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Abstract. We want to study a polychromatic inverse problem method with
nulling interferometers to obtain information on the structures of the exo-
zodiacal light. For this reason, during the first semester of 2013, thanks to
the support of the consortium PERSEE, we launched a campaign of labo-
ratory measurements with the nulling interferometric test bench PERSEE,
operating with 9 spectral channels between J and K bands. Our objective is
to characterise the transfer function, i.e. the map of the null as a function
of wavelength for an off-axis source, the null being optimised on the central
source or on the source photocenter. We were able to reach on-axis null
depths better than 10−4. This work is part of a broader project aiming at
creating a simulator of a nulling interferometer in which typical noises of a
real instrument are introduced. We present here our first results.

1. Introduction

The observation and the characterisation of dusty debris disks, extrasolar planets,
and planetary systems around stars is one of the major astronomical challenge
of the 21st century. Direct detection, model fitting, and ultimately imaging of
these objects require instruments with very high dynamic range and high angular
resolution in order to comply the combination of two major physical constraints.
First, there is large flux ratio between the star and the planet or the circumstellar
disk, typically ∼ 1010 in the visible, and ∼ 107 in the infrared. Second, the
angular separation between a host star and exoplanet in the habitable zone is
typically small. For example, the system Earth-Sun at maximum elongation at
the distance of 10 pc has an angular separation of the order of 100 mas or 0.5
μrad which needs an interferometer with a baseline of 20 m at 10 μm.

Currently, there is a large effort to develop concepts able to detect and char-
acterise Earth-like planets (Quirrenbach 2001). In this context, nulling interfer-
ometry could play a key role (Bracewell & MacPhie 1979). In last decades, nulling
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interferometry has been one of the most studied techniques (Angel & Woolf 1997;
Léger et al. 1996a) and these studies led to consider two major projects named
DARWIN (Léger et al. 1996b) and TPF-I (Lawson et al. 2007). The goal of
these two missions is to detect Earth-like planets into the habitable region and
characterise their spectra with eventually markers of the possible presence of life
(Danchi et al. 2003). As these instruments are extremely demanding for technical
and operational requirements, some intermediate class projects, such as PEGASE
(Ollivier et al. 2009) and FKSI (Danchi & Lopez 2007) have been considered.
The initial specification was to ensure the exozodiacal light with an accuracy of
1 zodi, i.e. the intensity for a system identical to the solar system, for all Darwin
potential targets in order to assess Darwin observations feasibility and priority.
Later, it has been understood that this type of M-class space interferometer can
have remarkable possibilities to characterise the structures of protoplanetary and
debris disks with various signatures of planet presence or formation. A demon-
strator PERSEE, acronym of Pegase Experiment for Research and Stabilisation
of Extreme Extinction, has been designed and built by a consortium led by CNES
and including IAS, LESIA, ONERA, OCA and Thales Alenia Space in order to
assess the potential and limits of PEGASE, and lately FKSI.

There is a growing interest in the image reconstruction from interferometric
observations, due to the possibility to visualise unsuspected structures and details
of the object of interest. Both in model fitting and image reconstruction, the
knowledge and the characterisation of the transfer function and the covariance
matrix of residuals of the interferometer are critical information, both to optimise
the problem inversion and to characterise the quality of the result (Tallon-Bosc
2007; Thiébaut 2009). As a consequence, characterising the off-axis transfer
function of a nulling interferometer is of prime interest.

Early in 2013, we started a measurement campaign with the aim of char-
acterising the transfer function with a real nulling interferometer operating in 9
spectral channels in a large spectral band of the infrared. We used the PERSEE
test bench to record transmission maps, simulating angularly offset sources with
different ranges of baselines and tilts. We obtained a database of measured multi-
wavelength transmission maps of a nulling interferometer, and are comparing it
with its analytical model (section 3.).

2. Measurement campaign

PERSEE is a fibered nulling interferometer demonstrator built with the aim to
achieve a stabilised nulling ratio better than 10−4 in a large spectrum range be-
tween bands J and K. Lozi et al. (2013) have demonstrated that a polychromatic
nulling depth of 10−6 with a stability of 10−7 could be reached over 10 hours sim-
ulating conditions of typical perturbations of a spacecraft such as PEGASE. The
detailed optical layout made by Thales Alenia Space is recalled in Table 2. and
in Fig.1. The bench is equipped with a fringe sensor (FS) based on the ABCD
modulation technique (Shao et al. 1988) and a tip-tilt sensor (FRAS) in order
to correct respectively internal OPD between the interferometer arms and tilt er-
rors in closed loop. After the combining stage, a Modified Mach-Zehnder (MMZ)
(Jacquinod et al. 2008), dichroic plates separate the various spectral channels
and direct them in the appropriate detection chains. The H and K channel sig-
nals reach, via a single mode fiber, the nitrogen cooled infrared detector. On the
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Table 1.: Optical components of PERSEE
M1 45 deg. mirror
M4-M5 nulling periscope
M6 tip-tilt injection
M7-M8 delay line (cat’s eye)
M11 FRAS mirror
M9 30 deg. mirror (MMZ)
L3-L4 separating plates (MMZ)
D2 fringe sensor dichroic
M10 off-axis parabola
I output of MMZ corresponding to the channel A
II output of MMZ corresponding to the channel B
III output of MMZ corresponding to the channel D
IV output of MMZ corresponding to the channel C

IR camera, we have simultaneously polychromatic measurements in 9 channels
from 1.65μm to 2.45 μm. In order to simulate an off-axis source, we introduced
on mirrors of PERSEE (M6) a set of commands to drive a displacement in tip-tilt
(α, β) and OPD δ. These tip-tilt and OPD can be associated with a simulated
baseline B by the relationship δ = B · sin(α), where α and β correspond to an
angular position on sky relative to the optical axis of the instrument. With com-
mands injected on mirrors M6, we scanned a near-field close to the axis within
an angular separation of two Airy disk diameters, defined by the resolution of the
considered pupils. We simultaneously measured the flux on the dark output of
the MMZ recombiner (III output or channel D, see Table 2.), and a flux reference
for the source fluctuations directly at the output of the collimator (see Fig.1). A
measurement corresponds to a scan of a grid of points in the near-field off-axis
with a fixed baseline and, for each position (α, β, δ), we recorded 20 frames in
0.2 seconds with the IR camera. We make α and δ proportional to each other in
order to simulate the variation of the transfer function along a 2-telescope base-
line. We also measured the photometry of both arms of the interferometer. We
normalised the science channels with fluctuations of the source and we evaluated
the photometry in both arms IA, IB , and the recombination of both beams of
light ID. We define the measured normalised transfer function T̄B(α, β) (Eq.1),
and the theoretical transfer function of PERSEE, given in Hénault et al. (2011).

T̄B

meas(α, β) =
ID(α, β, δ)

IA(α, β, δ) + IB(α, β, δ) + 2
√
IA(α, β, δ)IB(α, β, δ)

(1)

TB

theor(α, β) = | sin(αB/λ) · [B̂D(α, β) ⊗G(α, β)]|2 (2)

Where B̂D(α, β) is the complex amplitude generated by an individual sub-
aperture and being back-projected onto the sky. For unobstructed pupils as
in PERSEE, it is equal to 2J1(ρ)/ρ where ρ = πD/λ, and J1 is the Bessel
function at the first order. G(α, β) is the fundamental mode of the exit filter-
ing waveguide, after being projected back on-sky. It can be approximated by a
gaussian function. Once we obtain the measured transfer function, we can com-
pare it with the normalised theoretical one T̄B

theor
(α, β) = N · TB

theor
(α, β), where

N = [B̂D(α, β) ⊗G(α, β)]−1 is the normalisation term.
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Figure 1.: Layout scheme of the fibered nulling interferometer demonstrator
PERSEE designed by Thales Alenia Space.

3. Results

We present preliminary results for the measure with internal tip-tilt from −36 to
36 arcseconds with a maximal OPD of 3.5 μm. The two apertures of PERSEE
have a diameter of 13 mm and are separated by a baseline of 50 mm. It corre-
sponds to a near-field off-axis on the order of � 1.4 Airy disk radius and a ratio
of baseline to diameter of pupils equal to B/D = 3.2 that gives ∼ 7 fringes in
an Airy disk region. For example, if we consider two apertures with a diame-
ter of 10 cm the baseline is equal to 32 cm. Using Eq.1 we produced the map
transfer function and its associated variance map shown for the channel λ = 2.45
μm respectively in Fig.2 and Fig.3. Fig.4 shows the theoretical transfer function
obtained using Eq.2. The difference between measured and theoretical transfer
function is shown in Fig.5. Both theoretical and subtracted maps are obtained for
the channel λ = 2.45 μm. We see that the measured and modeled maps are fairly
similar but with a difference that is larger than the standard deviation. The next
step is to tune the model with a simple number of perturbation to obtain a good
match with the measures. The value of the best null measured is on the order of
magnitude of 10−4. This value is considered deep enough to detect the zodiacal
light with an accuracy of 1 zodi, comparable with the request for the PEGASE
mission (Defrère et al. 2008). We hope that this null of 10−4 is sufficient for a
comprehensive analysis of the statistic of the transfer function T̄B

meas(α, β). Note
that the irregular region in the center of the left side of the measured transfer
function has been caused by a sudden slight pressure change in the white room
occurred during the measurements, due to the opening of the entrance door.
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Figure 2.: measured normalised trans-
fer function T̄B

meas(α, β) for λ = 2.45
μm.

Figure 3.: variance of the measured
normalised transfer function.

Figure 4.: theoretical normalised
transfer function T̄B

theor
(α, β), for

λ = 2.45 μm.

Figure 5.: map of the subtraction be-
tween measured and theoretical trans-
fer function.
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4. Conclusions and perspectives

Using the PERSEE test bench, we collected data for a detailed characterisation
of the polychromatic transfer function T̄B(α, β) for a realistic fibered nulling in-
terferometer and study its statistics in time and space. We presented preliminary
results obtained for the measure with the ratio B/D = 3.23. The value of the
best null is on the order of 10−4. If the transfer function is perfectly known, cali-
brated and stable, the performances of the model fitting or image reconstruction
will be limited only by fundamental noises.

The precision and the stability of the transfer function for a nulling interfer-
ometer is the main limiting factor for the dynamic range that can be obtained
for the investigated structures. Our goal is to analyse the variances and the co-
variances in time and between channels to evaluate the additional instrumental
noise and hence the realistic limits of the approach. This is the starting point
for a detailed characterisation of the nulling performances, especially for image
reconstruction with an hyper-spectral approach and model fitting of very high-
dynamic range scenes such as a star plus an exoplanet, or a star plus a debris
disk with gaps.
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