitance 

• EMI noise 

– Sustained arcs:  long duration, continuous arcs 

• Solar array currents feed power into arc site 
producing significant damage to cell strings                         

• Can lead to total loss of array 

ESA EURECA solar array sustained 
arc damage (ESA)  

Cho, 2014 
http://laplace.ele.kyutech.ac.jp/mengu/400V.htm 
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Mitigation Strategies 

• Follow good EMC, grounding/bonding and 
charging design practices 

– Ground conductive materials to assure an 
equipotential (eliminate differential 
charging) 

– Use static dissipative materials when 
conductors can not be used 

 

• Analyze spacecraft configuration in charging 
environment 

– Nascap-2k, In. cam, NUMIT  

 

• Test insulating materials with electron 
beams at relevant energy (10’s keV) and 
current (~1-10 nA/cm2) to determine if (a) 
arcing will occur and (b) if it will result in 
damage    
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Anomaly Investigations 

• Complete anomaly investigation requires 
– Information on environment at time of 

anomaly 

– Information on spacecraft configuration 
(material properties, shielding thickness, 
grounding/bonding details) 

– System vulnerabilities to ESD  

 

• Orbit and environment assessment 
through analysis of charged particle data  
during anomaly timeframe 
– Best if your satellite has plasma, particle 

detectors 

– Data from other sources including nearby 
satellites if necessary 
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Material 

Z=6, A=11.5 

d=2.5 cm 

 ~ 1x10-17 S/m 

 = 2.00 

  = 1.0 g/cm3 

 



Common Cause Charging, Radiation Anomalies 

• Charging and radiation anomalies can be 
generated by the same environments 

 

• Chandra X-ray Observatory star tracker 
anomalies in spring 2010 were caused by 
outer radiation belt energetic electron 
enhancements 

 

• The same environment resulted in the 
Galaxy 15 ESD anomaly on 5 April 2010 

 

• High flux of penetrating MeV electrons 
impacts well shielded CCD imager, 
results in charging threat   
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Galaxy 15 anomaly 
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Summary 

• Charging can cause significant damage to spacecraft resulting in 
loss of mission, loss of functionality, loss of money 

• Complicated physical process that is dependent on spacecraft 
configuration, material selection, and orbit (environment)  

• Failures and anomalies include 
– Destruction of sensitive electronics 
– Solar array string damage 
– Phantom commands 
– Telemetry noise, loss of data 
– ESD damage to mission critical materials 
– Re-attracted photo ionized outgassing materials deposited as surface 

contaminants 
– Compromised science instruments, sensor function 
– Parasitic currents and solar array power loss 

• Build spacecraft to withstand or avoid charging 
– Characterize charging environment 
– Modeling spacecraft response to charging environment 
– Testing components in relevant charging environments 

• Anomaly investigation 
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