MODIS Collection 6 Clear Sky Restoral (CSR): Filtering cloud mask “not clear” pixels

Kerry Meyer1,2, Steve Platnick2, Gala Wind3,2, Jerome Riedi4

1Goddard Earth Sciences Technology and Research (GESTAR), Universities Space Research Association (kerry.meyer@nasa.gov)
2NASA Goddard Space Flight Center
3Science Systems and Applications, Inc
4Laboratoire d’Optique Atmosphérique, Université de Lille 1 · Sciences et Technologies

Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also 250m sub-pixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies “not clear” pixels), certain situations exist in which pixels identified by MOD35 as “cloudy” are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as “cloudy” for reasons other than the presence of clouds, such as scenes with thick smoke or lofited dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SDS Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CER 2.1μm</td>
<td>COT</td>
</tr>
<tr>
<td>Overcast (CSR=0)</td>
<td>PCL (CSR=1.3)</td>
</tr>
</tbody>
</table>

Aqua MODIS, 2 July 2008 (2105 UTC)

Aqua MODIS, April 2005 Monthly L3, Liquid Phase Only

Aqua MODIS, 9 April 2005 (1050 UTC)

C6 CSR ALGORITHM

TABLE 1

Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also 250m sub-pixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies “not clear” pixels), certain situations exist in which pixels identified by MOD35 as “cloudy” are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as “cloudy” for reasons other than the presence of clouds, such as scenes with thick smoke or lofited dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.