MUSCULOSKELETAL-INDUCED NUCLEATION IN ALTITUDE DECOMPRESSION SICKNESS

NW Pollock¹, MJ Natoli¹, J Conkin², JH Wessel III³, ML Gernhardt⁴

¹ Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC 27710; ² University Space Research Association, 3600 Bay Area Blvd, Houston, TX 77058; ³ Wyle Integrated Science and Engineering Group, 1290 Hercules, Houston, TX 77058; ⁴ NASA Johnson Space Center, 2100 NASA Parkway, Houston, TX 77058
INTRODUCTION

- Musculoskeletal activity has the potential to both improve and compromise decompression safety
 - enhancing inert gas elimination during oxygen breathing
 - promoting bubble nuclei formation and gas phase separation
- Timing, pattern and intensity of exercise and the level of tissue supersaturation may be critical to the net effect
 - understanding mechanisms may help quantify risk
- NASA Prebreathe Reduction Program (PRP) studies
 - combined oxygen prebreathe and exercise followed by low pressure (4.3 psi) microgravity simulation
 - produced two operational protocols used for EVA
 - CEVIS and ISLE
- Current study investigates the influence of ambulation exercise on bubble formation and risk of DCS
CEVIS PROTOCOL
(not to scale)

<table>
<thead>
<tr>
<th>PRP Phase II</th>
<th>Time (min)</th>
<th>100</th>
<th>50</th>
<th>20</th>
<th>10</th>
<th>30</th>
<th>5</th>
<th>35</th>
<th>30</th>
<th>240</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (psi)</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

Activity
Non-Ambul. Exercise Non-Ambulatory Exercise Non-Ambulatory

Breathe Mix
Air Oxygen Air Oxygen
METHODS

- 4 experiments replicate CEVIS protocol, each with exception
 - **Expt 1** – ambulation both preflight and at 4.3 psi
 - **Expt 2** – non-ambulatory preflight; ambulatory at 4.3 psi
 - **Expt 3** – ambulatory preflight; non-ambulatory at 4.3 psi
 - **Expt 4** – reverse heavy/light exercise order; non-ambulatory

- Decompression stress assessment
 - ultrasound during each of 14 epochs in 4 h 'spacewalk'
 - aural Doppler for right heart bubbles (Spencer grade 0-IV)
 - two-dimensional imaging for left heart bubbles (test termin.)
 - venous blood to assess microparticle response to deco stress

- Fisher Exact Tests (one-tailed) compare test/control groups

- Plan - 25-50 subjects per experiment
 - trials suspended with 70% confidence of DCS risk >15% or grade IV VGE risk >20%
EXERCISE STRATEGIES

Controlled walking

Suit simulator set up for multiple semi-recumbent intermittent light exercise simulating astronaut tasks
EVA SUIT SIMULATOR EXERCISES

- 6 exercises
 - sit-ups, arm pulls, full body pulls, torque wrenching, walking
- Subjects cycle through
 - specific exercises
 - Doppler/2-D echo monitoring
 - Rest break
- 4 minute intervals for each
 - pace guided by an automated task prompter
 - manual prompting if needed
BLOOD MICROPARTICLE ASSESSMENT

- MPs are 0.1-1.0 µm diameter cell membrane fragments
 - pro-inflammatory
- 5 mL blood samples drawn at 3 points
 - baseline
 - post-10.2 psi repress
 - post-4.3 psi repress
RESULTS

- 15 Experiment 1 trials complete
 - 11 male, 4 female
- Expt 1 vs. CEVIS
 - DCS greater
 - 4/15 (27%) vs. 0/45 (0%), respectively (p=0.0001)
 - peak grade IV VGE frequency greater
 - 4/15 (27%) vs. 3/45 (7%), respectively (p=0.0334)
 - cumulative grade IV VGE across all trial epochs not different
 - 10/183 (5%) vs. 26/630 (4%), respectively (p=0.220)
 - microparticle data for 9/15 trials (4 with DCS outcomes)
 - high variability not yet resolved statistically
- DSMB review allowed Expt 1 trials to continue
 - to improve statistical power of microparticle assessment
DISCUSSION

- Expt 1 trial results support thesis that decompression stress is increased by ambulation exercise
- Additional trials may improve the statistical power to evaluate the relationship between decompression stress and microparticle accumulation
- Future experiments will test decompression stress of
 - ambulation at altitude (supersaturated) vs. ambulation at ground level (undersaturated)
 - light exercise after heavy exercise induced nucleation

ACKNOWLEDGMENT

- Funded by NASA NNX12AG22A