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Influence of persistent wind scour on the surface
mass balance of Antarctica
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Accurate quantification of surface snow accumulation over
Antarctica is a key constraint for estimates of the Antarctic
mass balance, as well as climatic interpretations of ice-core
records'?. Over Antarctica, near-surface winds accelerate
down relatively steep surface slopes, eroding and sublimating
the snow. This wind scour results in numerous localized
regions (<200km?) with reduced surface accumulation®”.
Estimates of Antarctic surface mass balance rely on sparse
point measurements or coarse atmospheric models that do
not capture these local processes, and overestimate the net
mass input in wind-scour zones®. Here we combine airborne
radar observations of unconformable stratigraphic layers with
lidar-derived surface roughness measurements to identify
extensive wind-scour zones over Dome A, in the interior of
East Antarctica. The scour zones are persistent because they
are controlled by bedrock topography. On the basis of our
Dome A observations, we develop an empirical model to predict
wind-scour zones across the Antarctic continent and find that
these zones are predominantly located in East Antarctica. We
estimate that ~2.7-6.6% of the surface area of Antarctica
has persistent negative net accumulation due to wind scour,
which suggests that, across the continent, the snow mass input
is overestimated by 11-36.5Gtyr™" in present surface-mass-
balance calculations.

Over the interior of East Antarctica, significant spatial variability
in snow accumulation results from the temperalure inversion
and gravity-driven katabatic winds interacting with ice surface
topography'*7®. These katabatic winds erode and sublimate both
drifting snow and snow layers on the ground!. Extensive regions
of wind-induced zero or near-zero surface mass balance (SMB)
have been identified by airborne ice-penetrating radars®, satellite
remote sensing® and ground traverses*M, A small fraction of
the eroded snow over these regions is redeposited downslope
forming dunes or infilling topographic depressions and the rest
is sublimated™". Evaluating this complex deposition process
over a low accumulation area such as the interior of East
Anlarctica is important for improving SMB estimates and annual
accumulation from ice cores.

Where the winds completely remove the annual snowfall
over the scour zones, increased absorption of short-wave solar
radiation and enhanced vapour transport facilitate grain growth
and metamorphosis of the near-surface firn layers*"6. In
radar stratigraphy, these buried, metamorphosed layers form

unconformable surfaces that represent hiatuses in accumulation,
Although previous studies have identified wind-induced regions
of near-zero to zero SMB over East Antarctica'***%!"  clear
thresholds of the physical parameters creating these zones that
can be included in physical models do not exist. Here we use
data over Dome A to identify persistent wind-induced ablation of
the ice surface and develop physical parameterizations to predict
continent-wide distribution of sites where slope-induced wind
scour leads to negative SMB.

During the AGAP (Antarctica’s Gamburtsev Province) project,
a 125,500 km? area over Dome A was surveyed with airborne ice-
penetrating radar, lidar and other geophysical instruments'’. The
flight lines were spaced 5 km apart in the north-south direction with
35-km-spaced crosslines. Approximately 200km away [rom the
Dome, unconformities indicating an erosional surface appear in the
near-surface layers where ice flows over steep bedrock topography
(Fig. 1a). The unconformities are bright internal reflectors traceable
for ~50km that truncate the underlying older strata and are
onlapped by the overlying younger layers. Truncation of underlying
strata by the unconformity indicates that the wind-scour process
continues to ablate the surface after removing the previous year’s
snow. Unconformities are mapped in 45 flight lines in a 65,800 km?*
area over Dome A (Fig. b and Supplementary Fig. S1). These
unconformities are located over steep bedrock topography beneath
relatively steep surface topography (Fig. 1b). The length of the
unconformities when combined with the regional ice velocity!”
(~1.7myr™") indicates that the process has persisted for tens
of thousands of years,

The surface projections of the unconformities consistently
intersect relatively steep ice surface slopes (=0.002 or 2m per
1,000 m) located within broad regions of increased decimeter-
scale surface roughness (Fig. 1 also see Methods). These broad
regions include both wind-scour zones and high-accuomulation
areas. Surface roughness in these broad regions is above the local
mean (0.063 m) owing to the presence of surface features such as
sastrugi and dunes. Rougher surfaces increase turbulence in the
near-surface air stream that further increases the flux of wind-
drifted snow and sublimation'. On the basis of the evidence for
enhanced katabatic winds and the geometry of the unconformities,
we interpret the surface projections of the unconformities as wind-
scour zones with negative SMB.

These wind-scour zones form when katabatic winds, accelerated
by increasing ice surface slopes, remove all of the surface snowfall.
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Figure 1| Distribution of unconformable internal layers and surface
morphology over Dome A. a, Radar image with red arrow indicating an
unconformity and truncated older layers. The profile location is shown in
b.c (black line). b, Lidar-derived surface elevation, bedrock topography and
modelled ice surface velocity along a flight line. The blue rectangle
indicates the wind-scour zone. ¢, Lidar-derived surface roughness overlain
on a MODIS image. The brown lines indicate the location of the observed
unconformities along the flight lines. High surface roughness is observed
aver the broad region surrounding the unconformities. d, Study area (red
square); ice divides (white lines).

Using the measured surface slope, modelled wind and modelled
accumulation at observed wind-scour zones over Dome A, we
parameterize the conditions under which wind-scour forms.
Here, the modelled wind and accumulation values are 31-year
annual means of the 10-m wind and SMB fields from a 27-km-
resolution version of the Regional Atmospheric Climate Model'*"
(RACMO?2). We obtain surface slopes from a 1-km-resolution
digital elevation model™. The actual wavelengths present in the
digital elevation model are 3-8km on the basis of the satellite
track spacing. For slope threshold, we use mean slope in the wind
direction (MSWD), a dot product of the mean annual wind vector
with the gradient of surface slope™'*. We use MSWD as a threshold
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because the spatial resolution of mean wind speed in climate models
is significantly coarser than the scale of ice sheel topography.
As the near-surface winds over much of Antarctica’s interior are
dominated by katabatic flow, areas of higher MSWD will have a
locally higher mean wind speed not captured by climate models'”.
As most of the unconformities form at sites where MSWD > 0.002,
we use this value as our slope threshold (Fig. 2a,b). This slope
threshold is consistent with other observations of accumulation
hiatuses over East Antarctica®’.

Qur atmospheric parameter threshold is a ratio of surface
accumulation (A) and wind speed (W ):

C=A/W (1)

On the basis of the distribution of C in the Dome A region (Fig, 2c),
we identify two thresholds. The threshold C, is based on the mean
of the distribution (C, = 6.66). The upper threshold (C; =9.12) is
the maximum value of the distribution.

We apply the slope (MSWD) and atmospheric parameter
thresholds (C; and ;) based on Dome A observations to predict
wind-scour zones over the rest of Antarctica. Continent-wide wind-
scour zones are predicted under the condition that both MSWD >
0.002 and A/W ratio (C) < G, (or C;) are simultaneously satisfied
(Fig. 3 and Supplementary Fig. S2). The thresholds of A/W ratio
(C, and C,) obtained over Dome A are valid over a large part of
Antarctica and extend to the coast of East Anlarctica, indicating the
continent-wide applicability of this method. The upper threshold
C, indicates erosion at lower wind speeds or higher accumulation
and produces larger areas of predicted wind scour (Fig. 4a).

Where the wind-scour conditions are met, the mean threshold
C, predicts wind-scour zones over 2.7% of the total ice surface
area of Antarctica excluding ice shelves whereas the upper threshold
C;, predicts 6.6%. Both thresholds predict extensive areas of wind
scour in the Lambert, Byrd and Recovery Glacier catchments
and across the Transantarctic Mountains. Our prediction shows
sparse wind-scour zones below 1,000 m a.s.l. in East Antarctica
and no persistent wind-scour zones in Westl Antarctica. Over
regions lacking persistent wind scour, the accumulalion increases
more relative to the wind-speed causing the A/W ratio lo exceed
both C; and C, thresholds (Fig.3). Although such areas can
have large spatial variability in surface snow accumulation? and
temporary wind scour may occur after high katabatic events, the
wind-scour zones do not persist. During periods of intense katabatic
wind activity, large volumes of snow are both sublimated and
transported into the ocean™. Our model, based on the average
of 31 years of winds and accumulation, does not capture the
impact of these storms.

We test the validity of our parameterization and the prediction
accuracy of C; and G, by examining stratigraphic unconformities
in radar data collected over the Recovery Lakes (Supplementary
Fig. §3). A distinct unconformity is present and can be traced for
~40km as predicted by the upper threshold C,. On the basis of
this, we also infer that C, works better than C, for continent-
wide prediction of wind-scour zones. Over Dome A, the steep
surface slopes are associated with thinner ice (<1,500 m), elevated
modelled ice surface velocities (see Supplementary Section and
Tig. 54) and steep bedrock topography (Fig. 1c). The length of the
unconformities over Dome A and the Recovery Lakes indicates a
long-lived process and illustrates the feedback between atmospheric
processes and ice dynamics™*'.

A comprehensive study combining MODIS (Moderate-
resolution Imaging Spectroradiometer) surface grain size and
RADARSAT backscatter identified ~8% of the surface area of
Antarctica as regions of wind-induced near-zero surface accumula-
tion classified as glaze®. Over these regions, high winds and intense
temperature cycling harden and glaze the surface while increasing
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Figure 2 | Slope and atmospheric parameter thresholds for formation of wind-scour zones over Dome A. a, Derived slopes (MSWD = 0.002) over Dome
A (green shades), observed unconformities (brown lines) and modelled mean annual near-surface wind vectors (arrows), b, Distribution of the number of
observed unconformities as a function of slope (MSWD). ¢, Accumulation to wind speed (A/W) ratio over the unconformities plotted against MSWD. The
dashed green and yellow lines denote, respectively, the mean threshold (G = 6.66) and the upper threshold (C; = 9.12). The grey shaded region where

MSWD = 0.002 and A/W = G; (or ) defines where wind scour will form.

the surface and subsurface grain size. Over Dome A, 47% of the
area of predicted wind-scour zones were classified as glaze with large
grain size (=100 pm) and high radar backscatter (> — 6 dB) (Fig. 4b
and Supplementary Fig. S5). The glaze distribution, based on
high-resolution satellite imagery, captures wind features below the
resolution of our threshold method including the East Antarctica
megadune fields. Continent-wide, 33% of the wind-scour zones
were classified as glaze, suggesting that sublimation is even more
extensive than that predicted by our model. At elevations <1,500 m
asl. where glaze mapping is difficult, our prediction method
resolves ~75% of the wind scour coincident with observed
wind-induced blue ice®® (see Supplementary Section and Fig. 85).

These studies identify extensive regions of scour and glaze
over the catchments of major East Antarctic glaciers. Together,
the predicted wind-scour zones (6.6% of surface area) and the
additional areas mapped as glaze but not resolved by our method
(5.6%) indicate that ~12.2% of the surface area of Antarctica is
influenced by persistent local wind processes that reduce SMB
from the regional mean.

The eroded snow and firn over the wind-scoured zones is either
sublimated or redeposited downslope®*'*. The redeposition
depends on the curvature of the topographic depressions located
downslope of the wind-scour zones™*'. Larger and deeper
topographic depressions can retain more redeposited snow'*.
Sublimation depends mainly on air temperature, MSWD, wind-
speed and saturation of the near-surface air layers*'>!%. As both
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air temperature and wind speed increase towards the coast,
the wind-drifted sublimation rate also increases. Regions with
higher MSWD also have higher erosion rates and therefore higher
sublimation rates’. These sources of sublimation comprise the
largest contributor of surface mass loss for Antarctica'®’. We
estimate mass loss for the wind-scour zones based on fixed
and elevation-dependent sublimation rates. Qur fixed sublimation
rate is based on MSWD and is derived from ground-based
observations where ~85% of surface precipitation is sublimated
over steeper surface slopes® (higher MSWD). Assuming 85%
sublimation over wind-scour zones our C;, and C, thresholds
predict a mass loss of ~11-36.5GLyr ' (Supplementary Section,
Table S1 and Fig. S6). Using elevation-dependent sublimation
rales from surface traverses*'* over our C,-predicted wind-scour
zones we estimate a net mass loss of 24.4Gtyr™' (see Methods
and Supplementary Information). Our wind-scour prediction does
not resolve megadune regions where the observed sublimation
rate’ is 58% of the surface precipitation. Using the mapped
glaze area® over the megadune regions we estimate an additional
mass loss of 3.5 Gtyr™!

This mass loss from both endmember sublimation rates points
to an overestimate in all present compilations of Antarctica’s SMB.
This overestimate of SMB impacts mass-balance estimates using the
input—output method®¥, especially over those glacier catchments
with large concentrations of wind-scour zones. For example,
exlensive regions of predicted wind scour in the Byrd Glacier
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Figure 3 | Continent-wide prediction of wind-scour zones using the C;
threshold. Wind-scour zones (yellow) are predicted to form over areas of
slope threshold (MSWD > 0.002) and an accumulation to wind speed
ratio (A/W) < 9.12 (G, threshold). The A/W ratio colour scale shows the
continent-wide extent of the Gy (A/W = 6.66, light blue shade) and G
(A/W =9.12, dark blue shade) thresholds. The thresholds of A/W ratio
from Dome A are consistent over a large section of East Antarctica.

catchment will help to resolve the discrepancy between the positive
mass balance estimated by the input—output method” and the near-
zero mass balance observed in the Gravity Recovery and Climate
Experiment signal®™. This new prediction of extensive wind scour
will improve the SMB compilations and will provide information
regarding the spatial variability of surface accumulation for
improved interpretation of ice-core records.

Methods

Elevation-dependent sublimation method. Ground-based observations over
Antarctica show that the sublimation rates are high near the coast and decrease
towards the interior!. Here, we use observed sublimation rates from two overland
traverses™'!, We grouped the sublimation rates provided by the International Trans
Antarctic Scientific Expedition (ITASE) traverse® from Talos Dome to Dome C
into three elevation bins on the basis of their proximity to the coast. This traverse
measured an average sublimation rate of 82% of precipitated snow for surface
elevations <2,500 m a.s.l, 23% of precipitated snow for surface elevations between
2,500 and 3,000 m a.s.l and 12% of precipitated snow for elevations >3,000 m
a.s.l close to Dome C (red squares in Supplementary Fig. $6). We also group our
wind-scour zones into these elevation bins and use the corresponding sublimation
rates to estimate mass loss over these zones. A second overland transect, the
US-TTASE traverse drove across the Byrd Glacier catchment to the South Pole™ and
crossed over many of our predicted wind-scour zones (red line in Supplementary
Fig. 56). On the basis of their accumulation estimates, their observed percentage of
glaze to accumulating regions and assuming a regional average accumulation rate
of 0.05 m water equivalent per year, we determined a sublimation rate of ~26%
of precipitated snow for surface elevations between 2,400 and 2,800 m as . This
rate is in close agreement with the sublimation rate of 23% of precipitated snow
over 2,500-3,000 m a.s.l. by the ITASE traverse'. Using our C; threshold and the
elevation-dependent sublimation rate, our analysis shows a 24.4 Gryr ' mass loss
over the wind-scour zones (Supplementary Table §1).

Surfaceroughness. Surface morphology over an ice sheet changes at scales that
range from a few centimeters to kilometres™, Whereas surface roughness caused
by ice dynamics and megadunes is of larger scale and is relatively stable, the
decimeter-scale surface roughness caused by sastrugi and other wind-sculpted
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Figure 4 | Wind-scour zones using ©y and C; thresholds and comparison
with satellite-based observations of surface glaze. a, Predicted wind-scour
zones over Antarctica using G (orange) and G; (yellow) thresholds where
MSWD = 0.002. The area of Antarctica impacted by wind-scour zones is
2.7% with G and 6.6% with C,. b, Comparison of Cy-predicted wind-scour
zones with satellite-based surface glaze regions. The figure shows sites
with overlapping wind scour and glaze (red), wind scour alone (yellow)

and surface glaze alone (blue), Our predicted wind-scour zones extend
below the 1,500 m contour (green contour line), the cutoff for glaze
observations.

features is transient and sometimes changes within the course of a day. In this
study, we have used roughness variations over 200m of surface in the horizontal
direction to identify the influence of the winds over the Dome A region (Fig. lc).
Here, surface roughness (S) is derived from airborne lidar data collected during
the AGAP campaign. As in previous studies™, we define surface roughness as
the standard deviation of small-scale elevation fluctuations from a moving mean
surface elevation over 200 m

S=stddev(z — zmean) (2)

We calculate z., as the moving mean of 100 lidar shots that cover ~200m
along the ice surface (~2m point spacing) and z; is the ith lidar shot along the
profile. The standard deviation of this difference gives the surface roughness
that is estimated for every flight line, We produce a map by gridding surface
roughness at 200 m (Fig. Ic).

The mean surface roughness of Dome A is 0.063 m for the 200 m running
mean of surface elevation. Locations on the ice surface exceeding the mean
surface roughness are characterized as rough surfaces. Cross-over error
analysis to quantify the internal consistency of the lidar data set is provided in
Supplementary Fig. 57.

Datasources. AGAP radar and lidar data: fip://pgg.ldeo.columbia.cdu/data/

AGAP/. Also available on request at NSIDC's Antarctic Glaciological Data Center
at the University of Colorado, USA.
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