mBAND analysis of late chromosome aberrations in human lymphocytes induced by gamma rays and Fe ions

Mayumi Sunagawa1,2, Ye Zhang1,4, Samrawit Yeshitla1,2, Munira Kadhim5, Bobby Wilson2 and Honglu Wu1

1NASA Johnson Space Center, Houston, TX, USA
2Texas Southern University, Houston, TX, USA
3University of Houston Clear Lake, Houston, TX, USA
4Wyle Laboratories, Houston, TX, USA
5Oxford Brookes University, UK

Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent \textit{in situ} hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions \textit{ex vivo}, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.
mBAND analysis of late chromosome aberrations in human lymphocytes induced by gamma rays and Fe ions

Honglu Wu
NASA Johnson Space Center
Multicolor banding *in situ* hybridization (mBAND)

mBAND allows identification of inter- and intrachromosome aberrations, as well as the location of the breaks in the damaged chromosome.
Breakpoint distribution for chromosome fragment ends participating in intra-chromosomal exchanges induced by γ-rays of low dose rate (Panel A), neutrons (Panel B), γ-rays of high dose rate (Panel C) or Fe ions (Panel D). Most of the intrachromosome exchanges occurred between a break in band 5-9 and one in band 11-13 (Panel E). (From Hada et al. 2011).
mBAND painting of human chromosome 3
Distance between the center of each region and the center of the chromosome domain

Chromatin in the p-arm tended to locate towards the interior of the chromosome domain, whereas chromatin in the q-arm tended to locate towards the exterior of the chromosome domain.
Frequency distribution of cells containing aberrant chromosome 3 of human lymphocytes

![Graph showing the frequency distribution of cells containing aberrant chromosome 3 of human lymphocytes. The x-axis represents time in hours (48h, 7 days, 14 days), and the y-axis represents the fraction of cells with damaged chromosome 3. Different radiation doses and times show varying impacts on the frequency.]
Interchromosomal exchanges in human chromosome 3 induced by gamma rays or Fe ions

![Complex exchange diagram]

Fractions of damaged chromosome 3

- 2Gy
- 4Gy
- 0.5Gy
- 1Gy

48h
Frequency of simple inversions in chromosome 3 induced by gamma-rays

![Graph showing the frequency of simple inversions in chromosome 3 induced by gamma-rays. The x-axis represents time intervals (48h, 7days, 14days) and the y-axis represents the number of simple inversions per cell. The graph includes two sets of data: 2Gy (light blue) and 4Gy (brown). The 4Gy data shows a significant increase in the frequency of simple inversions compared to the 2Gy data.]
Distribution for total chromosome ends for lymphocytes
Location of breaks that participated in inter- and intra- chromosome exchanges in solid tumors
Comparison of organizations of interphase chromosome between human lymphocytes and human fibroblasts

Conclusions

• About half of the cells initially damaged in chromosome 3 by gamma rays within the first mitosis remained for this long term culture, while about 1/5 or less of the cells damaged with Fe ions remained for this long term culture.

• Interestingly, simple inversions in chromosome 3 were found in only the 7 and 14 day samples. It is not clear whether cells containing simple inversions had already progressed through the first cell division at 48 hr, or the simple inversions were induced after the first cell division.

• The breakpoint distribution in chromosomes collected at 7 days, but not at 14 days, post irradiation appeared similar to the distribution in cells collected within the first cell cycle post irradiation. Further investigations are needed to determine whether some of the aberrations were formed after 7 days of cell culture.

• The distribution of break ends participated in interchromosome exchanges for human lymphocytes after radiation exposure was different from the previously published distribution for human mammary epithelial cells, indicating that interphase chromatin folding structures play a role in the distribution of radiation-induced breaks.
Acknowledgement

NASA JSC
Mayumi Sunagawa
Ye Zhang
Megumi Hada
Samrawit Yeshitla

Texas Southern University
Bobby Wilson

Oxford Brooks University
Munira Kadhim

NSRL
Adam Rusek
Peter Guida

National Institute of Radiological Sciences
Yoshiya Furusawa