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Summary

Nonlinear and linear-bifurcation buckling equations for elastic, geometrically perfect, right-
circular cylindrical shells subjected to combined loads is presented. The loads include
compression, shear, and uniform external and hydrostatic pressure. The analysis includes
constitutive equations that are applicable to stiffened or unstiffened cylinders made from isotropic
or laminated-composite materials. Complete sets of equations are presented for the nonlinear
boundary-value problem of shell buckling and the corresponding prebuckling and linear-
bifurcation buckling problems that are based on Sanders’ shell theory for "small* strains and
"moderately small” rotations.

Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a
classical solution to the buckling problem are presented for cylinders with simply supported
edges. Extensive comparisons of results obtained from these solutions with published results are
also presented for a wide range of cylinder constructions. These comparisons include laminated-
composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous
results are also given that show the discepancies between the results obtained by using Donnell’s
equations and variants of Sanders’ equations. For some cases, nondimensional parameters are
identified and "master" curves are presented that facilitate the concise representation of results.

Major Symbols

The major symbols used in the present study are given as follows.

A principal membrane stiffness of an isotropic cylinder, 1b/in.

A, A cross-sectional area of the ring and stringers, respectively (see
equations (12)), in’

A, A, A, Ap, Asg, A, [A]  homogenized shell membrane stiffnesses (see equation (12a)

and (19)), 1b/in.

Bi1, Bis, Bis, Bas, Bag, B, [B] homogenized shell coupling stiffnesses (see equation (12b)
and (19)), Ib

€.(xy). ¢, (xy) &, (xY) basis functions used in Rayleigh-Ritz analysis and defined by

equations (53)

[5 ] matrix of Rayleigh-Ritz basis functions defined by equation (55)
Z,( ) through & () Differential operators given in equations (30) and defined in
Appendix A
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Differential operators given in equations (30) and defined in
Appendix A

tracers used to identify various shell theories
(see equations (1), (2), and (8))

transformed shear stiffnesses appearing in equation (85b), psi

constitutive matrices defined by equations (87)

vector of constants used in Rayleigh-Ritz analysis and defined
by equations (56)

spacing of the ring and stringers, respectively (see
equations (12)), in.

principal bending stiffness of an isotropic cylinder, in.-1b

homogenized shell bending and twisting stiffnesses (see
equations (12c) and (19)), in.-1b

matrices defined by equations (59d) and (59e), respectively

matrices defined by equations (59a)-(59c), respectively

eccentricity of the ring and stringers, respectively (see
equations (12)), in.

Young’s moduli of an isotropic material, psi

Young’s moduli of the ring and stringers, respectively (see
equations (12)), psi

principal Young’s moduli of a lamina, psi

geometric stiffness coefficients defined by equations (78)
and (79)

shear moduli of the ring and stringers, respectively (see

equations (12)), psi

principal shear modulus of a lamina, psi
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%1( ) through ¢33( )

0, through ¢,

QT through QTI

geometric stiffness matrics defined by equation (62b) and

(62c), respectively

Differential operators given in equation (29) and defined in
Appendix A

shell-wall thickness, in.

maximum shell thickness divided by the minimum principal
radius of curvature

centroidal moments of inertia of the rings and stringers,

(see equations (12)), in*

torsion constants for the ring and stringers, respectively (see
equations (12)), in*

stiffness coefficients defined by equations (78) and (79)

stiffness matrix defined by equation (62a)

stiffness matrix defined by equation (64b)

bilinear stiffness functional defined by equation (45a), in.-lb

bilinear geometric stiffness functional defined by equation
(45a), in.-1b

bilinear geometric stiffness functional associated with the

passive prebuckling loads and defined by equation (52a), in.-lb

load factors appearing in equation (8a)

load factors associated with the passive prebuckling loads and
defined by equations (47)

length of the cylinder midsurface (see figure 1), in.
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load factors defined by equations (28)

load factors associated with the passive prebuckling loads and
defined by equations (48)

Differential operators given in equation (29) and defined in
Appendix A

number of axial half-waves appearing in the buckle patterns
defined by equations (77) and (108)

value of m corresponding to the critical loading parameter

membrane thermal stress resultants (see equation (11) and
(19)), in-Ib/in.

effective bending stress resultants (see equation (4) and
(19)), in-Ib/in.

effective bending stress resultants of the prebuckling state

defined by equations (20) and (21), in-1b/in.

effective bending stress resultants of adjacent equilibrium states

defined by equations (20) and (21), in-Ib/in.

applied bending stress resultants at x =0 and x=1L,
respectively, (see equation (8a)), Ib/in.

number of full circumferential waves appearing in the buckle
patterns (see figure 4) defined by equations (77) and (108)

value of n corresponding to the critical loading parameter

applied axial stress resultants at x =0 and x = L, respectively,
(see equation (8a)), 1b/in.

uniform compressive stress resultant applied at x =0 and
x =L, Ib/in.

uniform shearing stress resultant applied at x =0 and
x =L, Ib/in.
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values of N and N, at buckling, respectively, Ib/in.

membrane thermal stress resultants (see equation (11) and
(19)), Ib/in.

effective membrane stress resultants (see equations (4) and
(19)), Ib/in.

functions defining the prebuckling stress-resultants in
equations (28), Ib/in.

functions defining the passive prebuckling stress-resultants in
equations (48), Ib/in.

effective membrane stress resultants of the prebuckling state

defined by equations (20) and (21), Ib/in.

effective membrane stress resultants of adjacent equilibrium

states defined by equations (20) and (21), 1b/in.

matrices associated with the prebuckling stress state, defined by

equation (43), Ib/in.

value of the applied external pressure at buckling, psi

loading parameter (see equation 8a))

value of the loading parameter at buckling

vector defined by equation (39b), psi

applied external pressure acting inward, psi
internal pressure applied and held fixed prior to buckling, psi

applied surface tractions (see equations (8)), psi
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transverse-shear stress resultants defined by equations (9d) and
(9e)), Ib/in.

transverse-shear stress resultants of the prebuckling state
defined by equations (22c¢) and (22d)), 1b/in.

transverse-shear stress resultants of adjacent equilibrium
states defined by equations (23c) and (23d)), Ib/in.

transformed, reduced (plane stress) stiffnesses of classical

laminated-shell and laminated-plate theories
(see equation (85a)), psi

radius of curvature of the cylinder midsurface (see figure 1), in.

applied circumferential stress resultantat x =0 and x =1L,
respectively, (see equation (8a)), Ib/in.

axial, circumferential, and radial midsurface displacement
fields, in.

prebuckling midsurface displacement fields, in.
midsurface displacement fields of adjacent equilibrium
states, in.

constants used in Rayleigh-Ritz analysis and defined by
equations (53)

applied radial stress resultants at x =0 and x =L, respectively,
(see equation (8a)), Ib/in.

coordinates of the cylinder, as depicted in figure 1

L2
V1=V’

Batdorf’s parameter, Rh

vector of constants used in Rayleigh-Ritz analysis and defined
by equations (58)

virtual strains appearing in equation (5)

midsurface virtual membrane strains (see equation (4))
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midsurface virtual membrane strains of adjacent equilibrium
states appearing in equations (37) and (38)

virtual rotations of the shell midsurface (see equations (8),
radians

midsurface virtual linear rotation parameters of adjacent states

appearing in equations (37) and (38), radians

midsurface virtual bending strains (see equation (4)), in”

midsurface virtual bending strains of adjacent equilibrium

states appearing in equations (37) and (38), in

vector defined by equation (39c), psi

external virtual work per unit area of shell midsurface
defined by equations (8), in.-1b

internal virtual work per unit area of shell midsurface
defined by equation (5), in.-1b

virtual work associated with linear bifurcation (see equation
(31)), in.-1b

virtual work per unit area associated with linear bifurcation (see
equation (31)), Ib/in.

virtual work per unit length associated with linear bifurcation
(see equation (31)), Ib

virtual displacements of the shell midsurface along the
x-, y-, and {-axes, respectively, in. (see equations (8))

applied axial, circumferential, and radial displacements at x =0,
respectively, (see equations (10)), in.

applied axial, circumferential, and radial displacements at x =L,
respectively, (see equations (10)), in.



SXX’ 8yy’ SCC’ Yy!’ YXC’ ny

Eves Epys Yoys (€}

>

6,..,0,.,0,,0,0

xx? Tyy? T Ty

0

T

cr

(px9 (py’ (pn’ {(p}

("(Bxﬂ G y* (((Bna {(((B}

xg°

shell strains defined by equations (7)

midsurface normal and shearing strains defined by
equations (2) and (15)

linear part of membrane strains defined by equations (2a)
and (2b)

midsurface membrane strains of the prebuckling state
defined by equations (17) and (18)

midsurface membrane strains of adjacent equilibrium states
defined by equations (17) and (18)

changes in midsurface curvature and torsion defined by
equations (3) and (16), in”

midsurface bending strains of the prebuckling state
defined by equations (17) and (18), in’'

midsurface bending strains of adjacent equilibrium states
defined by equations (17) and (18), in’'

passive loading parameter associated with a fixed, stable
prebuckling stress state (see equations (46)-(51))

shell stresses, psi

fiber orientation angle of a lamina measured from the cylinder
generators, degrees

parameter used to define skewedness of the buckle pattern
defined by equations (108)

value of T at buckling

linear rotation parameters for the cylinder midsurface defined
by equations (1), radians (see also equation (14b))

midsurface linear rotation parameters of the prebuckling state
defined by equation (14c), radians
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midsurface linear rotation parameters of adjacent states
defined by equation (14d), radians

applied rotations at x =0 and x = L, respectively (see
equations (10)), radians

Poisson’s ratio of an isotropic material

major Poisson’s ratio of a lamina

matrix of differential operators defined by equations (41d)

and (52c¢), respectively, Ib/in’

matrix of live-pressure derivatives defined by equations (39d)

and (52d), respectively, 1b/in’

matrix of differential operators defined by equation (41c¢), in’'

matrix of differential operators defined by equation (41a), in’

matrix of differential operators defined by equation (41b), in”

parameter defining the "distance" between adjacent
equlibrium states (see equations (13))
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Introduction

Shell buckling is a highly nonlinear phenomenon that still remains as an obstacle to the
development of efficient structural designs. This design obstacle is manifested primarily by the
high degree of sensitivity to "small" initial geometric imperfections exhibited by thin-walled
curved members subjected to compression-dominated stress states.! This sensitivity generally
corresponds to a significant reduction in buckling resistance, compared to that of the
corresponding idealized geometrically perfect structure, that is difficult to quantify in the
preliminary design stage with the fidelity needed to reduce structural mass. In addition, the
general effects of boundary conditions and load introduction, material orthotropies and
anisotropies, cutouts and other structural details, and combined-load interactions on imperfection
sensitivity are still not known well enough to reduce structural mass in the preliminary structural
design stage.'* For example, experiments and analyses conducted on compression-loaded curved
panels have shown extreme sensitivity of the buckling resistance to small deviations from
idealized support conditions (reference 2). Other types of imperfections that can cause significant
reductions in buckling resistance are described in reference 1.

Shell buckling is also an important consideration in the design modification of thin-walled
structures, particularly in weight-critical aerospace applications. For example, significant
reductions in the wall thicknesses of the Space Shuttle external tank were implemented to reduce
structural mass in order to reach the high-inclination orbit of the International Space Station
without substantially reducing the payload capacity of the Orbiter. The corresponding redesign of
the external tank required in-depth, sophisticated nonlinear shell buckling analyses.” In these
analyses, measured initial geometric imperfections were not available for most of the external
tank. As a result, the imperfection sensitivity was assessed by using artificial imperfection shapes
that are known to yield very conservative predictions of buckling resistance.

Technology advancements have been made over the past 30 years that combine high-fidelity
analysis tools, measurement systems, and experimental methods to yield very accurate
predictions of shell buckling resistance. These advancements were made possible by long-term
investments in fundamental research. Most of these advancements have focused on the right-
circular cylindrical shell-a very common structural form found in aerospace applications that is
highly sensitive to initial geometric imperfections when subjected to compression-dominated
stress states. In particular, the results presented in references 11-16 show extremely good
correlation between high-fidelity nonlinear finite-element analyses and high-fidelty experiments
conducted at the NASA Langley Research Center. Moreover, these results illustrate the fact that
the "best" prediction of buckling resistance is obtained from a high-fidelity nonlinear analysis that
uses actual measured imperfection data. However, when designing a new shell, measured
imperfection data do not exist. Thus, an alternate approach must be used to account for the
reduced buckling resistance caused by initial geometric, and other, imperfections in the early
stages of design (e.g., see reference 1).

The analyses of the Space Shuttle external tank (references 5-10) illustrate that perhaps the

"next best" method for accounting for inital geometric imperfections is to include an imperfection
shape in the form of one or more of the buckling modes obtained from a linear bifurcation
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(eigenvalue) analysis of the geometrically perfect structure. Usually, the single mode that
corresponds to the smallest eigenvalue is sufficient for shells that are not highly symmetric around
the circumference. Here, the term "symmetry" means symmetric with respect to geometry, wall
construction, boundary conditions, and loads. For cylinders that are "highly symmetric," the
eigenvalues obtained from a linear bifurcation analysis will be closely spaced or, at worst, several
modes will correspond to the smallest eigenvalue. For this case, an imperfection shape in the form
of a combination of these modes may produce the smallest buckling load because of modal
interaction. Then, a series of nonlinear analyses are conducted in which the imperfection
amplitude is varied over a predetermined range that is expected to be within manufacturing
tolerances. Typically, the imperfection amplitude is less than one or two "nominal" wall
thicknesses. A comparison of the buckling load obtained from a nonlinear analysis with a zero-
valued imperfection amplitude and the corresponding linear eigenvalue provides a measure of the
"integral" effect of nonlinear prebuckling deformations on the response of the baseline,
geometrically perfect structure. The overall smallest buckling load in the range of imperfection
amplitudes is taken as the buckling load. Use of a "buckling-mode imperfection" in the nonlinear
analysis represents a very strong bias toward buckling at the lowest possible load. Combined with
an additional factor of safety, it is expected that the corresponding design will be overly, and
perhaps ultra-, conservative. In any case, this approach is relatively time consuming, as compared
to the common practice used in preliminary design that uses a linear bifurcation analysis in
conjunction with a knockdown factor.'

In developing a shell design, a large number of configurations are often examined to
determine sensitivies to a wide range of parameters. As a result, a trade-off between analysis
speed and accuracy is used to obtain a "coarse" global view of the design space. Presently, using
nonlinear finite element analyses to obtain the buckling resistance of shells is not feasible,
especially when large design spaces must be navigated. In contrast, less accurate special-purpose
linear bifurcation analyses can be conducted rapidly. When the design matures, the corresponding
design space becomes smaller and refinements to the buckling-resistance predictions can be
obtained with high-fidelity analysis tools.

Prior to the development of reliable nonlinear finite element analysis capabilities, linear
bifurcation analyses were used for idealized, representative problems, and imperfection
sensitivities were accounted for by using empirical "knockdown" factors." These knockdown
factors represent lower bounds to experimental data and may yield overly conservative designs
and added weight. In particular, the pedigree of some of the older test data used is unknown and
boundary conditions are generally manifested as a random effect. In addition, a compilation of
knockdown factors for laminated-composite shells does not presently exist and knockdown
factors for isotropic shells are used without a physical basis. Even with all these flaws, the use of
a simplified linear analysis that captures the "baseline" buckling resistance and a reasonable
estimate of a knockdown factor is still a viable approach to the preliminary design of buckling-
critical shells. With the recent advancements in desk-top computing capabilities that are well-
suited for special purpose analysis tools and future refinements in empirical knockdown factors,
this basic design approach is likely to see continued use. The present study builds on this basic
design approach.

Numerous linear bifurcation buckling analyses for cylinders have appeared in the literature
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over the past 50 years. Most of these analyses are based on Donnell’s simplified, approximate
equations for shallow shells (e. g., see reference 17) and most of the others are based on the more
robust equations given by Fliigge." Even fewer analyses have been presented that are based on
Sanders’ nonlinear equations.” Sanders’ nonlinear equations are based on "small" strains and
"moderately small" rotations and are considered to be among the best first-approximation theory
for general thin shells. For each of these three sets of equations, the details of the corresponding
buckling analyses are generally presented in an abbreviated form and spread across numerous
publications. Thus, a major objective of the present study is to present a detailed, complete
exposition of the linear-bifurcation buckling equations for right-circular cylindrical shells
subjected to combined loads. The buckling equations are based on Sanders’ nonlinear equations
for the practical case of shell deformations with "small" strains and "moderately small" rotations,
and negligible transverse shearing deformations. The detail and completeness of the presentation
are designed to make confident-use of the equations accessable to design engineers with a less
specialized background, and to provide a "stand-alone" reference document. The shells are
presumed to be made generally of laminated-composite materials and possess a regular
arrangement of stiffeners. In addition, the equations have a broad range of applicability and
contain Donnell’s shallow shell equations as a special case.” A second objective is to present a
comprehensive set of comparisons with previously published results that will add confidence to
their usage. The comparisons include isotropic, orthotropic, and anisotropic wall constructions
with and without rings and stringers. The loads include compression, shear, and "live" uniform
external and hydrostatic pressure in which the pressure remains normal to the shell surface during
deformation.

To accomplish the objectives of the present study, Sanders’ nonlinear equations for thin,
elastic shells are presented first, with the constitutive equations modified to include laminated-
composite walls with a homogenized regular arrangement of rings and stringers. Then, a detailed
bifurcation analysis is presented and the linear boundary-value problem and corresponding
variational equations governing buckling are given. Next, the buckling analysis is extended to
include two distinct loading systems, which greatly expands the range of applications. One
loading system is a fixed set of passive loads that are applied at an intensity that does not result in
buckling. The other set of loads are proportional to a single loading parameter that is increased
monotonically in magnitude until buckling occurs. Next, a Rayleigh-Ritz formulation of the
buckling equations is presented that makes solutions obtainable for a broad class of problems that
do not possess closed-form solutions to the partial differential equations governing buckling.
Then, a classical solution is presented for specially orthotropic cylinders with simply supported
edges and subjected to compression and uniform pressure loads. This classical solution is
particularly important in that a simplified variant based on Donnell’s equations has seen extensive
used in design for nearly 50 years. Next, a simple approximate Rayleigh-Ritz solution is presented
that includes full shell wall anisotropy and the full range of combined loads considered in the
present study. Finally, an extensive set of results and comparisons with prevoius studies are
presented for a broad range of shell configurations and loads. Most of the results are based on the
classical solution presented herein and are relevant to current design practices. Altogether, the
results presented herein appear to be the most comprehensive set assembled into one document.
The results are intended to show clearly the consequences of neglecting various terms in the
analyses for a wide range of shell constructions. Moreover, the results and comparisons are also
intended to give an indication of the range of validity of the simple, approximate Rayleigh-Ritz
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solution. This entire collection of analysis details, results, and comparisons with published studies
should be very useful to future developments in shell-buckling research.

Sanders’ Nonlinear Equations

The equations presented subsequently are based on the nonlinear equations given by
Sanders” for the special case of right-circular cylindrical shells. The geometry and coordinate
system used herein for a geometrically perfect right-circular cylinder are shown in figure 1. Points
of the shell in its unloaded and undeformed reference state are given by the coordinates (x, y, ),
where x is an axial coordinate, y is a circumferential arc-length coordinate, and { is an outward
radial coordinate with its origin at the middle surface. The middle surface has a length L and a
radius R, and the shell wall has a uniform thickness h.

The primary kinematic variables in Sanders’ equations for right-circular cylinders are the
axial, circumferential, and radial middle-surface displacement fields denoted by u,(x, y), u (x,y),
and w(x, y), respectively. The linear rotation parameters that correspond to rotations of differential
material line elements coincident with the surface normal vector at a generic point (X, y, 0) of the
middle surface are given by

0, =~ W (1a)
—o W _ow
and P, =C:p TGy (1b)

Rotation of differential line elements in the tangent plane, about the normal vector at (x, y, 0), is
given by

(Ic)

In these equations, and the equations that follow, two parameters, c, and c,, appear that are used
to trace the contributions of various terms to the equations governing the nonlinear and buckling
response. As a result, these parameters are referred to herein as tracers. These tracers are equal to
either unity or zero unless noted otherwise. For example, specifying ¢, =0 eliminates terms

associated with nonlinear rotations about the normal vector at (x, y, 0), ¢.. and specifying

c,=c¢,= 0 reduces Sanders’ equations to Donnell’s equations.

The nonlinear membrane-strain fields of the shell middle surface given in reference 19 are
expressed as

e = 2 i Lol v cl) (22)
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when specialized to a surface in the form of a right-circular cylinder. Likewise, the bending-strain
fields of the middle surface, associated with changes in surface curvature and torsion caused by
deformation are given by

o a(px

Ko = 5y (3a)
o _ 00,

Kyy = —(F (3b)

0 a(py a(px Cy
Ky =55 T Jy + R (3¢)

Relationships between these middle-surface strains and the strains at any point (x, y, ) of the shell
are obtained by comparing the virtual work given by equations (26)-(30) in reference 20 with the
internal virtual work of the corresponding three-dimensional elastic cylinder undergoing small
strains and moderately small rotations. In addition, use is made of the definitions for the generally
unsymmetric stress results of classical shell theory that are encountered prior to neglecting {/R
in the definitions (see reference 21, pp. 33). The internal virtual work of the shell, given by
equations (26)-(30) in reference 20 and expressed in terms of the virtual strains associated with
equations (2) and (3), is given by

L 2nR
W, = f J 7 8¢, + %yy&::y + %WSY; + 7 k., + ‘77{”81(‘;y + 7 XySK‘;y)dydx 4)
0 Jo

.7,

DT, T, and K, are the effective stress resultants used by Sanders. The
corresponding three-dimensional expression for the internal virtual work is given by

where 7

xx?

L f2nR -1
_ ¢
oW, = J f J (GXXSSXX +0,0¢, +0,0e, + 0,0y, +06,07,+ GXYSYXY)[I + R} dCdydx  (5)
0 Jo -5

where 6_,6,,0,,0 o OE, OE, 0V, OY,, and &Y,  are the

6., and 6, are the stresses, and e

yy? YL Ve
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variations of the strains at the point (x, y, {). By applying the definitions for the generally
unsymmetric stress resultants for shells to equations (26)-(30) in reference 20, the effective stress
resultants of the cylindrical shell are identified as follows

7, = f hz 0.1+ gt (62)

7, = f G, dg (6b)

rol [ e [ o gl dd [ oo f e
%XXEJ o1+ 2 cd (6d)
77{%’ Ef nyc dc (66)

[Sli=4

Xy

f cxycdmj o1+ 2lCdt (6)

Finally, substituting equations (6) into (4) and comparing the result with equation (5) reveals that
the corresponding three-dimensional strain field is given by

eu(xy, §) = eulx y) + Lx(x, y) (7a)
g : ]

yx v 8] = [Enxy) w Ty |1+ (7b)

eg(xy.0) =0 (7¢)
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Yo% ¥, C )= %[yxy(x y) +Cicy(x, y)](l + [1 + IC{] 1) + %yzy(x, y)(f{)z[l + I{;{}l (7d)
Ye(x.y.C) =0 (7e)

Y%y, £) =0 (79)

In a first-approximation shell theory, the external loads applied to a shell are, in general,
composed of surface tractions and edge traction resultants that are applied to the middle surface
and its boundary, respectively. For the problems considered herein, all applied loads and applied

displacements leading to buckling vary proportionally with respect to a loading parameter, b,

and the relative proportions of the loads and applied displacements are defined by a set of load
factors. The loading parameter is presumed to increase monotonically from a value of zero, which
is presumed to correspond to a stress- and strain- free state. The corresponding external virtual
work of the shell is expressed as (e.g., see references 22 and 23)

L r~2nR
SW,, =P J J [(qux +elqo,)du, + (L, + clap,|du
0 JO
dJq, 0 a
+ Q3qg + C4Q3(q§[exxL + Sny] T u, + qg BC w |[Ow dde

~2nR (88.)

B LN+ LS )8, + LVify)ow + LML), | dy

r2nR
+p N, (y)du, + QQSL(y)Suy + 0, Vi(y)ow + U, M, (y)30, :Ldy

where q,(x, y), q,(x, y), and q.(x, y, {) are functions defining the spatial distribution of the surface
tractions that are applied to the middle surface in the axial, circumferential, and radial directions,
respectively. In addition, g, is presumed to be a nonconservative, "live" pressure loading that
remains normal to the middle surface during deformation; hence the functional dependence of q,
on the radial coordinate {. The symbols N(y), Sy(y), V (), and M(y) represent the spatial
distribution of the stress resultants of tractions that are applied to the end of the cylinder at x = 0.

Likewise, N, (y), S,(y), V,(y), and M, (y) represent the applied loads at x =L. The symbols ¥,

through {,, are the load factors mentioned previously. The symbols €., and €, denote the linear
part of the strains given by equations (2a) and (2b), respectively, and all terms multiplied by c,
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are terms associated with a nonconservative, "live" pressure loading. These "live" pressure terms
are obtained from Cohen,” and are consistent with the potential energy terms given by Koiter* for
uniform pressure (see equation (3.5) in reference 24) for the "small" strain and "moderate"
rotation theory of Sanders.” For "dead" pressure loading, ¢, =0 and for "live" pressure loading
c,= 1. In addition, whenever Donnell’s equations are used (¢, =c¢,= 0), ¢, =0 1is typically used
herein. Integrating the live pressure terms by parts gives

L r2nR
J f qg[cpx Ou, + @, Suy] + [qg(e;L +ep, )+ 9(% u, + % u, + aa% w]ésw dydx =
0 JO

9 |
0 Jo

qg((pxuX +o,u, + (szxL + s§yL)w) + %(Wux) + %?f(wuy) 88% Wz\deX +

(8b)

2nR .
%J [qé(uX ow —w SuX)]Ody
0

Substituting equation (8b) into (8a) yields the external virtual work

L r~2nR
W, = J [qux du, +l,q, du, + lyq, Bw]dydx +
0 Jo

L r2nR
P 0 0 aq aq aq
ZSJ J c4‘23(q§[(pxuX +ou,+ (exxL + eny)w] + a—;(wux) + a—;(wuy) + a—g wz)dydx +
0 JO

2nR .
%f’Jr [C4Q3q§(ux dw —w Sux)]ody + (8C)
0

2R
+P Q4NO(Y)8ux + sto(}’)&ly + Q6V0(Y)6W + Q7M0(Y)6(Px :Ody

r2nR
+p N, (y)8u, +{,S,(y)du, + {,,V,(y)ow + (M, (v)d0, | dy
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Inspection of this equation reveals that the external virtual work can be represented as the
variation of a potential function when the boundary integral involving c, vanishes. This equation
is slightly different from that given by Cohen,” but is consistent with that given by Budiansky
and by Sheinman and Tene.”

Next equations (1)-(3) are used to obtain expressions for the virtual strains appearing in
equation (4) in terms of the primary virtual-displacement fields u,, du, and dw. Enforcing 6W,
= dW,_, integrating by parts to reduce derivatives of du,, 6u,, and dw to independent variations,
and enforcing the fundamental theorem of the Calculus of Variations yields the equilibrium
equations and boundary conditions. The three equilibrium equations corresponding to the primary
virtual displacements are

a%xx a%,(y C, 0 %xy N
x "oy 29yl ® T o7, +7,)0. | +B(la, +clae)=0 (9a)
a%XY a%yy ¢y 1 a%w
x dy " E(Qy T T 07, -0, |+
i ¢ 5 (9b)
B(La, +cliap,) + 55| (7. + 72, )0.] =0
0, 0 7%, . N g, dq,  9q
ox + dy - R + sz q.+ C4q;[8xxl. + Eny] + C4"TXC u, + 'avg u, + a_cf w
(90)
- z%[cpx%“ + (Py%Xy] — %[cpx%xy + (py%yy] =0
where
M, oM.,
Q=% "oy (9d)
and
a%’(y a%yy
v T TOx - dy (9¢)

The live pressure terms in equations (9) are those multiplied by the tracer c, and are consistent
with those given in reference 26. The boundary conditions for the edge x =0 that are obtained
from the variational process are given by

7. =NJy) or u=plAy) (10a)
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3,7,
+
¥ 2R

c, . .
* 7(%“ * %yy)(Pn =plSdy)  or u,=plAly)

o, . e
Qt—y - 0. 07 = Viy) or w=plAy)

7., =BUM(y)  or 0, =— ?T\;(V = Bl,oy(y)
and for the edge x =L are given by

X, =BN(y) or u =plA(y)

/s 3,
VY 2R

C . .
+ 7(74“ * %yy)% =pSy)  or u, =plLAL(y)

. . .
Qx + ay - (Px%xx - (py%xy = leOVL(y) or w= leOAg(y)

%XX = ﬁQllML(Y) or . ow _ ﬁan)L(Y)

(10b)

(10¢)

(10d)

(10e)

(10f)

(10g)

(10h)

The constitutive equations are approximate by definition because the relationships between
stresses and strains are determined experimentally. In Sanders’ theory, simplified constitutive
equations are derived on the basis of neglecting {/R in equations (6) and (7). This simplification
yields the same constitutive equations of Love’s first approximation, classical shell theory that are

given by

%xx 80 NT
% AI1A12A16 Bll B]z Bm :X NT

" A12 Azz A26 B12 Bzz B26 Szy iy
%Xy — Al6 Aza A66 Bl6 Bza B66 Yy _ ny
%xx Bu B12 B16 Du D12 D16 Kix MIX
7% BIZ Bzz Bzo D|2 Dzz Dzo K;y sz

v BI6 B26 B66 Dlo D26 Dee Kz T
(/A A M,

(11)

where the terms appearing in the matrix are the shell-wall stiffnesses and the rightmost vector
contains the ficticious thermal stress resultants associated with changes in the temperature field
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acting on a shell from that of the stress- and strain-free reference state. For a thin laminated-
composite shell with a regular array of rings and stringers, such as that shown in figure 2, a
homogenized first-approximation representation of the stiffnesses in equation (11) are given by

EA
Ashell Ashell Ashell ds 0 0
A ! A 2 A 0 _ shell shell shell ErAr
Ay Ay Ay = AR AT AL [+ 0 F 0 (12a)
A » AQ(, A(,6 Ashc]] Ashcll Ashc]] r
0O 0 O
EsAs
Bshcll Bshcl] Bshc]l dS C 0 0
B " B 2 B 0 _ shell shell shell ErAr
B,B,B,|=[BI BB [+] 0 e, 0 (12b)
B]() BZG B(,s Bshell Bshell Bshell r
0 0 0
[ E ( c 2
shell __ shell ___ shell L+ CSAS) 0 0
Dll D12 Dlé Dshell Dshell Dshell ds E (12C)
D), Dy, Dy Dy, Dy Dy |+ 0 d*r(I: + erzAr) 0
D16 Dz(, D6(, Dshel] Dqhell thell 0 r 0 l(% N %)
4\ d, d,

In equations (12), E. and E, are the elastic moduli of the stringers and rings, respectively.
Likewise, G, and G, are the corresponding shear moduli, A, and A are the cross-sectional areas,

I and I are the centroidal moments of inertia, J, and J, are the torsion constants, e, and e,

are the eccentricies of the cross-sectional centroids with respect to the middle surface, and d, and
d. define the spacing of the stringers and rings, respectively. The constitutive terms with the
superscript "shell" are the usual definitions given for laminated-composite plates (e.g., see
reference 27). Expressions for other stiffener configurations are found in reference 28.

Bifurcation Analysis

The buckling equations of the present study are obtained by following the procedure of
classical linear-bifurcation analysis, as presented by Brush and Almroth."” As such, the shell is
presumed to be geometrically perfect and elastic, and a continuously connected family of linear

prebuckling states given by (101)X(x, y), (101)y(x, y), and W(x,y) is presumed to exist as a loading

parameter p is monotinically increased, in a continuous manner, from an inital value of zero. This

set of prebuckling states is referred to herein as the primary or prebuckling equilibrium path. The
stresses and deformations in the prebuckling states are presumed to vary proportionally with an
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increase in the loading parameter. When the loading parameter is equal to zero, the shell is
presumed to be in a stress-free and strain-free state or to be in a stress and strain state associated
with passive loading condition that is not related to the loading parameter and that does not lead
to an instability.

The goal of the bifurcation analysis is to determine the critical value of the loading parameter
for which an equilibrium state exists, other than the corresponding prebuckling equilibrium state
for a given geometrically perfect shell. Geometrically, this critical value of the loading parameter
represents the intersection of the primary equlibrium path with one or more adjacent equilibrium
paths, that are associated with a deformed configuration of the shell, in the solution space.
Mathematically, this critical value corresponds to the existence of two or more solutions to the
nonlinear boundary-value problem. This point of intersection is obtained by expressing the
displacement fields of the idealized shell as an infinitesimal perturbation about an arbitrary
primary equilibrium state; that is,

u(xy) = (xy)+EU (xy) (13a)
u,(x.y) = U, (x.y) + EU,(x.y) (13b)
w(x.y) = W(x, y) + EW(x. y) (13c)

The parameter & defines the "distance" between adjacent equlibrium states and can be made as
small as required so that terms involving its products are negligible. Substituting these
expansions into equations (1), which defines the linear rotation parameters, yields

{0} ={8} +&{6) (14a)

where
f(px
{(p}=\<py (14b)
0,
oW
/w (x) ox
($) = :yxy - %(u (14c)
\ o) c, [oU, ol
7|3?“WX]
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(1)
ow

a T ox
| } (xy) . )
an V=!8 (xy) '={ 2{ =
\él \mJ y) R BT oy
el o, [a4, ol
2| ox T 9y

Next, the middle-surface strains are expressed in column vector form as

0
o [Ge Yeree) \
(e ={e p={ Gy 0+ J(o}+ e
Ju auy
Jy Tax ey

and
0,
o0x
KO
XX a(p
() =11 = oy
KO
Xy a(py n aq)x n &
x 9y 'R

Substituting equations (13) into equations (15) and (16) gives

(e} = {8} +&{€) + O(&)

where
ou
© ?TX
(B} =18 =0 3 '}
ny a(l?l) a(ﬁ)
Jy Tx
and
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(14d)

(15)

(16)

(17a)

(17b)

(18a)



o0
{(gl;)} — e V- % +% (18b)
%yf . A,
dy "X
98, oW
0 oX ox’
(%) - &) _ 9, _ o, oW (180)
\%yyf —(F RW ayz
Xy (qs o a(0) (0) 82(0)
x 2({; & 3 u, _ J < | W
2R|“0x  dy oxdy
and
a&; W
0 ox S
(1) - /ﬁ,g\ _ 9, _ e, oW (18d)
/ \ e / oy RIY  Jy
¥ 8((3 8(('[3 Cr() P 82(1)
qcry—’_q(rx—i_iz(p“ Gy y_aux B w
X y R 2R|79x  dy oxdy

As part of the linearization process, terms that are nonlinear in the prebuckling rotations @,, §,,

and @, have been neglected in equations (18). In equation (17a), the symbol O(&?) denotes terms

of second order that are neglected.

The constitutive equations, given by equations (11), are expressed in matrix form as

{%} = [A]{e} + [B]{K} +

and

{7%} = [B]{e"} +|D|{x} +

where {€’} and {x’} are defined by equations (15) and (16), respectively, and

(7) -

(n,. 7,7,
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(N"} (19a)
{(M"} (19b)
(19¢)



(m) ={m, 7, 7., (19d)

(AL AL A
[A =|ALA, A, (19¢)
_Am Ay Ag
B, B, By,
[B]: B, B, By (191)
| Bis By B
Dll D12 DIG
[D]=|D,, D,, Dy (19g)
D s Dy Dy
/ T T: T T T
(N} = {NL N, NG (19h)
/ T\T: T T T .
\M f {MXX Myy MX}’} (191)

In these equations, the bold superscript "T" denotes matrix transposition. Substituting equations
(17) into equations (19a) and (19b) yields

\7) - {%} +<i{ m} +0(&) (20a)
and
(m)={m) +e{m) +O) (20b)
where
{}\% I[AR%%[BJ{%}{NT} an
7,
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(1)

\
|

L]
||

~ [B]{¥) + [D](¥)

——

(21b)

(21¢)

21d)

with {(O)} {m} {(13\, and { glé given by equations (18). Similarly, expansion of the equilibrium

equations, given by equations (9), results in

0) 0) (0)

7. 7¢xy ., . . '
0x — - 72% + p(qux + C4Q3q;(q;x) =0

(©0) (0) (0)

a%xy a%yy C2 © la%’(y N q
e TRl QT T e | T B(barelad) =0

(0) (0)

o O, O,

QT Ty
(0) (0)

o O, I,

y ax+8y

09,9, 7%, .

y

©0) ) —
TR T q§+c4qc(e“+syy)+?§ux+7§uy+—Cw =0

for the zeroth-order terms and
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(22a)

(22b)

(22¢)

(22d)

(22¢)



) % (0) (0)
10 Xy ¢ 50,0, =
CANRGAN N N +Cl(%+%yy)qﬂn +c0;pa.p, =0

(1) (1) (1)

a%xy N B%W N [ N la%w @ 0) —((B % N
ox dy R| ™ 2 ox Oty =y

c, © O\, o
7%[(%“ + %yy)(q;n] + C4Q3pq§((§y = 0

w O, N a%Xy
- o0x dy
) o)

o O, W,
Y oX dy

(23a)

(23b)

(23¢)

(23d)

(23e)

for the first-order terms. Similarly, expanding the boundary conditions, given by equations (10),

yields the nonhomogeneous boundary conditions

(0)

7. =BN(y) or U =plALY)

S 3C27%Xy ~ ) 0
Xy + 2R = pQSSO(y) or u, = f’QSAy(Y)
(0)
o B%Xy . s 0
«t dy plVi(y) or W= plA(y)

0] a 0)
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(24b)

(24c)

(24d)



at x=0 and

(0) L

%Xx = f)QsNL(y) or ({]l)x = ﬁQsAx(Y)

(0)

o 3¢,
+ al
¥ 2R

L

=B0S.y)  or @, =plALy)

(0)

x + 8y = = ﬁQIOVL(Y) or {(’)\} = f)QmAz(y)

© . o oW
%Xx = anML(y) or (ﬁx = X = ijllq)L(y)

at x = L for the zeroth-order terms, and the homogeneous boundary conditions

(0) (0)

XY+I(%XX+%W)((B“=O or U, =0

y

(1)
o O © o

X + ayXy - ((BX%XX - ((By%,(y = O or {IX)’ = 0

(1) ; ow

at x=0 and x =L for the first-order terms.

Equations (18a), (18c), (21a), (21b), (22) and (24) define a general linear prebuckling

(24e)

(249)

(24¢)

(24h)

(25a)

(25b)

(25¢)

(25d)

equilibrium state for each value of the loading parameter p. The linear boundary-value problem

associated with these equations can be obtained directly by neglecting nonlinearities in the

original nonlinear boundary-value problem defined by equations (1)-(11). Solution of these
equations generally yield membrane stress resultants that are linear functions of the loading
parameter. In addition, the prebuckling equilibrium states exhibit zones of bending that are often
localized near a relatively stiff boundary in many practical problems. An example of this behavior
is shown in figure 3 for a compression-loaded cylinder with ends that are restrained to prohibit
radial displacements. A common approximation, that is also used herein, is to presume that the
effect of these localized zones on the buckling response is negligible and that a membrane state
of stress and a uniform radial-displacement field exist in the shell prior to buckling that is linearly
dependent on the loading parameter. Likewise, it is presumed herein that the contribution of the
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live pressure terms in equations (22) to the prebuckling stress state are negligible.

Equations (18b), (18d), (21c), (21d), (23) and (25) define equilibrium states that are adjacent
to states on the primary equilibrium path and are referred to herein as the buckling equations.
Examination of these equations indicates that the loading parameter enters the buckling equations
through the prebuckling stress resultants and the "live" applied pressure terms. For a linear
membrane prebuckling stress state, the membrane stress resultants are obtained by neglecting the
bending stress resultants in equations (22) and (24), which yields

(0)

7, =plqR (26a)
(0) )
a%Xy a%}’)’ ~
x oy - pl.a, (26b)

0) )
7., 7,
x "oy ~Pla (26¢)

These equations can be integrated sequentially, with the functions of integration determined from
the boundary conditions
(0)

7. =N(y) or U =plAly) (27a)
(0)
Z,=8LSy) or § =pLAly) (27b)
at x=0 and
0) L
Z.=PUN(y) or U, =plA(y) (27¢)
(0)
7,=pLS.(y) or @ =pLAly) (27d)

at x = L. When stress-resultant boundary conditions are applied to the ends of the cylinder,
equations (26) and (27) can be solved directly to give the prebuckling membrane stress resultants
in terms of the loading parameter, the applied surface and edge loads, and the load factors. No
constitutive terms appear in the expressions. For this case, the prebuckling membrane stress
resultants are expressible as

(0)

—pL 1(’9’)“(X> y) (283-)

(0)

N,=-pL., () (28b)

30



0)

7, =Pl (xY) (28¢)

. (0) (0) 0)
where L,, L,, and L, are known in terms of the load factors and «,,. #,,, and ¢ are known

functions. The negative signs in equations (21a) and (21b) are used so that compressive stresses
correspond to positive values of the loading parameter. When a displacement boundary condition
is specified from equations (27), equations (18a) and (21a) are used to express the displacements
in terms of the unknown membrane stress resultants, the constitutive terms, and the ficticious

thermal membrane stress resultants that arise from restrained thermal expansion and heating that
is spatially nonuniform with respect to the (X, y) coordinates. Moreover, the second derivatives of

W(xy) in equation (18c) are neglected. As a result, the general representation given by equations

(28) remain valid for displacement boundary conditions. The expression that results for W(x.y) is

generally inconsistent with the actual displacement boundary conditions, if specified, given by
equations (24c), (24d), (24g), and (24h), as presumed.

Examination of equations (18b), (18d), (21c¢), (21d), (23), (25), and (28) reveals that the
differential equations governing buckling and the corresponding boundary conditions are
homogeneous. Thus, the buckling equations constitute a boundary-eigenvalue problem for which

the loading parameter § is the eigenvalue and ¥,(xy), U x.y) ,and Wixy) are the corresponding

eigenfunctions. The smallest positive value of p corresponds to the first intersection of one, or
more, adjacent equilibrium paths with the primary equilibrium path. Thus, this value of the
loading parameter is commonly referred to as the critical value and is denoted herein by p... The
corresponding eigenfunctions yield the deformed shape of the shell. The values of the applied
loads are specified by equations (26) and (27), and their values at buckling are obtained by
replacing p with P, in these equations.

In solving Sanders’ linear buckling equations, the differential equations and boundary

conditions are often expressed in terms of the loading parameter and the displacements U,(x.v) ,

U,(xv), and W(xv). The resulting displacement formulation of the buckling equations is derived

in Appendix A. In particular, the differential equations are expressed in operator form as

4040400 [405.08.0),
()40 £0) 5152090 9.0 | 2
L) £2.() 4) 7.0)F.) G.)
and the boundary conditions given by equations (25) are expressed as
&, (W) +Z (V) + B (W)=0 or U =0 (30a)
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241((111)") + g42((111)Y) + 243(8&) =0 or 7W =0

where the operators are linear and are defined in Appendix A.

Variational Formulation of the Buckling Equations

A variational statement for linear bifurcation buckling is obtained by noting that equations
(23a), (23b), and (23e) represent summations of forces in the three coordinate directions, for the
adjacent equilibrium states. Thus, a statement of the corresponding virtual work is given by

where

2nR
(1) (1) (1) B x=L
OW=— O dydx + Y//4 ] dy=0
x=0
0

p) /A 77{ ) © L
a%xxx + ayy_%ﬁ% RY +Cl(%x +% )q; +C4Q3pq;(ﬁx du +
7. N 7/
Xy yy C2 (0 1 Xy (1) ) ( 9

x Ty TR|IYT2 —R[ “07,
¢ gl(e O\,
7& ( XX + %yy)(pn + C Q3pq§q) BV +

88x 88)/ %yy o lw S, 5 o lw 5 M

ax dy R _ﬁ[(p* w T @y xy]_Ty[(‘gx%xy (‘;y%yy] +

€1y



1 1 ) 1 d 1 ) |
C4Q1p‘q§((8)xx + (a)yy) + % (l-l)x + “(% (l.l)y + % (V\)’ 6W (32a)
3 (1)
(1) B (1) (1) C ) 0)
50" =5 |7, - T T o

87(17){ (32b)

1) 5 ) (0) a (0) M JOW

Qx + ay + (PX%XX + q;y%xy 6W - XX W

where Su, dv, and OW are arbitrary virtual displacement fields along the x,y, and { directions,
respectively. These virtual displacements represent kinematically admissible departures from the
primary equilibrium configuration. Integrating the double integral by parts, and enforcing
circumferential continuity of the integrands gives

Jf [ 86u BSV) (7{(9%1*'%,\/ .

(33)
(1) 88\” (1) aSWy (1) aSWY 881|I 8\‘]"
xx ax %yy a % ( aX ay R

%xx(cl$n5wn + ((Bx&lfx) + %yy($yﬁwy + cl((lp)n&pn) + %Xy(((lﬁx&uy + ((By&ux) +

1 a 1 a 1 a
Y Q3p q (P Su + qC(PySV + |:q§(( ) + gyy) + % (u)x + % (u) + _Z;C 8W dde 0
for which
odw
Bv. =~ (34a)
_ O0v  oow
S e (34b)
d0v  ddu

oy (—a— T) (34c¢)
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Next, enforcing the conditions that the virtual displacements satisfy the kinematic boundary
conditions given by equations (25) and the strain-displacement relations given equations (18b)
and (18d) results in the following form for equation (33)

1) (1) (1)

(1) (1)
( ) a (1) (1) a <1
f f xx + %XyS'Y)Xy + %yyag yy + %XXSKXX+ 7%),),813)/)/ + %xy6]8x)’ +

1 9 1 | 9 ) o ) o
iﬁ 86, +¢,8,88,) + 72,656, + 6,56.) + 7,(6,58, + c.6,58,) + (35)

q 0q q
1) 1 ¢ W ¢ g (
qg(%xx—i_%)yy) +—$ ux+—a?uy+—c SW deX 0

- C4Q3ﬁ q;((B 8(111) + qg((ByS(lu) +

which is a subset of the variational principle given by equation (115) in reference 22, except that
it contains the additional terms presented by Cohen.” An alternate form of equation (35) is
obtained by integrating the terms involving ¢, by parts. This process yields

L pr2nR
‘[ f qg[((Bxa“u)x + ((Bys(l]’l)y +
0 JO0

L r~2nR
1 f f (((ﬁ B, + B,0U, + (&, + €, )ow + 80,4, + 5,1, + (o8, + oF ){%&)dydx
0 JO

d d d

(36)

l\)lr—‘

8 E)q
(1) (1) (1) (1) (1) (1) (1) (1) ¢ Ha)

el

This expression is consistent with that given by Budiansky® for uniform pressure. Substituting
equation (36) into (35) yields the desired form given by
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(1) (1) 1)

7.8+ 7Y, + 7.8, + 5%3xx+7% 5%3 +7% 5‘”

y yy

$$+1&$wwq$a “6,06.) <77, (1,56, +/0.5%.)

—%%q&wﬁ&wﬁ@mM)W+%ﬁ+%ﬁ+@%+&Jﬂ o)

dG

2nR L
_ %Qﬁ [ (<1> S — 6<1> )] dy=0
0 0

The boundary integral term in this equation represents the nonconservative contribution of the
live pressure loading to the virtual work. To utilize static methods of stability analysis, the
problems considered herein require the boundary conditions to be specified such that loading
constitutes a conservative system. A convenient matrix form of equation (37), with the boundary
integral neglected, is given by

C4NBQ11|1 aqllll a(]11
—7Q3p(—y;(§x}6(dx+(u)x6§\}) Ty (Wall, + U] + 257 Wl || dydx

L 2R
(1)

/
\

0 0
(38)
Ll B\ sy o 52\ | L s T 1w gvds —
‘ZP(\ {8} + (i) {82 | - 35 () [0, {8} javax=o
where
(0) 0)
XX Xy O
0) 0) (0)
0) 0)

0 0 cl( . yy)
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{P}c&qg\ @, } (39b)

56,
il p
(5] =clal s, (39)
58188
aq, -
0 0
9q
[0 ]=ctf 0 o FF (39d)
aq@ aqi 2%
x Ty T
(8¢} =8{€}, {8x} =3{¥}, and {56} =38{¢} . Inaddition,
()= (U w, W) (40)

and {8(1'1)} = 8{%)} . Next, using equation (40) and expressing the strains, given by equations (18),

the rotations, given by equations (14d), and equations (39b) and (39c¢) in differential operator form
gives

K
% 0 0 0
O\ _ 91 f(”x = [
(= o5 & b =[0.]{t) (412)
0 0 0 w
dy 0x
0 0 —a—z
ox’ 0
¢, d o /(u)\ o\
/(1 \ — L J 9 1 _ 1
\18/ 0 R 9y ay’ \E)YI = [ak]\u/ (41b)
w
c.c, d c, d
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o
0 0 o |
(1 C 0 f(lfl))(\ /(1)\
{(P}: 0 R Oy \}ll)yfz[ad\u/ (41¢)
c,0 ¢,0 0 w
20y 20x
and
.
0 0 ~ % 0
Coa R
{ }=c&% 0 & —ay |t =[] (41d)
oo |
Jx dy R
0 0 —ai
X (1)
fﬁu
A\ _ 1 Jd <1>X\_ 0
{5 }‘C4Q3qc 0 g oy )3 =[oa]80) (41e)
3 9 1 \&”
Jox dy R

\

(42)

= ﬁ(([ap]{m}) (84} + {%}T([ap]{s“)})) -15 {“Lf}T[aq]{S(ld}‘dydx =0
Next, substituting equations (28) into equation (39a) gives
L. -Ly, 0
), ~ ) (0) ~[ 0
[%] I L, 0 =-2] @
0 0 Cl(ngz""-‘_ngyy)
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Substituting equations (41a) and (41b) into equations (21¢) and (21d), and then substituting the
resulting equations and equation (43) into equation (42) gives the variational statement as

R ({), {aw)) = p & [ (), {8t} (44)

where

(45a)

1 T 1 | T

([, ()} [B][0.]{8t) ) + ([a. {1} ) [B][[a]{8k} )|ayax
is defined herein as the bilinear stiffness functional and
L p2nR
1 T 0 1
Z (1), a1 - (1) Tl
0 Jo

(45b)

T

3 o181 ) o) - ) T o

is defined as the bilinear geometric stiffness functional. Both of these functionals are symmetric
with respect to their column-vector arguments.

Analysis for Two Loading Systems

Sometimes it is desirable to find the buckling load of a cylinder that is subjected to an
independent set of loads prior to application of the loading parameter . For example, one might
want to investigate the buckling behavior of a cylinder that is first subjected to a fixed internal
pressure and then loaded in axial compression until buckling occurs. To distinguish between these
two loading systems, it is convenient to define a passive loading parameter % and a set of

corresponding load factors that are associated with an initial, stable membrane-prebuckling stress
state. The passive loading parameter is scaled to any convenient value that corresponds to a stable

prebuckling equilibrium state. Subsequent application of the loading parameter p leads to
buckling and, as a result, is referred to herein as the active loading parameter. The loads that
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correspond to p are referred to herein as the active loading system.

The membrane-prebuckling boundary-value problem for the active loading system is defined
by equations (26) and (27) and constitutes a linear boundary-value problem. Thus, the membrane-
prebuckling boundary-value problem for the combined action of both loading systems is obtained
directly by applying the replacement rules

Bla, — pla, + X (46a)
pl.a, — pla, + Alq, (46b)
pl.q. — plq. + Aa; (46¢)
to equations (26) and
BUN(y) = BUN(y) + RUNG(y) or  BLANY) = BLALY) + RLAY () (47a)
BUS(y) = BLS(y) + So(y) or BLALy) o BLALY) + LAY (y) (47b)
BN (y) = BUNL(y) + AUNT(y) or BLAL(Y) = BLAL(Y) + ALAL () @7¢)
BLS.(y) = BUS.(y) + ALSIy) or BLALY) - BLALY) + TLAL(y) (47d)

to the boundary conditions given by equations (27). Solution of the prebuckling boundary-value
problem leads to prebuckling stress resultants that can be expressed as

0)

%XX = ﬁL l(gt)xx(x’ y) - XL’:%:X(X’ y) (483)
2, _ o~y O A o*

7, =—BLat,(x.y) = ALz, [x.y) (48b)
S, _~1 O 'O

7¢xy = Pngxy(X, Y) + 7»szxy(x, y) (48¢)

The only unknown appearing in equations (48) is the active loading parameter .

To include the effects of the passive and active systems in the bifurcation analysis, equations
(48) are used in equations (23) and (25). In addition, the replacement rules defined by equations
(46) are used in equations (23). Inclusion of the passive loading system in the bifurcation analysis
results in the conversion of equations (29) and (30) into
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202020] |a0g0a0IW] a0 a0a0 |18
and
?ll(uu)x) + glz(%)y) + ‘gl;((\’]\}) =0 or u =0 (50a)

or uU.=0 (50b)

or w=0 (50c)
M ) mY _ oW -~
B (W)+8[(0)+8 (W)=0 o S-=0 (50d)

where the operators are linear and are defined in Appendix A. In addition, equation (44) becomes
O e & o (D o) _ o~ M oM
%(u, Su)—sz(u, Su)—p ?(u,Su) (51)

where
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*(0)*
L«

XX

*(O)*
— L3”xy

and

[8;] = C4Q:qz

~L, 0
L.z, 0 (52b)
0 CI(LT%’; + LZ?’J;)
.
0 0 -4
o L _2
R ~dy (52¢)
3 9 1
Jx dy R
aqz -
o0
Bq*
0 0 3 (52d)

Rayleigh-Ritz Formulation

For many problems of practical interest, closed-form solutions for the boundary-eigenvalue
problem governing buckling do not exist. As a result, direct solutions to the corresponding
variational problem, such as the Rayleigh-Ritz method, are often used. For this method, the
buckling displacements are generally represented by series expansions that satisfy completeness
requirements and any kinematic boundary conditions. For example, the displacements may be

expressed as

(53a)

(53b)



& = Wi g3i(x5 y)

i=1

(53c¢)

where U, V, and W, are constants and ¢, ¢,, and ¢, are specified basis functions. In matrix

form, equations (53) are expressed as

where
€, ¢, by 0 0 -0 10
[¢]=] o o 0 ¢4, €, - €, 0
0 0 0.0 0 0 i 4
and
(@'={ U U UV V.o VW W,

(54)

(35)

(56)

Upon defining the displacement fields by using equation (54), the virtual displacements are given

by

(1)
- {8 - [)oa
{8u) = {8, ) =[¢£](5d)

54 |

where

(8d) ={ 8U, 8U, - BUy, BV, BV, - 8V,
Substituting equation (54) into equations (41) gives

{8) =([o.][¢])td) =[D,]{d)

(57)

(58)

(59a)

(59b)

(59¢)

(59d)



Similarly, the variations are given by

(8%) = [D.J(34)
[0:)(84) = ([2-][ ] ) (3¢) = [D,]tsa)

038t} - (2= [ ¢] )@ =[] 30)
By using equations (53) and (54), equations (43) and (50a) become
Z (0, 88) = {d}T[K]<5d}
Z (4. 84) = {d) | G [(8q)
& (15t = () [ G=(30)

where

[K]- f f ([ 14T + (D (BID [0 (B0 (D[]
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(59¢)

(60a)

(60b)

(60c)

(60d)

(60e)

(61a)

(61b)

(61c)

(62a)

(62b)



[G*]-1 f f (2[D¢]T[$’£*][Dw]+[D;]T[%]+[%]T[D;]Jr[%]T[a:][%])dydx (62¢)

T T T

In these equations, it is noted that [K] = [K] , [G] = [G] and [G*] = [G*] . In

addition, equation (42) becomes
(8¢)"([K]ta) ~X[G*]() -5 [Gie) ) =0 (63
For arbitrary variations, satisfaction of equation (61) requires
K@) =5[Ga) (64a)

where

[K'|=[K]-%[G*] (64b)

Equation (62) constitutes a generalized algebraic eigenvalue problem in which § is an

eigenvalue and {d} is the corresponding eigenvector. The matrices [K] , [G] , and [K ]

are referred to herein as the stiffness, geometric stiffness, and total stiffness matrices,
respectively.

Classical Solution

Closed-form solutions to the buckling equations can be obtained for some special cases. For
example, consider a simply supported cylinder with a ring-and-stringer-stiffened wall
construction that satisfies the constitutive equations given by

EaAS 0 0
An A12 A]6 Aslhleu AS‘h;H 0 : EA
AlZ A22 Azs - Aslhze“ Aszhze“ 0 + 0 (ri =0 (653-)
Al6 A26 A66 0 0 As;:ll '
0 0 O

44



EA
Bshell Bshell 0 z]‘s Ses O 0
B11 B12 Blo 1]1 | llf" EA
B,B,B,|= legc B;; 0 + 0 fer 0 (65b)
B16 BZG B66 0 0 BZ}:“ '
0 0 0
[ E( c 2
shell __ shell o esAs) 0 0
D,D.D| Dy Dy 0 % E (65¢)
D,D, Dy |=|D, D, 0 |+ 0 IT(I: + efAr) 0
shell T
D16 D26 D66 0 O D66 0 O l(%_’_%)
4\ d, d,

The cylinder is subjected to uniform axial compressive loads at the ends and uniform external
pressure that is applied normal to the middle surface; that is,

Ny =- N, (662)
N,y =-N, (66b)
e =~ Qe (66¢)

N,(v) and N, (y) are defined by equations (27a) and (27c¢), respectively. These loads constitute the
only nonzero active loads associated with the loading parameter g . For the case of pure uniform
axial compression, q., = 0 and N_is a specified value. For pure external pressure, pressing radially
inward, N = 0 and q__ is a specified positive value. Similarly, for uniform hydrostatic pressure,
q., 1s a specified value and N = q  R/2.

ext

The cylinder is also subjected to a uniform internal pressure given by
qz = qim (673)

that is a passive load associated with the loading parameter A and the replacement rule given by
equation (46c¢). In a sealed cylinder, the internal pressure induces a state of uniform axial tension
given by

N, (y)=N. (67b)
N (y)=N. (67¢)
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where the symbols in these equations are identified by the replacement rules defined by equations

(47a) and (47c), and where Nf = qim% . The internal pressure is the only nonzero component of

the passive loading system and, as a result, it is convenient to set A=1,0=1,0=1,and ¢ =1

in the replacement rules defined by equations (46) and (47). Inclusion of the internal pressure
permits examination of the buckling behavior of pressure-stabilized cylinders.

The boundary conditions for this example, as defined by equations (10) and the replacement
rules defined by equations (46) and (47), are given by

7, =—BUN, + q.5 (68a)
u,=0 (68b)
w=0 (68¢)

M, =0 (68d)

at x=0 and x =L, where N_is scaled identically at each cylinder end such that {, ={, . Thus, the

boundary conditions for the prebuckling state, given by equations (27) and the replacement rules
defined by equations (46) and (47), become

(0)

.= PN, + s (692)

© =0 (69b)

at x =0 and x = L. The corresponding homogeneous boundary conditions for the buckling
problem, as defined by equations (30), are given by

(1)

7 -8 (v)+& (V)+8 (W)=0 (70a)
u,=0 (70b)
w=0 (70c)

7.8 ,(0) 8 [U) 8, (%) -0 (70d)

at x =0 and x = L. The operators appearing in these boundary conditions are given in Appendix
A. Using equations (65) and (A11), the buckling-problem boundary conditions reduce to
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(1)

o oo 2(1) 2(1)
A Alz(aauy+w)iB aW+Bn("2auuﬁw)=o (71a)
y

1187+ R 1 9x2 R ay ay2
u,=0 (71b)
W=0 (71c)
ou ¢ \ou %0 9% (Ul
Bna><X+(B12+D]2RZ)ayy iD“a;ﬁ’ iDlzay";’+B12§=O (71d)

at x=0 and x=1L.

The membrane prebuckling stress state is obtained by first substituting equations (66¢) and

(67a) into equation (46¢) and then substituting the result into equation (26a). Then, A=1 and

;=1 are used to get

(0)

%yy(xﬂ Y) == ﬁQquxtR + qintR (728.)

Likewise, equations (26b) and (26c¢) give

(0)

7., =Cly) (72b)
A ey
ay <TG y) (72¢)

Enforcing boundary conditions at x =0 and x =L given by equation (69a) indicates that

C,(y)=-P{N, + qim% and C is a constant. Thus,

__x R
.. =- BN+ a5 (73a)

7,-C (73b)

Using equations (72a) and (73) with equations (18a), (18c), and (21a) and neglecting second

derivatives of W(x.y) in equation (18c) gives
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PRI g M, Ay BUN, + q, 8 74
11“& 12 E 12W R W = — P, INy qimj ( a)

ou, c an, A "
A12 “(K + A22 + EZ B22 “(Fy + R22 & == pQ3qextR + qimR (74b)
c ou 3c o, -
[ gy [ e (740

Equation (74c) can only be satisfied if U, =1,(x) and U,=Bx+ B, , where B, and B, are
constants. The boundary condition given by equation (67b) indicates that B,=B, =0 and
©0)

u,(x,y)=0.Asaresult, C=0 and

(0)

7., (x.y)=0 (75)
Equations (74a) and (74b) are then solved to obtain U (x) and W(x).

By comparing equations (72a), (73a), and (75) with equations (48), and using A=1 and

(=1 , it follows that

L, =N, (76a)
L,=0q.R (76b)
L,=0 (76¢)
L\ == dus (76d)
L,=-q.R (76e)
L,=0 (76f)

In addition, all functions of (x, y) on the right-hand-sides of equations (48) are equal to unity. In

equations (76), LN, and {,q.. , and q,, are specified quantities. For example, to analyze a
compression-loaded cylinder that has a fixed internal pressure, it is convenient to pick ¢, =1, and

l,;=0 such that L, =N _and L,=0. At buckling, the active applied load B!,N, becomes
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c

N, =p.N, . For a cylinder subjected to hydrostatic external pressure, q_, {,N, = qm% , =1,

ext?

and q._ = 0. At buckling, the active applied load pl.q.. becomes qq, = P -

int

The solution of equations (49) is obtained by using trigonometric displacements functions
that satisfy all the boundary conditions; that is,

(lu)x =u cos(me)cos(%) (77a)
“u)y =V sin(anX)sin(%) (77b)
W=w sin(anX)cos(l%y) (77¢)

for values of me {1,2,3,..} and ne {0,1,2,, ..} . The circumferential waveforms

appearing in equation (77¢) are shown in figure 4. Substituting equations (77) into (49), using the
expressions for the operators given in Appendix A, noting that all functions of (x, y) on the right-
hand-sides of equations (47) are equal to unity, and using equations (76) yields the generalized
algebraic eigenvalue problem

K, K Ky f u l Gu G12 G13 f u \
K12 Kzz K23 v = 15 G12 G22 G23 v (78)
K13 K23 K33 \mnWI G13 G23 G33 \mnW/
L L
where
CI * * 2
Kn :All+(A66B66(;{+D664T:R22_4(L1+L2))(Ir1111%R) (798.)
c 3c Cif, * *
Kp=- (H?;R)(Au + A+ [BurB] -Dy 5+ (L +Lz)) (79b)
Apeli|Ly 2
R R L e B I
3c 9¢ c :
Ko, = (A66 + By D4R) + (Azz +2B, 2+ DR)( oL |
. (79d)
(02 —c4)L2 LV Cf.* .
et )
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Ko=) é(Azz + BR)(H%,E) + (Bn +2B + D+ 3D66]i;) + (Bzz + Dn;z)(ngtLR)z
. (79¢)
Sk
R mn ) \mnR
K, = 1:;222(n¥1ﬁ)4 * }%(nIﬁt)z|Bn Bzz(“LR)z} +D, +2(Dy, 420, ) L ) 4D L) o
2l . * 2 2
-l -5 |
G = gL+ L) i) (80a)
G= g (L L) e (80b)
G13 = Ciz(nlﬁt)z (8OC)
G, = %(n&nf + L, +L.) (80d)
27 Uy Lz 2
G = el o (30¢)
] R e ) (80¢)

In these expressions, the nonzero load factors are given by equations (76a), (76b), and (76e).
Nontrivial solutions to equation (78) are given by the determinant

1 13

2!

@

K,
I<12
K.,

13

~ AR
~ A
Qoo

5 Gu 12 G13
22 _f) G12 22 G23 =0 (81)
23 %33 G13 23 G33

which is expressed as

Cp +Cp —Cp+C,=0 (82)
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where

Co= KooK Ko = K (KoK — K Ko JKy + (KK KoK K, (83a)

C, =G\ (KuKyy = Ky ) + Goo(K Koy = K ) + G (K Ko, = K ) +

83b
2G12(K13K23_ K12K33) + 2G13(K12K23 - K13K22) + 2G23(K12K13 - K11K23) (830)
C2 - K”(G22G33 - G;) + Kzz(G11G33 - Gfs) + Kss(GnGzz - sz) + (83 )
C
2K ,(G .G G ,Gy,) + 2K 4(G .G G1,Go,) + 2K (G .G - G, Gy)
C3 = GllG; + GZZG; - G33(G“G22 — GZ) —_ 2(‘}12C}13C}23 (83d)

The critical value of the loading parameter, .., is the smallest positive value that satisfies

equation (82) for values of m e {1, 2,3, } and ne {0, 1,2, } . The corresponding values

of the wave numbers, m and n, are denoted by m_ and n_, respectively.

cr?

For the special case in which nonlinear rotations about the normal are neglected, ¢, = 0, which
results in G,, =G, =0 . In addition, for "live" pressure, c, - ¢, = 0 and, as a result, the coefficient

C, =0 and equation (82) reduces to

Cp —Cp+C,=0 (84a)
with the simplifications
C,= Kn(GzzG33 - G;) (84b)
C] = Gzz(K11K33 - K?z) + G33(K11K22 - K?z) + 2G23(K12K13 - K11K23) (840)
Co = Kss(KnKzz - K?z) + (KIZKIS - KnKzs)Kz3 + (K12K23_ K22K13)K13 (84d)

Applying the quadratic equation and taking the smallest postive, real-valued solution gives

._C /e _c 85
P (202) C, (85)

When only axial compression loads are present, the load factor L, = 0, the coefficient C,=0, and
equation (85) becomes

51



C
P C 1 ( )

For the special case of reduction to Donnell-type equations, ¢, = ¢, = ¢, = 0, which results in
G,=G,=G,,=G,=0, C2=C3=O,and

(K12K13 - I<111<23 )Kzs + (K12K23_ KzzKls)Kls
Guy(K, K~ K3

~_K33 +
== 87
PTG, &7

Upon obtaining the critical value of the loading parameter, p., , and the corresponding wave
numbers, m_ and n_, the buckling mode (eigenvector) is obtained by substituting these values
into equations (79) and (80). The resulting expressions are then substituted into equations (78),

which gives
K KE K f “ 6o f \ )
R :
K, K, K

23 = Po 23

cr cr
m,_T m

33 o'V & 33 ol &
L W L W

where the superscript "cr" indicates that the coefficients given by equations (62) and (63) have
been evaluated for m=m_ and n=n_. Only two of the three equations given by matrix equation

(88) are independent. Using the first and third equations to find u and v interms of w yields

<l cl

.
.
l 2

S58

2.0.8

a

mm (K, = Go) (K = 5Gon) = (Ko = BGoo) (Ko = BeGan) (892)

L L (KT - puGH) (K — PuGin) — (K5~ puGi) (K — LG

mm (K = B.Go) = (K = .G (Ko — p.G)

L (K} - .G (K5 - P.Gx) — (Kis — PG (Ko — ﬁmG?;)W

(89b)

Substituting these two expressions into equations (77) gives the buckling mode in terms of the
unknown normal-direction amplitude, w ;1. e.,

Cl

o _ m (Ko =G0 ) (K - BuGs) = (K

3= PG ) (K — B.Gy) (m.nx) (n y)
X = cr cr cr cr cr cr cr cr = = (90a)
‘ L (Kl] _ﬁchl])(K23_f)ch23) - (Kl3_ﬁchB)(Ku_ﬁchlZ)wcos L o8 R
o _mm_ (KI-p.GY) - (Ki - p.GI)(KS - p.G)

C

_ . (m,mx) . ncry) (90b)
cr cr T cr cr cr cr cr Sln Sln
’ L (Kll - f)chn)(Kzs - f’chzs) - (Kls - f)chB)(K]Z - IN)chlz)W ( ) ( R

L
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W=w sin(w)cos( nm.y) (90c)
A typical buckle pattern given by equations (90) is shown in figure 5 for m =2 and n_=4.

For axisymmetric buckling modes, given by n_= 0, equation (77b) indicates that W', =0 . In

addition; K;,=0, K;;=0, G, =0, G,,=0,and G,,=0 . Thus, equation (88) reduces to

[K:: K:;]f o |

cr cr - ﬁcr
K13 K33 \Llﬁ‘nwf

[Gii Gi;]f u \ (91)

Only one of these two equations is independent. Using the first equation to find @ in terms of

w yields
m,m Ki, —p.Gys _
= = W 92
I K" 92)

ua=-

Substituting this expression and n_= 0 into equation (77a) gives

cr

cr ~
) mmn K,;— G, _ m
_ cr 13 pcr 13 Wcos

ux = L Kcr

11

I ) (93)

The Cartesian coordinates of the deformed (buckling mode) shell, (x*, y*, z*), are given by

x* =X+, (943)
y* =Y + ¥, cos® + W sin@ (94b)
z* =7 — U, sin® + W cos0 (%94¢)

where (X, Y, Z) are the corresponding Cartesian coordinates of the undeformed shell and
Y =R sinf (95a)

Z =R cosH (95b)
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A Rayleigh-Ritz Solution

Consider a fully anisotropic shell that is simply supported at each end, with the boundary
conditions, as defined by equations (10), given by

7, =-N a5 (96a)

u, =0 (96b)

w=0 (96c¢)

M, =0 (96d)

at x=0 and

7, = - PN+ .S (96e)

u, = plA, (961)

w=0 (962)

M, =0 (96h)

atx =L, where N_ is an applied uniform compression stress resultant that is scaled identically at

each cylinder end such that {;={, ,and A is a constant twisting displacement. Thus, the boundary
conditions for the prebuckling state, given by equations (27), become

%xx = §Q4NX + qim% (973)
© =0 (97b)
at x=0 and
(0) . R
%xx == pQ4NX + qintj (970)
H, = BLA, (97d)

at x = L. The corresponding homogeneous boundary conditions for the buckling problem, as
defined by equations (30), are given by equations (70) and (71).
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The membrane prebuckling stress state is obtained by first substituting equations (66¢) and
(67a) into equation (46¢) and then substituting the result into equation (26a). Then, A=1 and
(,=1 are used to get

(0)

7, (xy)=-plq.R +q.R (98a)

Likewise, equations (26b) and (26c¢) give

7., =Cly) (98b)
7. =-S5 e (98

Enforcing boundary conditions at x =0 and x =L given by equations (97a) and (97¢) indicates

that C,(y) =—- PN, + qim% and C is a constant. Thus,

(0)

7. =- BN, +d.5 (992)

(0)

7.,-C (99b)

Using equations (98a) and (99) with equations (18a), (18c), and (21a) and neglecting second

derivatives of W(xy) in equation (18¢) gives
q g

ou c ou 3¢ ou
An _ﬁ—l_ (Am _212{B16)_ﬁ+ (Am + ZRZBw)_#_'_

A (100a)
(Alz + % Blz)'ﬁy + R12 & = _f)Q4Nx + qinl%
ou, c ou, 3¢ ou
A12 X + A26_2712{B26 W"‘ A26+T£B26 _ﬁ_l_
o A (100b)
C ~
(A22+R2B22)a_yy+ R22 {%}:_pQ3qextR+qimR
o, c v, 3¢ ou
AmW'i_ A66_§B66 W"r A66+71{B66 Wy_l_
. (100c)
[¢ u —




A, and B, =0. Thus,

Noting that the right-hand sides of these equations are constants, it follows that they are satisfied
B,x+B, and U,=Bx+B,,where B, B,, B, and B, are constants. The boundary

if u,=
conditions given by equations (97b) and (97d) indicate that B, = 0, T
(101)

O

R 3c, ~p AL
(Aw + ﬁ Bm)Png (1023,)

As o giN, +a.R -

Substituting U, = B,x + B, and equation (101) into equations (100) produces

All B3 + R
A, o ~ 3c ~ AS
A12 B3 + Tzz W== pQ3qextR + qintR - (Azs + TRZ st)pQgr (102b)
3¢ ~n A, A —
A16 B3+ (A66+2R2B66)p‘29 L> + st (\%)’:C (1020)
The first two of these three equations gives
AL A AL+ 2B, |- AL A, +29B +PlALa.R-A QN]+q‘“‘R[A —2A,]
p 9L 12 26 2R 26 22 16 2R 16 p 12 3qexl 22%4 X 2 22 12
= 5 (103a)
AIIAZZ - Alz

£ B[ALN, - A La.R]+ LR 2A, — A, ]
(103b)

3¢, 3¢,
AI (Alé + ﬁ Blﬁ) _AII(A26 + E st)

o PYT
w_
R A||A22 - Azlz
The constant B, in U, = B,;x + B, represents a rigid-body displacement. Thus,
U, =B.x (104)
Combining equations (99b) and (102c), and using equations (103), give
S ~ A, R
7., = BBl T+ BAN, + BLa.R|+ B, (105a)
B7 — Alezs — AzzzA 16 (105b)
A llA22 —-A 12

where
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B8: AuzAle_AlleZﬁ (IOSC)
AIIAZZ _All

Azz(Am + 2A26) - AIZ(A26 +2A 16)

B, = ; (105d)
AIIAZZ - A12

3 3 3
BIO = BS(A26 + T;z st) + B7(A16 + 27;2 Bl()) + (Aoa + 27(};2 Bas) (1056)

Equations (98a), (99a), and (105a) define the prebuckling membrane stress resultants, and
indicate that prebuckling shear stresses are generated by the axial and pressure loads, in addition
to the end twist, because of the shell anisotropy. By comparing these equations with equations

(48), and using A=1 and 0=1 , it follows that

L, =N, (106a)
L,=0q.R (106b)
L,= B,OQQ% +BUN, + BlLq.R = BIOQQ% +B,L,+B,L, (106c¢)
L,=- 9t (107a)
L,=-q.R (107b)
L,-B,%" (107¢)

In addition, all functions of (X, y) on the right-hand-sides of equations (48) are equal to unity. In
equations (106) and (107), {,N, and {.q..., l,A,, and q,, are specified quantities. At buckling, the

active applied load #¢,N, becomes N, =N, , the active applied load fl.q.. becomes

9. = Pl.q.. , and the active applied twist becomes A; =LA, .

Relatively simple, approximate representations of the displacement fields that satisfy the
kinematic boundary conditions, given by equations (68b) and (68c), are

1) —
(ux =u COS( m7x )COS(

7 Jeos{ R (v = o)) (1082)

=
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uy=\‘/sin(m—nx)sin(%(y—‘rx)) (108b)

W=w sin( mnx )cos(%(y - ’cx)) (108c¢)

where me {1,2,3,..} , ne {0,1,2,,..} ,and 7T is areal number. These displacement
functions generally yield skewed buckle patterns such as that shown in figure 6. Along the nodal
lines of the contour plot in figure 6b, the radial displacement defined by equation (108c) is equal
to zero. Enforcing this condition requires

cos( (y—tx))=0 or %(y—’tx):i(Zp—l)% (108d)

_

for values of pe {1,2,3,..}. Thisequation defines the family of straight nodal lines shown in

figure 6b. The slope of any nodal line, as defined by the angle ¢ shown in the figure, is given by

¢ = Tan"'1. It is noteworthy that setting T=0 in equations (108) yields the displacement functions
used in the classical solution. Thus, this particular Rayleigh-Ritz solution represents a first-
approximation enhancement of the classical solution to address shell anisotropy and torsion loads.

The matrix of basis functions and the column vector of displacement amplitudes in equation
(54) are expressed as

%11 0 0
[g]z 0¢4,0 (109a)
0 0 433
and
(d) = {u, v, w) (109b)
where
¢, = cos| B Jeos( B(y - wx)) (110a)
¢, = sin( ml’fx)sin(%(y — rx)) (110b)
A sin( mfx)cos(%(y - ’cx)) (110c)

With these expressions, the operators in equations (59) produce
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ag 33
0 0 ~ ok
. 025 22 8% 33
Czagn czaézz 0
T2 dy 2 ox
o,
p 0 0
aé 22 g33
D= 0 5 &
ag 11 aé 22 0
dy  ox
EYA
0 0 _ 233
ox
YA ¢
[DK] _ 0 2 a 22 _ 233
R dy dy
ol ol
CICZ 11 CZ 22
2R dy 2711(01 +2) ox 0
ag 33
0 0 Tk
422 o4 3
[Dp] == C4Q3qext 0 R - dy
ag 11 ag 22 g 33
ox dy R
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ag 33
0 0 ~ox
* * % 22 a% 33
[Dp] = C4Q3qint 0 R - ay (1 1 le)
aé 11 ag 22 g 33
ox dy R

In addition, the matrices given by equations (39d) and (52d) are zero-valued matrices. The
eigenvalue problem given by equations (62) and (64) is expressed as

k11k12k13 /ﬁ\ g1 81 8n u
kiokyky (V)= ﬁ 2u8ngn |\ V (112)
ks ko ks \W/ 213 823 8 \WI

where the stiffness and geometric stiffness coefficients in this equation are given in Appendix B.
After simplification, equation (112) is expressed as

K KKI u \ G,IG,ZGHI u \
K, K, K v 3 =pPG,GnG v (113)
K.K,.K T G.G,.G T

(o) (1140

R 4

At At E[BL B = DL - (2Am + 3°2Bm)r +O(L+ LZ)} (114b)
R

* 2
(Alz + C4L2)( L ) +B“ +

(114c)

B, + 2B, — 2D, +3B,T’ - 6B,T+ 2Dt (—HL )2
12 66 R 66 11 16 R 16 mTcR
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2

Ko, =|A,+2%B, + 2%p, (L L)) |[1+ (2L ) ¢ |+
22 66 R 66 2 66 1 2

4R 4 mnR

2 2 * 2 5 3 2
A, + 2B, + 22p, ( nL ) —(cz—c4)L—j(L) —|2a,+°%B,+ %D, ( nL )1
R R’ mmR R R

KB:(nL)jl

¢
mnR \R(A22 TRBT

B, +2B, + %[D,z +3D,,]

A, +20B,
2R

T— ch:r+ (04 _ cz)L:)(HIﬁt)z .

(1+h$%ff)+ (114e)

S ENE O

+ (Bzz + %Dzz -3

B, +(B22+B,212—2B26’c)( nL )2

e |
D“(H6(n?rlfR)z ( R)T)+2(D12+2D“)(n1111%R)2(1+(rr1111%R)2T2)+D22(n?nLR)4 (1141)

o0l (5 sl ¥ ool = (1 o e e

Antely,
o= S ) o
nL

and
Gy = (L + L)) (115)
Go= (L, + L)) (115b)
G =% (o) (150
Ga= e e 2ok + {1+ LQ)(l + (£#R)ZT2) (115d)
G, = %(LﬁL;)—C“;ZW(HE,t)z(H%) (115¢)
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Gy, = (%)2 L, + (LI’C2 +L,+ 2L3T)(n?7%R)2 - C;{L;Z (%)2 (1150)

Nontrivial solutions to equation (113) is also given by (82) through (84). The critical value
of the loading parameter, p., , is the smallest positive value that satisfies equation (113) for values

of me {1,2,3,..} , ne {0,1,2,,..} ,and real numbers T. The corresponding values of the
wave numbers, m and n, are denoted by m_ and n_, respectively. The corresponding value of

the skewedness parameter is denoted by 7.

crd

Upon obtaining the critical value of the loading parameter, p,, , the skewedness parameter,
T, and the corresponding wave numbers, m . and n_, the buckling mode (eigenvector) is obtained
by substituting these values into equations (114) and (115). The resulting expressions are then
substituted into equations (113), which becomes

|

KKK /
Ko KoLK ({9
K; K;sK \ f

<l

—
< i
P

- G,
G,
26| s |

where the superscript "cr" indicates that the coefficients given by equations (114) and (115) have
been evaluated for m=m_,n=n_,and T=71, Only two of the three equations given by matrix

1
c
2!

[N )

(116)

Cl

<4

G,
B G,
G,

oob

3

cr?

equation (116) are independent. Using the first and third equations to find @ and v interms
of w yields
m,z (K =BG o) (Ks = BGo) = KKy — B.Gi)

= S T W (117a)
L ( pchll)( pch )_K13(K12_f’ch12)W

cr cr cr cr cry 2

K -p G K -p 33) K13
gomar_ (Ki=B.G)(Ks -BGy) ~[Ku) O (117b)

L ( purGll)( purG ) - K(I:;(Kn - ﬁchj;)

Substituting these two expressions into equations (108) give the buckling mode in terms of the

unknown amplitude, w;1i.e.,

cr

or o 5 p.. _
cor (KTI—ﬁc,Gfi)(KZ—ﬁc,GZ)—KTQ(KTQ—@,GT;)WCOS( £ o

Kly-wx)) (18)
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w  mam (KI-B.GH)(KL-5.65) - (KD) _,(mcm). (n ) ) (118b)
R R P et M W P e A

W=Wsin(%m)cos(%r(y—Tcx)) (118c)

For axisymmetric buckling modes, given by n_= 0, equation (108b) indicates that W', =0 .

In addition; K;,=0, K;;=0, G,,=0, G,,=0,and G,, =0 . Thus, equation (116) reduces to

K K:‘;]I \_~ﬂ[GTZ G:‘;]f \ 119)

u u
cr cr \merﬂ:_ / _p cr cr \mcrﬂ:_/
LV L

Kl3 K33 Gl3 G33
Only one of these two equations are independent. Using the first equation to find @ in terms of

w yields

m,m K, - $.G,; _
RLLE: Dol & 120
I K" (120)

ua=

Substituting this expression into equation (108a) gives

cr

m _ Irlchc K:; — ﬁch13 - mchCX ncr _
U == K WCOS(—L )cos( R (y Tcrx)) (121)

The Cartesian coordinates of the deformed (buckling mode) shell, (x*, y*, z*), are given by
equations (94) and (95).

Results and Comparisons

Comparisons with results published in the technical literature and corresponding results
obtained from the classical and Rayleigh-Ritz solutions of the present study are presented
subsequently, in numerous tables, for complete circular cylinders with the classical simply
supported boundary conditions applied at each end. The approximate Rayleigh-Ritz solution is
used when shell-wall anisotropy or torsion loads are present in a given case. Only uniform loads
are considered that include axial compression, external pressure, hydrostatic pressure, and
torsion. The hydrostatic pressure load corresponds to the uniform external pressure plus the
induced axial compression associated with caps on the cylinders ends (L, = 0.5 and L, = 1). In the
following discussion, the applied pressure q_, is denoted by p, for convenience.

ext
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For each set of tabular results obtained in the present study, buckling modes are also reported.
Specifically, for results obtained from the classical solution presented herein, the buckling mode
is given in the form (m, n), where m is the number of axial half waves and n is the number of
full circumferential waves (see figure 4). For results obtained from the approximate Rayleigh-Ritz
solution presented herein, the buckling mode is given in the form (m, n, t), where T is the
parameter that quantifies how much a buckle pattern is skewed.

First, results and comparisons are presented for unstiffened, monocoque isotropic cylinders.
Then similar comparisons are presented for cylinders stiffened by uniform arrays of rings,
stringers, or rings and stringers. For each of these stiffened shells, homogenized constitutive
equations are used in the analyses and a large range of stiffener properties are examined. Next,
results are presented for unstiffened cylinders made of laminated-composite materials. Results for
several wall constructions are presented that include the full extent of possible anisotropies. For
each case, results obtained in the present study by using Donnell’s equations, Sanders’ equations,
and Sanders’ equations with the nonlinear rotations about the surface normal-vector field
neglected are generally presented. In describing results for this latter set of equations, the phrase,
"nonlinear rotations about the normal are neglected," is used for convenience herein. For cylinders
subjected to pressure loads, results are generally presented with and without "live" pressure.

Unstiffened Isotropic Cylinders

Axial compression loads. Comparisons for unstiffened isotropic cylinders subjected to
uniform axial compression are shown in Tables 1-5. The results in Table 1 show the predicted

values of %(1 ~v’) obtained by Dym® and obtained in the present study as a function of ;&

and the circumferential wave number n, where m is the number of axial half waves forming the
buckling mode and L is the cylinder length. In addition, the results were calculated for the

Poisson’s ratio v =0.30, aradius R =4 in. and a thickness h defined by R/h=91.287. The results
o

of reference 29 include values of =

(1-v*) obtained by using Flugge’s equations"”, the Koiter-

Budiansky equations,”** and Donnell’s equations'’ for values of n=1, 2, 3, and 4; where the

largest differences between the results of the three sets of equations are most likely to occur.
Moreover, the results are independent of the modulus of elasticity, E.

G,
E
study by using Donnell’s equations are nearly identical. Similarly, the results predicted herein by
using Sanders’ equations are, for the most part, within 1% of the corresponding results given by
Dym that are based on Flugge’s equations and the Koiter-Budiansky equations. In contrast,

differences of between 11% and 15% are noted for cases with n=1 and ﬁ =10, which

The results in Table 1 indicate that the values of <=(1-v?) predicted by Dym and the present

correspond to column-like buckling modes. The most notable difference, 42%, is found for the

cases with n=4 and ﬁ =90. All other differences are between 1% and 6%. For the most part,

these results indicate that Sanders’ equations, Flugge’s equations and the Koiter-Budiansky
equations yield solutions with practically the same level of fidelity.
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Comparisons of the values predicted herein for the critical value of the applied stress resultant
with those predicted by Sheinman and Simitses®™ and by Simitses et. al.,” obtained by using
Donnell’s equations, are shown in Table 2. These results are for cylinders with a radius R =4 in.,
amodulus E =10.5 X 10° psi, and Poisson’s ratio v = 0.3. Moreover, results are given for selected
values of the cylinder length-to-radius ratio given by 1 <L/R <10 and selected values of the
radius-to-thickness ratio given by 80 < R/h <1000. The two sets of results presented in this table,
that are based on Donnell’s equations, exhibit differences less than 0.2%. In addition, the results
obtained in the present study indicate that the differences in the corresponding predictions
obtained by using Donnell’s equations and Sanders’ equations range from about 1% to 20%, with
the largest differences being exhibit by the long cylinders. Similarly, the results indicate
differences in the corresponding predictions obtained by using Donnell’s equations and Sanders’
equations, with nonlinear rotations about the normal neglected, range from about 0.5% to 11%.

Comparisons of the values predicted herein for the nondimensional buckling load

3(1-v7) I\éh R with those predicted by Zou and Foster” and by Xiang et. al.,” obtained by using
Fliigge’s equations and Timoshenko’s equations,* are shown in Table 3. This particular
nondimensional buckling load is obtained by dividing the critical value of the applied axial stress
resultant by the corresponding value obtained by appyling Donnell’s equations to an infinitely
long cylinder (for example, see equation (42b) of reference 35). Moreover, the results in this table
are for cylinders with a thickness h = 0.1 inch, a modulus E = 10.5 x 10° psi, and Poisson’s ratio
v=0.3.

The results in Table 3 indicate that the nondimensional buckling loads predicted herein by
using Donnell’s equations are practically identical to the value for the corresponding infinitely

6 Eh’
I0R

loads predicted herein by using Sanders’ equations are within 1% of the correspondinge results
presented in references 32 and 33 and obtained by using either Fliigge’s equations or
Timoshenko’s equations. The results also show that neglecting the nonlinear rotations about the
normal yields predictions that are as much as 7% higher than the corresponding result obtained
by using Sanders’ equations.

long cylinder given by . In addition, the results indicate that the nondimensional buckling

N:rLZ
2

Predicted values of the nondimensional buckling load 5
T

obtained in the present study

and obtained by Yamaki and Kodama® are presented in Table 4 for selected values of Batdorf’s

parameter,”’ Z = % /1-v* | in the range of 0 <Z < 1000. A pictorial representation of the Z

parameter, taken from reference 36, is shown in figure 7 for a value of Z = 150. The results in
this table indicate nearly identical predictions for the two sets of results based on Donnell’s
equations. Moreover, the results based on Sanders’ equation, with and without nonlinear rotations
about the normal neglected, differ from the corresponding results obtained by using Donnell’s
equations by at most 1.1%.
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Comparisons of the values predicted herein for the nondimensional buckling load

3(1-v7) I\éh R with those predicted by Yamaki and Kodama,* obtained by using Fliigge’s

equations, are shown in Table 5. Specifically, results are given for cylinders with a Poisson’s ratio
v=0.30, R/h=100, and 0.15 < L/R < 100. These results show differences of less than 1%
between the predictions obtained by Yamaki and Kodama using Fliigge’s equations and the
predictions obtained herein with Sanders’ equations. The results also show that Donnell’s
equations and Sanders’ equations with nonlinear rotations about the normal neglected predict
buckling resistances that are greater than those predicted by Fliigge’s and Sanders’ equations.
Moreover, Donnell’s equations predict the greatest buckling resistance over the entire range of
L/R examined.

The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s equations, Sanders’ equations, and Sanders’ equations with nonlinear rotations about
the normal neglected are illustrated in figures 8-20 for cylinders with selected radius-to-thickness
ratios in the range 50 < R/h < 1000, with a Poisson’s ratio v = 0.30, and with E = 10.0 X 10° psi.
Specifically, results are presented in figures 8-10 for cylinders with R/h = 50. In figures 8 and 9,

the buckling resistance is measured by the nondimensional buckling coefficient N.Rh  for values

2

D

of 0.2<L/R<50and0.2 <L/R <8, respectively, where D = 12(15“_3\/2) is the principal shell
bending stiffness. The mostly horizontal red line in figures 8 and 9 corresponds to results obtained
by using Donnell’s equations. The horizontal part corresponds to the widely used formula for the
critical stress of an infinitely long cylinder given by

o= LB (122)

The corresponding buckling coefficient is given by Nth =4 . /3(1-v?), which for v=0.30
T

gives I\jt‘zRDh =0.67. The black and the blue festoon curves in each figure corresponds to results

obtained by using Sanders’ equations and Sanders’ equations with nonlinear rotations about the
normal neglected, respectively. The rightmost branch of these two festoon curves shown in figure
8 correspond to a column-like shell-buckling mode given by the wave numbers m =n =1, and
the graph coordinates for the first column-like shell-buckling mode are (25.5, 0.41). The gray
curve in figure 8 corresponds to buckling coefficients obtained by using the Euler column-
buckling formula

Oy = BER (123)

for a simply supported thin-walled tubular beam with length L, cross-sectional radius R, and
thickness h that is deformed into a single half wave along its length. The results in figure 10
indicate the percent difference in the buckling loads with respect to the results obtained by using
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Sanders’ equations. For example, points of the red curve are obtained by computing the absolute
value of the difference between buckling loads obtained by using Donnell’s and Sanders’
equations and then dividing the result by the corresponding buckling load obtained from Sanders’
equations. The blue curve is obtained in a similar manner with the results obtained by using
Donnell’s equations replaced with the results obtained by using Sanders’ equations with nonlinear
rotations about the normal neglected.

Results similar to those presented in figures 8-10 are presented in figures 11-13 for cylinders
with R/h =100, in figures 14-16 for those with R/h = 500, and in figures 17-19 for those with
R/h=1000. In figure 11 (R/h = 100), the first column-like shell-buckling mode predicted by
Sanders’ equations is given by the graph coordinates (36.3, 0.41). In figures 14 (R/h = 500) and
17 (R/h = 1000), the first column-like shell-buckling modes are given by the graph coordinates
(81.5,0.41) and (115.3, 0.41), respectively, and are not shown.

The buckling-coefficient plots in figures 8-18 show significant differences in the buckling
resistance predictions obtained from the three set of equations, with the black curves (Sanders’
equations) generally exhibiting the lowest corresponding values of buckling resistance.
Moreover, the differences are generally more pronounced as the cylinder length increases. The
results obtained by using Sanders’equations predict a transition to a column buckling mode at
significantly smaller values of L/R than the corresponding results obtained by using Sanders
equations with nonlinear rotations about the normal neglected. The results obtained by using
Donnell’s equations predict no transition at all. The curves giving the percent differences in the
buckling loads shown in figures 10, 13, 16, and 19 exhibit pronounced variations with the cylinder
aspect ratio that results from the festoon curves predicted by the three sets of buckling equations
being out of phase. The commonality of the curves shown in these four figures is illustrated in
figure 20. This commonality was found by normalizing the cylinder aspect ratio shown as the
abscissa in figures 10, 13, 16, and 19 by the corresponding value at which the first column-like
shell-buckling mode occurs, L, /R, that is predicted by Sanders’ equations. As seen in figure 20,
this normalization effectively eliminates the dependence of the curves on R/h for all practical
purposes. The general trend is a significant increase in the bucking-load differences as the
cylinder length approaches approximately 45% of the corresponding length at which a column-
like cylinder buckling mode occurs. However, smaller differences occur due to the pronounced
variations in the curves with L/L, .

A concise representation of the buckling behavior predicted by Sanders’ equations is shown
in figure 21 that is made possible by the nature of the results predicted by Donnell’s equations
shown by the buckling-coefficient plots in figures 8-18. In particular, the curves based on
Donnell’s equations attenuate rapidly to a horizontal straight line as the cylinder aspect ratio
becomes larger than approximately 0.6 for R/h = 50, and this attenuation becomes more
pronounced as R/h increases. This property was found by Mikulas et. al.” to provide a concise
representation of the buckling results by defining the ordinate as the buckling stress predicted by

Sanders’ equations, o) , divided by the attenuated buckling stress predicted by Donnell’s

equations, o* , given by equation (122). In addition, the abscissa is defined by G* , , Where

the stress in the denomenator is the Euler-buckling stress given by equation (123). The more
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explicit form of the abscissa is given by

o, 2

__ 2 ___h
O n . /3(1-v) R (124)

e

With this representation, the black festoon curves shown in figures 8-18 become the red curves
shown in figure 21. The solid blue curve shown in figure 21 corresponds to column buckling
predicted by Euler’s buckling equation, and it nearly overlaps the red curve. The slight differences
in the red and blue curves appear as a result of the additional cross-section flexibility inherent to
shell theory. Based on results obtained by using Sanders’ equations, the cylinders buckle into the
column-like mode (m =n = 1) at the approximate graph coordinates (1.27, 0.61). Using these

coordinates with equations (122) and (123) yields the corresponding formula o, = 0.37 %h

for the corresponding critical stress and L%l =3.63 , /% for the corresponding cylinder length,

“Rh

L. . The values of the ordinate, 0.61, also corresponds to the value l\;*zD =0.41.

Euler*®

The four red curves shown in figure 21 effectively represent a single "master" curve to within
the accuracy of the material properties used to calculate the results. Four additional sets of curves
were obtained for values of v=0.20,v=0.40, E=5.0 X 10° psi, and E = 30.0 x 10° psi. These
additional curves were practically identical to the corresponding curves appearing in figure 21.
Values of the buckling stress ratio for these curves are presented in Table 6. To demonstrate the

or
k

utilility of figure 21, the abscissa is given in figures 22 and 23 as a function of R/h and

Euler

for selected values of L/R. Overall, the results in figure 21 also indicate that differences as large

w« cr
G- X
cr

as 20% may occur for values of the abscissa given by 0.22 < <0.36. The largest

Euler

differences are approximately 40% for values of the abscissa greater than 0.5.

Uniform external pressure loads. Results for unstiffened isotropic cylinders subjected to
uniform external pressure are given in Tables 7-17. In these tables, Poisson’s ratio v = 0.30 unless

. . . . . . . “RL’
specified otherwise. First, predicted values of the nondimensional buckling pressure P =
T

obtained in the present study and obtained by Yamaki® are presented in Table 7 for selected
values of Batdorf’s Z parameter’’ in the range of 0 <Z <100, 000. The results in this table that
correspond to the present study were obtained by using the thickness h=0.1 in. and R/h =1000.
In addition, the results obtained by using Sanders’ equations, with and without nonlinear rotations
about the normal, include the effect of a live pressure load.

The results in Table 7 indicate the buckling pressures obtained by Yamaki, that are based on
Donnell’s equations, differ by less than 0.5% from the corresponding results obtained in the
present study, with a few exceptions. For Z =3000 and 10000, the corresponding results differ by
about 1% and 1.5%, respectively. For Z = 15000 and 30000, the corresponding results differ by
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about 0.7% and 2.9%, respectively. Likewise, for Z = 50000 and 70000, the corresponding results
differ by about 1.3% and 1.6%, respectively. For Z = 100000, the corresponding results differ by
about 0.8%. The results also indicate that the buckling pressures predicted by Sanders’ equations,
with and without rotations about the normal neglected, differ very little from the corresponding
results obtained by using Donnell’s equations. The lowest predictions of the buckling resistance
are obtained by using Sanders’ equations with nonlinear rotations about the normal included.

Comparisons of the buckling pressures predicted in the present study with those predicted by
Vodenitcharova and Ansourian,” obtained by using Fliigge’s equations, and by Showkati and
Ansourian,” obtained by using a finite element method, are shown in Table 8. Results are given
in this table for 0.5 <L/R <5 and 300 < R/h £3000, and were obtained by using the thickness
h=0.01 m, the modulus E =200 GPa, the Poisson’s ratio v = 0.30. In addition, the results obtained
by using Donnell’s equations and finite element analyses correspond to a dead pressure load. The
results obtained by using Fliigge’s and Sanders’ equations correspond to a live pressure load.

The results in Table 8 indicate the buckling pressures obtained by Vodenitcharova and
Ansourian, that are based on Fliigge’s equations, differ by less than 0.1% from the corresponding
results obtained in the present study with Sanders’equations, and predict the same number of
circumferential waves in the buckling mode. Similarly, the buckling pressures obtained by
Showkati and Ansourian from finite element analyses differ by less than 0.1% from the
corresponding results obtained in the present study with Sanders’equations for all cases with L/R
= 1 and 2, with one exception. That is, for L/R = 1 and R/h = 300, the difference is about 1.4%.
For L/R = 0.5 and 5, the differences decrease from about 4.8% to 1% as R/h increases from 300
to 3000. For L/R = 3, the differences decrease from about 2% to 0.8% as R/h increases from 300
to 3000. In addition, the finite element analyses predict, for the most part, the same number of
circumferential waves in the buckling mode as Sanders’equations.

The results in Table 8 also show that the results obtained in the present study by using
Donnell’s equations and by using Sanders’ equations, neglecting nonlinear rotations about the
normal, differ from the corresponding results obtained by using Sanders’ equations by less than
1% with only a few exceptions. For L/R =3 and R/h =300, the difference is 1.4%. For L/R =5,
the differences are about 1.8%, 1.7%, and 1.1% for R/h = 300, 500, and 100, respectively. For
nearly all the results obtained in the present study, the same buckling mode is predicted by the
three different analyses for each case.

cry 3
Predicted values of the nondimensional buckling pressure % obtained in the present

study and obtained by Wang and Billington,* by using Fliigge’s and Timoshenko’s equations, are
shown in Tables 9-14 for 1 < L/R < 250. In particular, results are given in Tables 9-11 for a

Poisson’s ratio v =0.30 and for R/h =10, 100, and 1000, respectively. Results are given in Tables
12-14 for a Poisson’s ratio v = 0 and for R/h =10, 100, and 1000, respectively. In all these tables,
the results obtained by using Donnell’s equations correspond to a dead pressure load. The results

obtained by using Fliigge’s, Timoshenko’s, and Sanders’ equations correspond to a live pressure
load.

The results in Tables 9-14 indicate that the results obtained by Wang and Billington, by using
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Flugge’s equations, are within approximately 1% of the corresponding results obtained in the
present study, by using Sanders’ equations, with one curious exception. This exception appears
in Table 14 for L/R =9 and corresponds to about a 9% difference. In most of the cases, however
the agreement is less than a fraction of 1%. The results in Tables 9-14 also indicate that the results
obtained by Wang and Billington by using Timoshenko’s equations are within approximately
3.5% of the corresponding results obtained in the present study by using Sanders’ equations, with
two exceptions. These exceptions are given in Tables 11 and 14 for L/R = 50 and 9, respectively,
and correspond to differences of about 5% and 9%, respectively.

Further examination of Tables 9-14 also indicates that the results obtained by using Sanders’
equations neglecting nonlinear rotations about the normal differ from the corresponding results
obtained by using Sanders’ equations by less than 3%, with many of the cases showing
significantly better agreement. In contrast, the tables generally show larger differences between
the results obained by using Sanders’ equations and the corresponding results obtained by using
Donnell’s equations. In particular, the differences tend to increase as L/R increases, with a
maximum difference of about 34%.

Predicted values of the nondimensional buckling pressure % x 10" obtained in the present
study and obtained by Brush and Almroth'’ using Fliigge’s equations are shown in Table 15 for
selected values of m/16 < L/R <321 and for R/h = 100, 400, and 1000. Corresponding results
obtained by Brush and Almroth are also given that are based on a set of nonshallow shell
equations that neglect the effects of linear and nonlinear rotations about the normal. All results in
this table are for a live pressure load except those obtained by using Donnell’s equations. The
results show agreement to within 0.2% for the predictions obtained from Fliigge’s equations and
both forms of Sanders’ equations. The nonshallow shell results of Brush and Almroth agree to
with 1.5% of the corresponding results obtained by using Sanders’ equations for L/R > /4. For
the remaining values of L/R in the table, the agreement is to within 3% except for the very-short-
shell case with L/R = m/16 and R/h = 100, which exhibits a difference of 48%. In contrast, the
results obtained by using Donnell’s equations agree with the corresponding results from Sanders’
equations to within approximately 1% for L/R < 7/2 and to within 5% for L/R = 2x. For L/R >
2m, differences as large as 63% are noted.

cr-

. . . R 6 . . .
Nondimensional buckling pressures pE— x 10" obtained in the present study and obtained

by Simitses and Aswani* by using the Budiansky-Koiter equations™** and by using Donnell’s
equations are shown in Table 16 for selected values of /3 <L/R < 100r and for R/h =35, 200,
and 1000. All results in this table are for a live pressure load except those obtained by using
Donnell’s equations. The results show agreement to within 1% for the predictions obtained from
the Budiansky-Koiter equations and both forms of Sanders’ equations used in the present study.
Similarly, the corresponding results based on Donnell’s equations from reference 43 and the
present study are within approximately 1%. Moreover, the results indicate that significant
differences occur if Donnell’s equations are used instead of Sanders’ equations for most of the
shells with L/R = 9. The largest difference is about 34%.

22,24
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3(1-v?)
En’
study and obtained by Soong,” by using Sanders’ equations and Donnell’s equations, are shown
in Table 17 for selected values of 0.5 <L/R £40 and for R/h =100, 300, 500, 700, 1100, 1500,
and 1900. Results obtained in the present study by using Sanders’ equations are given in this table
for live and dead pressure loads. All results in the table based on Donnell’s equations are for dead
pressures loads. It is noteworthy to point out that Soong uses a variant of Sanders’ equations that
have geometric stiffnesses that are different from those used in the present study. This variant of
Sanders’ equations was derived previously by Hoff & Soong.*

crp 2
Values of the nondimensional buckling pressures * obtained in the present

The results shown in Table 17 indicate that buckling pressures obtained in the present study
by using Sanders’ equations with live pressure are to a large extent identical to the corresponding
results obtained by Soong. For the few results that differ, the difference is less than 1%. Similarly,
the buckling pressures obtained in the present study by using Donnells’ equations with dead
pressure are almost identical to the corresponding results obtained by Soong, and the few
differences are less than 0.1%. The results in Table 17 also show that significant differences
between predictions based on live and dead pressure loads arise as the shells become longer and
thicker. The maximum difference for this case is about 33%.

The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s and Sanders’ equations with dead pressure and Sanders’ equations with live pressure
are illustrated in figures 24-27 for cylinders with radius-to-thickness ratio R/h = 50, 100, 500, and
1000, respectively, and with a Poisson’s ratio v = 0.30. In these figures, the buckling resistance is

erey 3

measured by the nondimensional buckling pressure pDR for values of 0.2 <L/R <50. The black

festoon curves in each figure correspond to results obtained by using Sanders equations with live
pressure and approaches a value of three as L/R approaches 50, with the faster convergence being
exhibited by the cylinder with R/h = 50. The blue and red festoon curves in each figure correspond
to results obtained by using Sanders equations with dead pressure and Donnell’s equationswith
dead pressure, respectively. These two curves approach a value of four as L/R approaches 50.

The results in figures 24-27 exhibit significant differences in the buckling resistance
predictions obtained from the three set of equations, with the black curves generally exhibiting
the lowest values of buckling resistance. The highest values of buckling resistance are obtained
by using Sanders’ equation with dead pressure. In addition, the results obtained by using
Donnell’s equations predicted, for many cases, nearly the same level of buckling resistance as the
corresponding results obtained by using Sanders’ equation with dead pressure. More specifically,
the percent difference in the buckling pressures with respect to the results obtained by using
Sanders’ equations with live pressure are shown in figures 28-31 for R/h =50, 100, 500, and 1000,
respectively. In particular, points of the red curves are obtained by computing the absolute value
of the difference between buckling pressures obtained by using Donnell’s equations with dead
pressure and then dividing the result by the corresponding buckling load obtained from Sanders’
equations with live pressure. The blue curve is obtained in a similar manner with the results
obtained by using Donnell’s equations replaced with the results obtained by using Sanders’
equations with dead pressure.
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The results in figures 28-31 show some significant differences in the buckling resistance
predictions obtained from the three set of equations. The smaller differences occur for the shorter
cylinders and the differences become less pronounced as R/h increases. The commonality of the
curves shown in these four figures is illustrated in figure 32. This commonality was found by
normalizing the cylinder length-to-radius ratio, shown as the abscissa in figures 28-31, by the
corresponding value at which the first mode occurs with m =1 and n=2, denoted by L, /R,
that is predicted by Sanders’ equations with live pressure. As seen in figure 32, this normalization
effectively eliminates the dependence of the curves on R/h for all practical purposes. Moreover,
Sanders’ equations with dead pressure exhibit larger differences than the corresponding cases
obtained by using Donnell’s equations with dead pressure. For shorter cylinders with L/L , <4,
the differences are less than 8%. In contrast, differences in excess of 20% occur for the cylinders
with L/L,, >1.6.

A concise representation of the buckling behavior predicted by using Donnell’s equations
with dead pressure and Sanders’equations with live pressure is presented in figure 33. The

corresponding results in figures 24-27 are shown in figure 33 by also using an affine mapping of

the abscissa and ordinate. In particular, the ordinate is defined as the buckling-pressure ratio P=
p
where
. 1 Eh
I AT 124
PTA =V R (124)

is the buckling pressure obtained by applying Sanders’ equations with live pressure to an
infinitely long cylinder. In particular, equation (124) is obtained by from the condition that

orpy 3

DR —3 as % — oo. The abscissa is defined by % n/ % - With this representation, the black

curves shown in figures 24-27 become the black, nearly identical, curves shown in figure 33.
Similarly, the red curves shown in figures 24-27 become the red, nearly identical, curves shown
in figure 33.

The nearly identical group of black curves and group of red curves shown in figure 33 each
represent a single "master" curve to within the accuracy of the material properties used to
calculate the results. Overall, these results indicate that differences as large as 33.3% may occur
for values of the abscissa greater than 2. Similar curves were obtained for values of v=20.10, 0.20,
and 0.40 and for values of E =5.0 x 10° psi, 30.0 X 10° psi, and 40.0 X 10° psi. These additional
curves were practically identical to the corresponding curves appearing in figure 33.

Uniform hydrostatic pressure loads. Results for unstiffened isotropic cylinders subjected
to uniform hydrostatic pressure are shown in Tables 18-21. In these tables, Poisson’s ratio v =
0.30 unless specified otherwise. First, predicted values of the nondimensional buckling pressure

or 2

RL . . . . . .
P = obtained in the present study and obtained by Yamaki," by using Donnell’s equations, are
T
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presented in Table 18 for selected values of Batdorf’s parameter,™ z = % J/1-v" | in the range of
0 <Z <100000 (see figure 7). The results obtained in the present study were computed for a
thickness h = 0.1 in. and a radius-to-thickness ratio R/h = 1000. In addition, the results obtained
from Donnell’s equations are for a dead pressure loading, whereas the results based on Sanders’
equations are for live pressure loads. The results in this table indicate nearly identical predictions
for the two sets of results based on Donnell’s equations, with most differences being less than
0.5%, and the largest being about 1.6%. Moreover, the results based on Sanders’ equations, with
and without nonlinear rotations about the normal neglected, differ from the corresponding results
obtained by using Donnell’s equations by about 2.4%.

Values of the nondimensional buckling pressure % x 10’ obtained in the present study

and obtained by Fan et. al.,” using Fliigge’s and Donnell’s equations; by Sobel,” using Donnell’s
equations; and by Ashour and Sobel,” using Sanders’ equations, are presented in Table 19 for R/
h =100 and selected values of 0.5 <L/R < 10. The results obtained from Donnell’s equations are
for a dead pressure loading, whereas the results based on Sanders’ and Fliigge’s equations are for
live pressure loads. Analysis of the results in this table reveals that buckling pressures predicted
by Fliigge’s equations are within 0.1% of the corresponding results obtained in the present study
by using Sanders’ equations with live pressure. Similarly, all results in the table that are based on
Donnell’s equations are within 0.1% of the corresponding results obtained in the present study by
using Donnells’ equations. The table also shows that using a dead pressure load instead of a live
pressure load yields differences between 6% and 12% in the results based on Sanders’ equations
for shells with L/R > 4. In addition, neglecting the nonlinear rotations about the normal in Sanders
equations with live pressure is seen to have a very small effect. Comparing the corresponding
results obtained in the present study by using Sanders’ equations with live pressure and Donnell’s
equations with dead pressure indicates differences less than 5% for L/R <9. For L/R =9 and 10,
the differences are approximately 7% and 9%, respectively.

3(1-v7)
En’
study and obtained by Soong® by using Sanders’ equations and Donnell’s equations are shown in
Table 20 for selected values of 0.5 <L/R <40 and for R/h =100, 300, 500, 700, 1100, 1500,
and 1900. Results obtained in the present study by using Sanders’ equations are given in this table
for live and dead pressure loads. All results in the table based on Donnell’s equations are for dead
pressures loads. The results presented in this table indicate that buckling pressures obtained in the
present study by using Sanders’ equations with live pressure are to a large extent identical to the
corresponding results obtained by Soong. For the few results that differ, the difference is less than
0.3%. Similarly, the buckling pressures obtained in the present study by using Donnells’
equations with dead pressure are identical to the corresponding results obtained by Soong. The
results in Table 20 also show that significant differences between predictions based on live and
dead pressure loads arise as the shells become longer and thicker. The maximum difference for
this case is about 33%.

crp 2 . .
Values of the nondimensional buckling pressures P ® obtained in the present
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Predicted values of the nondimensional buckling pressure % obtained in the present

study and obtained by Singer et al.,”**' using Donnell’s equations, are shown in Table 21 for
selected values of 0.4 <L/R <10 and for 19 values of R/h between, and including, 50 and 2000.
Results obtained in the present study by using Sanders’ equations are given in this table for live
pressure loads and the results based on Donnell’s equations are for dead pressures loads. The
results presented in this table indicate that buckling pressures obtained in the present study by
using Donnell’s equations are almost identical to the corresponding results obtained by Singer et
al., with the largest difference being about 0.04%. The results in Table 21 also show that
differences in the corresponding results obtained in the present study by using Sanders’ equations
with and without nonlinear rotations about the normal are less than 0.1%. Likewise, the
differences in the corresponding results obtained in the present study by using Sanders’ equations
and Donnell’s equations are for the most part less than 1%, with a maximum difference of
approximately 1.8%.

The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s and Sanders’ equations with dead pressure and Sanders’ equations with live pressure
are illustrated in figures 34-37 for cylinders with R/h =50, 100, 500, and 1000, respectively, and
with a Poisson’s ratio v = 0.30. In these figures, the buckling resistance is also measured by the

nondimensional buckling pressure % for values of 0.2 <L/R <50. The black festoon curves

in each figure correspond to results obtained by using Sanders’ equations with live pressure and
approaches a value of three as L/R increases without bound, with the faster convergence being
exhibited by the cylinder with R/h = 50. The blue festoon curves in each figure correspond to
results obtained by using Sanders’ equations with dead pressure and approach a value of four as
L/R increases without bound. The red festoon curve in each figure corresponds to results obtained
by using Donnell’s equations with dead pressure.

The results in figures 34-37 show significant differences in the buckling resistance
predictions obtained from the three set of equations, with the black curves generally exhibiting
the lowest values of buckling resistance, particularly for L/R <30. The highest values of buckling
resistance are generally obtained by using Sanders’ equation with dead pressure. A direct
quantitative depiction of the differences between buckling predictions obtained by using the three
different sets of equations is presented in figures 38-41. More specifically, the percent difference
in the buckling pressures with respect to the results obtained by using Sanders’ equations with live
pressure are shown in figures 38-41 for R/h =50, 100, 500, and 1000, respectively. Points of the
red curves are obtained by computing the absolute value of the difference between buckling
pressures obtained by using Donnell’s equations with dead pressure and then dividing the result
by the corresponding buckling load obtained from Sanders’ equations with live pressure. The blue
curve is obtained in a similar manner with the results obtained by using Donnell’s equations
replaced with the results obtained by using Sanders’ equations with dead pressure.

The results in figures 38-41 show some significant differences in the buckling resistance

predictions obtained from the three set of equations. The smaller differences occur for the shorter
cylinders and the differences become less pronounced as R/h increases, in a manner similar to that
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seen for the cylinders subjected to external pressure. The commonality of the curves shown in
figures 38-41 is illustrated in figure 42. This commonality was also found by normalizing the
cylinder aspect ratio shown as the abscissa in figures 34-37 by the corresponding value at which
the first mode occurs with m=1 and n=2, denoted by L, /R, thatis predicted by Sanders’
equations with live pressure. As seen in figure 42, this normalization also effectively eliminates
the dependence of the curves on R/h for all practical purposes. Moreover, Sanders’ equations with
dead pressure exhibit larger differences than the corresponding cases obtained by using Donnell’s
equations with dead pressure, for the most part. For shorter cylinders with L/L , <4, the
differences are less than 8%. In contrast, differences in excess of 20% occur for the cylinders with
L/L, > 1.6.

A concise representation of the buckling behavior predicted by using Donnell’s equations
with dead hydrostatic pressure and Sanders’equations with live hydrostatic pressure is presented
in figure 43. The corresponding results in figures 34-37 are shown in figure 43 by also using the
same abscissa and ordinate that appears in figure 33 for cylinders subjected to external pressure.
With this representation, the black and red curves shown in figures 34-37 become the nearly
identical black and the nearly identical red curves, respectively, shown in figure 43.

Like for the case of external pressure, the nearly identical group of black curves and group of
red curves shown in figure 43 each represent a single "master" curve to within the accuracy of the
material properties used to calculate the results. Altogether, these results indicate that extremely
large differences in the buckling resistance predicted by the two sets of equations occur for values
of the abscissa greater than about 1.5. Similar curves were obtained for values of v =10.10, 0.20,
and 0.40 and for values of E =5.0 X 10° psi, 30.0 X 10° psi, and 40.0 X 10° psi. These additional
curves were also practically identical to the corresponding curves appearing in figure 43.

Axial compression and fixed internal pressure loads. No relevant tabular data for this case
were found in the present study. However, in a study presented by Hutchinson,” based on
Donnell’s equations, the formula

=1 +%q (125a)

where o*, is given by equation (122) and

2

) (125b)

=P /3(1-v)

-

is given that is in complete agreement with the corresponding results of the present study. This
formula is obtained by noting that the stress at buckling, o, is the buckling stress of the
corresponding unpressurized cylinder plus the axial tension stress caused by the internal pressure,

%. In addition, when the internal pressure vanishes, the buckling predictions obtained in the

present study correspond to compression-loaded cylinders, which have been shown herein to be,
for the most part, in excellent agreement with corresponding published results.
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The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s and Sanders’ equations with dead internal pressure and Sanders’ equations with live
internal pressure are illustrated in figures 44-47 for cylinders with radius-to-thickness ratio R/h =
50, 100, 500, and 1000, respectively, and with a Poisson’s ratio v = 0.30. In these figures, the

buckling resistance is measured by the nondimensional buckling coefficient NxR - for values of
D

0.2 <L/R £ 50. Several curves are presented in each figure for values of the nondimensional
internal pressure in the range 0 <q < 1. The solid black curves in each figure correspond to
results obtained by using Sanders equations with live internal pressure, with the lowest festoon
curve corresponding to results for unpressurized cylinders (g = 0). In figures 44 and 45, a portion

of the solid black curve obtained by using Sanders’ equations is shown that corresponds to
column-like buckling modes with one half wave along the cylinder length. In addition, a solid
gray curve is shown in these two figures that corresponds to results obtained from the Euler
column-buckling equation for a thin-walled tube. The red curves in each figure corresponds to
results obtained by using Donnell’s equations with dead pressure.

The results in figures 44-47 show that as the internal pressure increases, the curves based on
Sanders’ equations generally transition from festoon curves to a horizontal straight line, and the
buckling resistance increases. For the thicker cylinders with R/h = 50 and 100, the black curves
transition to a monotonically decreasing parabola-like curve associated with column buckling as
the values of L/R increase. In all cases, the results based on Donnell’s equations are horizontal
straight (red) lines.

Careful analysis of the curves shown in figures 44-47 reveals that as the internal pressure
increases, the differences between the corresponding results obtained by using Sanders’ and
Donnell’s equations disappear. Moreover, this trend is accelerated as R/h increases. The results
also show substantial differences in the buckling resistance predictions obtained from the two sets
of equations for the thicker shells with R/h =50 and 100. For the thinner shells, figures 27 and 28
show no differences in the buckling predictions for the pressurized cylinders obtained from the
two sets of equations.

A set of "master" curves the for internal-pressure-loaded cylinders, corresponding to the
results in figures 44-47, is presented in figure 48. These curves were obtained by noting that the
ordinate and abscissa should be similar to those shown in figure 21 for unpressurized cylinders

(3=0). After a number of attempts, the curves in figures 44-47 were found to come into near

coalescence by first expressing the buckling stress obtained from Euler’s buckling formula for a
simply supported column deformed into a single half wave as

Ofye = EER _du(R) (126)

where the second term is the axial prestress caused by the enclosed internal pressure. Then, like

before, the ordinate is defined as the buckling stress ratio ;T , where
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o _ 1 Eh q 127
0%, = 3(1—\/2) i(1+7) (127)

is the buckling stress obtained by applying Donnell’s equations to an infinitely long, pressurized

e
O*

cylinder, given by equations (125). The abscissa is also defined by , as before, but uses

Euler

equations (126) and (127). After algebraic simplification, it is found that

(128)

By using this representation, it was found that the solid black curves shown in figures 44-47

become the red, nearly identical, curves shown in figure 48 when (%)C—l 1s used as the

nondimensional internal-pressure parameter. Similar curves were obtained for values of v=0.10,
0.20, and 0.40 and for values of E =5.0 x 10° psi, 30.0 X 10° psi, and 40.0 X 10° psi. These
additional curves were practically identical to the corresponding curves appearing in figure 48.
Altogether, the results in figure 48 give a very complete, compact representation of a very broad
range of problem variables.

Torsion loads. Results for unstiffened isotropic cylinders with Poisson’s ratio v =0.30 and
subjected to uniform torsional shear at the cylinder ends are shown in Tables 22-23. Specifically,

cr 2
Xy

predicted values of the shear-buckling coefficient = obtained in the present study and
T

obtained by Batdorf, et.al.,” Yamaki,* and Yamaki and Kodama® using Donnell’s equations are

presented in Table 23 for selected values of Batdorf’s Z parameter,” z = % V1-v", in the range

of 0<Z<100000 (see figure 7). The results obtained in the present study in Table 22 were
computed for a thickness h = 0.1 inch and R/h = 100. Predicted values of the shear-buckling

cr 2

. N, R . . . .
coefficient 5 obtained in the present study and obtained by Baruch, et.al.,”**" using

Donnell’s equations are presented in Table 23 for selected values of 0.35 <L/R <3 and 100 <
R/h £2000. For both tables, the results of the present study are based on the approximate three-
parameter, approximate Rayleigh-Ritz solution given by equations (108), that include the number
of axial half waves m, the number of full circumferential waves n, and the skewedness parameter
T as the unknowns.

The results presented in Tables 22 and 23 indicate that the approximate three-parameter
Rayleigh-Ritz solution presented herein is, for the most part, inadequate for predicting shear
buckling loads of isotropic cylindrical shells. However, for values of Z < 40, the differences
predicted by the analysis of the present study and those of references 52-56 are between 6% to
10%. In addition, the approximate three-term Rayleigh-Ritz solution presented herein gives the
same result obtained by Timoshenko and Gere™ (see p. 382-383) for an infinitely long plate (Z =
0).
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Uniform hydrostatic pressure and torsion loads. Predicted values of the nondimensional

buckling pressure, % x 10" , obtained in the present study and obtained by Fan, et al.* by using

Donnell’s and Fliigge’s equations are presented in Table 24 for R/h =100 and selected values of
0.5 <L/R £10. The results based on Donnell’s equations are for dead hydrostatic pressure and
the results based on Fliigge’s and Sanders’ equations are for live hydrostatic pressure. In addition,
the results of the present study are based on the approximate three-parameter Rayleigh-Ritz
solution given by equations (108). The results obtained by Fan, et al. are based on an exact
solution of the differential equations governing the behavior.

The results in Table 24 indicate that the differences between the buckling pressures obtained
herein, by using Sanders’ equations, and obtained by Fan, et al., by using Fliigge’s equations, are
less that 4.5%, and the differences decrease to about 1.2% as L/R increases to a value of 10.
Likewise, the buckling pressures obtained herein and by Fan, et al. by using Donnell’s equations
are less that 4.4%, and the differences decrease to about 1.6% as L/R increases to a value of 10.
The results of the present study shown in Table 24 also indicate that neglecting nonlinear rotations
about the normal in Sanders’ equations produces differences in the buckling loads of less than 1%.
In contrast, the differences between the results obtained by using Sanders’ equations and
Donnell’s equations in the present study range from less than 1% at L/R = 0.5 to less than about
5% at L/R = 6.0. For L/R = 10.0, the difference is about 8.6%. The corresponding differences
between the results of Fan, et al. obtained by using Fliigge’s and Donnell’s equations are nearly
identical to those obtained in the present study. Altogether, the results of Tables 22-24 indicate
that the approximate three-parameter Rayleigh-Ritz solution presented herein may be much more
applicable to isotropic cylinders subjected to combined hydrostatic pressure and torsion than to
cylinders subjected to pure torsion loads.

Stiffened Isotropic Cylinders

Axial compression loads. Comparisons for stiffened isotropic cylinders subjected to
uniform axial compression are presented in Tables 25-54. In particular, the results in Tables 25

and 26 show the predicted values of the nondimensional buckling load II:ZIE obtained by Block,

Card, and Mikulas* and obtained in the present study for ring-and-stringer-stiffened cylinders and
stringer-stiffened cylinders, respectively, with a cylinder radius R =200.0 inches, wall thickness
is h=0.10 inch, a Young’s modulus E = 10 x 10° psi and a Poisson’s ratio v = 0.32. More
specifically, results are presented for cylinders with 503 stringers, which corresponds to a stringer
spacing d =2.50 inches. The results in Table 25 are for cylinders with length L =200.0 in. and
with internal rings and external stringers, internal rings and internal stringers, and external rings
and external stringers. The results in Table 25 are presented for selected values of the ring spacing
d, divided by the cylinder radius. The results in Table 26 are for cylinders with either internal or
external stringers and are given for selected values of the length-to-radius ratio 0.15 < L/R £0.50.
The corresponding eccentricities of the rings and stringers are denoted by the values of e, and e,
respectively, presented in the tables. The rings have an I-shaped cross-section (figure 49a) with
an area A = (0.78 in’, a centroidal moment of inertia I = 1.9786 in*, and a torsion constant J =
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0.0026 in*. The stringers have a Z-shaped cross-section (figure 49b) with an area A = 0.36 in’, a
centroidal moment of inertia I =0.2112 in*, and a torsion constant J =0.0012 in". In the definition
of the nondimensional buckling load appearing in these tables, N “ is the value of the applied axial

stress resultant at buckling and h = ‘3 +h is an equivalent cylinder wall thickness with a value

s

of 0.24 inch.

The results presented in Table 25 for the ring-and-stringer-stiffened cylinders indicate that
the nondimensional buckling loads obtained in the present study and by Block, Card, and Mikulas
by using Donnell’s equations are identical with three exceptions. Differences of approximately 0.
02%, 0.03% and 3.4% are exhibited by the results for the cylinders with external rings and
external stringers for d/R = 0.05, 0.10, and 0.25, respectively. The results obtained in the present
study by using Sanders’ equations indicate that neglecting the nonlinear rotations about the
normal produces differences that are at most 0.6%. In addition, differences in predictions based
on Sanders’ and Donnell’s equations are for the most part less than 1%. Differences of about 1.5%
are noted for the cylinders with internal rings and internal stringers for d/R = 0.20 and 0.25.

The results presented in Table 26 for the stringer-stiffened cylinders indicate that the
nondimensional buckling loads obtained in the present study and in reference 59 using Donnell’s
equations are also identical for the most part and that the differences that exist are less than 0.2%.
The results in Table 26 obtained in the present study by using Sanders’ equations indicate that
neglecting the nonlinear rotations about the normal produces differences that are at most 0.5%.
Similarly, differences in the predictions based on Sanders’ and Donnell’s equations are also at
most 0.5%.

Results are presented in Table 27 that show the predicted values of the nondimensional

cr

buckling load % obtained by Block, Card, and Mikulas™ and obtained in the present study for

11
ring-stiffened cylinders with a circumferentially corrugated cylinder wall, as shown in figure 49c.
An example of a similar corrugated cylinder is shown in figure 50. These corrugated cylinders
have a cylinder radius R =200.0 inches, a length L =200.0 inches, a Young’s modulus E = 10 X
10° psi and a Poisson’s ratio v = 0.32. The rings have the cross-sectional dimensions shown in
figure 49a and the ring eccentricity is given by

e, == (wc sinoc+hC+Dr) (129)

N|—

where the plus and minus signs in front of the parenthesis correspond to external and internal
rings, respectively. The results in Table 27 are presented for selected values of the ratio of the ring
spacing to the cylinder radius, d/R. The nonzero equivalent-plate stiffnesses used in the
calculations are given by

_ 2Eh,
A= 1 + coso (1303.)
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A, = EA: (130b)

d,
A= 4(]15—51;\))(1 + cosal) (130c)
B, = ALe, (130d)
D, = ";3 A, sin‘o (130¢)
D22=§(Ir+Aref) (1301)
D= 8(1Efrv)dr (130g)

The rings have an I-shaped cross-section with an area A = 0.78 in’, a centroidal moment of inertia
I.=1.9786 in*, and a torsion constant J = 0.0026 in". The ring eccentricity was found to be given
by e =+3.812 in.

The results in Table 27 indicate exact agreement between the nondimensional buckling loads
predicted in the presented study and in reference 59 otained by applying Donnell’s equations to
the corrugated cylinders with external rings. Moreover, because the buckling mode is
axisymmetric, the results based on Donnell’s and Sanders’ equations are identical. For the
cylinders with internal rings, the results indicate differences between the nondimensional
buckling loads obtained herein and in reference 59 that are approximately 0.4%. Differences
between the results obtained herein by using Donnell’s and Sanders’ equations are at most 0.3%.

Results are presented in Table 28 that show the predicted values of the buckling load N
obtained by Hedgepeth and Hall,” by Singer, et al.,” and obtained in the present study for the
cylinders with 60, either internal or external, stringers with a rectangular cross-section that were
originally studied by Card and Jones.”* The cylinder, in a buckled form, and the stringer details
are shown in figure 51. The results obtained in reference 60 are based on a variant of Sanders’
equations in which certain nonlinear terms in the equilibrium equations are neglected. The results
obtained in reference 61 are based on Donnell’s equations and include results that show the effects
of neglecting the torsional stiffness of the stringers (J, = 0). The cylinders have a radius R =9.55
in., lengths L =38.00 and 23.75 in., a Young’s modulus E = 10.5 X 10° psi and a Poisson’s ratio
v =0.32. Each stringer has width of w_=0.097 in. and a depth D, =0.33 - h in., where h is the
cylinder wall thickness given in the table. Moreover, the external and internal stringer have
eccentricities e, = 0.165 in. and e, =- 0.165 in., respectively, with respect to the midsurface of
the cylinder, and the stringer spacing is given by d_= 1.0 in. In the present study, the torsion
constant used for each stringer is given by
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Js=%was (131)

Results for the same cylinder obtained in the present study and by Card and Jones® are presented
in Table 29. These results are based on the more exact expression for the torsion constant given
by the theory of elasticity; that is,

(132)

2w

s

J = was|l _ 64 W Tanh(

nDS)
3 D

s

The results presented in Table 28 indicate that the buckling loads obtained in the present
study and in reference 61 by using Donnell’s equations differ by about 2%. In addition, the results
presented in reference 61, obtained by using Donnell’s equations, show that neglecting the
torsional stiffness of the stringers yields buckling resistance predictions that are between 12% and
15% lower for the cylinders with external stringers and between 18% and 20% lower for the
cylinders with internal stringers. Corresponding results obtained in the present study predict
nearly the same reductions in buckling resistance associated with neglecting the torsional stiffness
of the stringers and a similar trend is indicated in reference 63. The results in Table 28 obtained
in the present study by using Sanders’ equations and obtained by Hedgepeth and Hall by using a
variant of Sanders’ equations show differences of about 0.5% and 2.3% for the cylinders with
external stringers and lengths equal to 38 in. and 23.57 in., respectively. Moreover, differences of
about 4.9% and 1.4% are exhibited by the cylinders with internal stringers and lengths equal to
38 in. and 23.57 in., respectively. The results in Table 28 obtained in the present study by using
Sanders’ equations indicate that neglecting the nonlinear rotations about the normal produces
differences between approximately 2-4%. Similarly, differences in the predictions based on
Sanders’ and Donnell’s equations are between 3% and 8%.

The results in Table 29, for the more accurate representation of the torsional stiffness of the
stringers, show differences of less than 0.2% in the corresponding buckling loads obtained by
Card and Jones and in the present study by using Donnell’s equations. The results in this table,
obtained in the present study by using Sanders’ equations, indicate that neglecting the nonlinear
rotations about the normal also produces differences between approximately 2-4%. Similarly,
differences in the predictions based on Sanders’ and Donnell’s equations are between 3% and 8%.

Results are presented in Tables 30 and 31 that show the predicted values of the buckling load

N, obtained by Hedgepeth and Hall,” by Card and Jones,” and obtained in the present study for
the cylinders with 60, either internal or external, Z-shaped stringers that were originally studied
by Peterson and Dow® and by Card.” The cylinder is shown in a buckled form in figure 52. The
results obtained in reference 60 are also based on a variant of Sanders’ equations in which certain
nonlinear terms in the equilibrium equations are neglected. The results obtained in reference 63

are based on Donnell’s equations. Results obtained in the present study include results that show
the effects of neglecting the torsional stiffness of the stringers (J,=0). Each cylinder has a stringer
spacing is given by d_=1.24in., a Young’s modulus E = 10.5 X 10° psi and a Poisson’s ratio v
=0.32. The results in Table 30 are based on a cylinder radius R = 15.80 in. and a length L =159.0
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in., and several cylinder-wall thicknesses h that are presented in the table. This radius was
initially reported by Card” and is slightly different from the radius R = 15.92 in. used in Table 31
and reported later by Card and Jones. ® Each stringer has a depth D, = 0.54 in., a wall thickness
h, = 0.040 in., and flange thicknesses w, =0.375 in. and w, = 0.22 in., as shown in the figure 52.
The stringer eccentricities are given by the values of e, indicated in the tables. In the present
study, the stringer area was calculated by using

A, =(wy +w,+D,—2h )h, (133a)

and the stringer eccentricity shown in figure 33 was obtained by using

e, ==t

wa(h+h,)+w,(2D,+h—h,) + (D, - 2h,)(D, + h)] (133b)

w, + w, + D—2h,

where the plus and minus signs in front of the bracket correspond to external and internal
stringers, respectively. Similarly, the centroidal moment of inertia was calculated by using

c hz h, 3 1 2
L= g3(wa # ) # 73(D.=20) = wih[e, - 3(h b)) (133¢)
+ WQhS[DS R %(h - hs)]z +h,(D, - 2hs)[%(h +D,) - es]z
and the torsion constant used for each stringer is given by
3, =R (w, +wa+ D, 2h)) (133d)

The results in Table 30 that were obtained in the present study by using Sanders’ equations
and obtained by Hedgepeth and Hall by using variant of Sanders’ equations show a difference in
predicted buckling loads of approximately 0.3% and 4% for the cylinders with internal and
external Z-shaped stringers, respectively. The results of the present study obtained by using
Sanders’ equations indicate that neglecting the nonlinear rotations about the normal yields
differences in the buckling loads of about 3%. Corresponding differences in results obtained from
Sanders’ and Donnell’s equations are predicted to be approximately 5-6%.

The results in Table 31 show differences between 0.7% and 4.4% in the buckling loads
obtained in the present study and in reference 63 that are based on Donnell’s equations. Moreover,
reductions in the buckling loads of about 0.8-2.2% are predicted by the results of the present study
when the torsional stiffness of the stringers is neglected. A corresponding 1% difference is noted
in reference 63. The results of the present study that were obtained by using Sanders’ equations
indicate that neglecting the nonlinear rotations about the normal yields differences in the buckling
loads that are between approximately 0.7% and 2.1%. Similarly, the differences between
corresponding buckling loads obtained by using Sanders’ and Donnell’s equations range from
1.1% to 6.2%.
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Results are presented in Tables 32-49 that show the predicted values of the buckling

161,65

coefficient 2le) R obtained by Singer, Baruch, and Harari

and obtained in the present study

for generic stringer-stiffened isotropic cylinders, for a broad range of cylinder geometries. In
particular, results are given for length-to-radius ratios 0.25 <L/R <20 and for radius-to-thickness

ratios 50 < R/h £50000. The generic stringer properties are given by % =0.5 , dlfl3 =5, and

J.=0,where A_is the cross-sectional area, d_ is the stringer spacing, L. is the centroidal moment

of inertia, and J_ is the torsion constant. The results in Table 32 are for cylinders with stringers
that are centrally located such that the centroid of the stiffener coincides with the middle surface
of the cylinder. For this case, the nondimensional stiffener eccentricity is given by e/h = 0. The
results in Table 33 are for cylinders with external and internal stringers, respectively, with e/h =
+2 and -2, respectively. Likewise, the results in Tables 34 and 35 are for cylinders with e/h =
+5 and -5, and the results in Table 36 are for cylinders with e/h =+10 and -10. In the buckling

Eh’

21V is the principal bending stiffness of the

coefficient appearing in the tables, D =

cylinder wall, E is Young’s modulus, and v is Poisson’s ratio. A value of v =0.3 was used to
generate the results shown in the tables.

The results in Table 32, for the cylinders with centrally located stringers, show differences
less than approximately 0.01% in the buckling loads obtained in the present study and in
reference 65 by using Donnell’s equations. The results of the present study obtained by using
Sanders’ equations indicate that neglecting the nonlinear rotations about the normal yields
differences in the buckling loads that are between approximately 0.4% and 1.5%. Similarly, the
differences between corresponding buckling loads obtained by using Sanders’ and Donnell’s
equations range from 0.7% to 2.8%.

The results in Table 33, for the cylinders with external stringers (e /h =+ 2), show differences
less than approximately 0.01% in the buckling loads obtained in the present study and in
reference 65 by using Donnell’s equations. The results of the present study obtained by using
Sanders’ equations indicate that neglecting the nonlinear rotations about the normal yields small
differences in the buckling loads that are between approximately 0.4% and 1.5%. Similarly, the
results also show that the differences between corresponding buckling loads obtained by using
Sanders’ and Donnell’s equations range from 0.8% to about 3%.

The results in Table 33, for the cylinders with internal stringers (e /h = - 2), show differences
less than approximately 0.05% in the buckling loads obtained in the present study and in
reference 65 by using Donnell’s equations. Moreover, the differences in buckling coefficients that
result from neglecting nonlinear rotations about the normal in Sanders’ equations range between
about 0.5% and 2.5%, and the differences between the results obtained by using Sanders’ and
Donnell’s equations range from 1% to about 3.5%.

The results in Table 34, for the cylinders with external stringers (e/h=+5), show differences
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less than approximately 0.11% in the buckling loads obtained in the present study and in
reference 65 by using Donnell’s equations. For many of the cases, the results obtained herein and
in reference 65 are identical. The results of the present study obtained by using Sanders’ equations
indicate that neglecting the nonlinear rotations about the normal yields differences in the buckling
loads that are between approximately 0% and 11%. More specifically, for the relatively short,
thick cylinder with L/R = 0.25 and R/h = 50, the difference is about 6%. In contrast, the cylinders
with 0.35 <L/R £ 1 and 50 < R/h £ 50000, exhibit differences in buckling loads less than 1%.
Similarly, the cylinders with L/R = 1.5 and 2, and with 50 < R/h <2000 exhibit differences
between 0.6 and 2%. The longer cylinders considered, with 4 < L/R <20 and 50 < R/h £2000,
exhibit differences between 1.5% and 11%.

The results in Table 34 also show that the differences between corresponding buckling loads
obtained by using Sanders’ and Donnell’s equations range from 0% to about 23%. In particular,
the relatively short, thick cylinder with L/R = 0.25 and R/h = 50, exhibits a difference of about
6%. The cylinders with 0.35 <L/R <1 and 50 <R/h £50000, exhibit differences in buckling loads
less than 1.1%. Similarly, the cylinders with L/R = 1.5 and 2, and with 50 < R/h <2000 exhibit
differences between 1.3 and 4%. The longer cylinders with 4 < /R <20 and 50 < R/h <2000,
exhibit differences between 2.7% and 23%.

The results in Table 35, for the cylinders with internal stringers (e/h=-5), show differences
less than approximately 0.6% in the buckling loads obtained in the present study and in reference
65 by using Donnell’s equations. Like for the cylinders with external stringers, many of the results
obtained herein and in reference 65 are identical. The results of the present study obtained by
using Sanders’ equations indicate that neglecting the nonlinear rotations about the normal yields
differences in the buckling loads that are between approximately 0.02% and 15% for the very
broad range of cylinder geometries considered. For the relatively short, thick cylinders with L/R
=0.25 and 0.35, and with R/h = 50, the differences are about 15% and 7%, respectively. In
contrast, the cylinders with 0.5 < L/R <1 and 50 < R/h £ 50000, exhibit differences in buckling
loads that range from 0.2% to 5%. Similarly, the cylinders with L/R = 1.5 and 2, and with 50 <R/
h <2000 exhibit differences between about 0.3 and 5%. The longer cylinders considered, with
4 <L/R £20 and 50 < R/h £2000, exhibit differences between 0.3% and 10%.

The results in Table 35 also show that the differences between corresponding buckling loads
obtained by using Sanders’ and Donnell’s equations range from 0.03% to about 20%. For the
relatively short, thick cylinders with L/R = 0.25 and 0.35, and with R/h = 50, differences of about
15% and 8% are predicted, respectively. The cylinders with 0.5 <L/R <1 and 50 < R/h <50000,
exhibit differences in buckling loads between about 0.3% and 5%, with the thicker cylinders
exhibiting the larger differences. Similarly, the cylinders with L/R = 1.5 and 2, and with 50 <R/
h <2000 exhibit differences between 0.7 and 7%, with the thicker cylinders also exhibiting the
larger differences. The longer cylinders with 4 <L/R <20 and 50 <R/h <2000, exhibit differences
between 0.7% and 20%.

The results in Table 36, for the cylinders with external stringers (e /h =+ 10), show
differences less than approximately 0.04% in the buckling loads obtained in the present study and
in reference 65 by using Donnell’s equations. The results of the present study obtained by using
Sanders’ equations indicate that neglecting the nonlinear rotations about the normal yields

84



differences in the buckling loads that are less than approximately 3%. Moreover, for the cylinders
with L/R = 0.5 and 1, the differences are less than about 0.5%. The results in Table 36 also show
that the differences between corresponding buckling loads obtained by using Sanders’ and
Donnell’s equations range from 0.03% to about 6%, with differences less than 0.7% for the
cylinders with L/R = 0.5 and 1.

The results in Table 36, for the cylinders with internal stringers (e, /h = - 10), also show very
small differences, less than approximately 0.03%, in the buckling loads obtained in the present
study and in reference 65 by using Donnell’s equations. In addition, the results obtained herein
predict differences between 0.7% and 9% if the nonlinear rotations about the normal are
neglected. Similarly, using Donnell’s equations instead of Sanders equations produces buckling-
coefficient differences between 0.8% and 10%.

Results for cases similar to those presented in Tables 34 (e/h =+ 5) and 35 (e/h = - 5) for

cylinders with % =05, d1;13 =5, and J =0 are presented in Table 37 for stringer-stiffened

cylinders with a much higher centroidal moment of inertia for the stringers, given by =15.

I,
dn’

Similar results are presented in Table 38 for cylinders with % =15, ﬁ =5, and J =0.In

these two tables, values of the buckling coefficient 2N]5 R are presented for cylinder geometries

that include 0.5 < L/R < 3 and 50 < R/h £ 1000. The results in Tables 37 and 38, for both the
cylinders with the stiffer external stringers (e/h =+ 5) and for the cylinders with the stiffer
internal stringers (e/h = - 5), show differences much less than approximately 1% in the buckling
loads obtained in the present study and in reference 65 by using Donnell’s equations. In addition,
the results obtained herein predict differences less than 3.5% and mostly less than 5% if nonlinear
rotations about the normal are neglected in the analysis of the cylinders with external and internal
stiffeners, respectively. The largest difference is less than 8% when nonlinear rotations about the
normal are neglected in the analysis of the cylinders with internal stiffeners. Similarly, using
Donnell’s equations instead of Sanders equations produces buckling-coefficient differences that
are mostly less than 5%, with a maximum difference of approximately 10%.

A

’a: 5

Results are presented in Table 39 for short shells with L/R =1, 250 <R/h <1000

b

I
dh’
+ 10. Likewise, results are presented in Table 40 for short shells with L/R =2, R/h = 500 and

=5, J =0, and with relatively high degrees of stiffener eccentricity given by e/h =+ 7 and

AS
dh

1000, . =5, J. =0,e/h== 10, and with

o = 1.5, 3, and 5. The results in these two tables

show differences less than 0.1% in the buckling loads obtained in the present study and in
reference 61 by using Donnell’s equations, with one minor exception that exhibits a 4.1%
difference and two major exceptions that exhibit very large differences. Specifically, the results
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presented in reference 61 for —+=0.5 and e/h == 10 are significantly different from the

corresponding results obtalned in the present study for R/h = 500. However, the corresponding
results obtained in the present study for R/h = 1000 are less than 0.05% different from the results
of reference 61. This nearly identical agreement suggests the presence of a typographical error in
reference 61. The results obtained herein that are given in Tables 39 and 40 also predict
differences less than 2.5% when the nonlinear rotations about the normal are neglected in the use
of Sanders’ equations. Similarly, using Donnell’s equations instead of Sanders equations
produces buckling-coefficient differences that are less than 3.2%.

Results are presented in Table 41 for shells with L/R=0.5 and R/h=100, L/R =2 and
R/h=500,and L/R=4 and R/h=2000. For each case, the stringer eccentricity varies according

to - 10<e/h <10 and the stringer properties are fixed at Se=1.5, dlr:f =5, and J =0. These

results show differences less than 0.02% in the buckling loads obtained in the present study and
in reference 65 by using Donnell’s equations. The results obtained herein that are given in Table
41 predict differences less than 5%, and mostly less than 2%, when the nonlinear rotations about
the normal are neglected in the use of Sanders’ equations. Similarly, using Donnell’s equations

instead of Sanders’ equations produces buckling-coefficient differences that are less than 5.1%.

Results are presented in Tables 42 and 43 for shells with L/R=0.5 and R/h=100, L/R =2
and R/h =500, and L/R =4 and R/h=2000, and with the stringer eccentricities e/h=15 and

-5, respectively. For each case, the stringer properties are fixed at d— =5 and J =0, and the

stringer area varies according to 0.1 <-** <1.5. Similar results are presented in Tables 44 and 45

dh

in which the stringer properties are fixed at > =0.5 and J =0, and the stringer moment of

inertia varies according to 1<-—*; ;. h ;<20. These results show differences less than 0.05%, and for

the most part much smaller, in the buckling loads obtained in the present study and in reference
65 by using Donnell’s equations. The results obtained herein that are given in Tables 42-45
predict differences less than 2.3% when the nonlinear rotations about the normal are neglected in
the use of Sanders’ equations. Similarly, using Donnell’s equations instead of Sanders’ equations
produces buckling-coefficient differences that are less than 4.4%.

Results are presented in Tables 46 and 47 for shells with the stringer eccentricities e/h =5
and -5, respectively. These results include combinations of L/R =0.5, 1, and 4 and R/h =50,

250, 2000, and 5000. For each case, the stringer properties are fixed at 3 =5

3

and results are given for selected value of the stringer torsional-stiffness parameter - Sds 0, 5,10,

20, and 40. These results also show differences less than 0.05%, and for the most part much
smaller, in the buckling loads obtained in the present study and in reference 66 by using Donnell’s
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equations. The results obtained herein that are given in Tables 46 and 47 predict differences less
than 5% when the nonlinear rotations about the normal are neglected in the use of Sanders’
equations. Similarly, using Donnell’s equations instead of Sanders’ equations produces buckling-
coefficient differences that are less than 10.2%.

Results for shells with the stringer eccentricities e/h =5 and -5 are also presented in Tables

48 and 49, respectively, for values of Poisson’s ratio v =0, 0.3, and 0.5. These results include
selected combinations of L/R =0.35, 0.5, and 1 and R/h =50, 250, 500, 2000, and 5000. For

each case, the stringer properties are fixed a % =0.5, dh} =5 ,and J = 0. These results also

show differences less than 0.03%, and for the most part much smaller, in the buckling loads
obtained in the present study and in reference 65 by using Donnell’s equations with one exception.
The results in Table 49 for L/R =1, R/h=2000, and v =0 differ by about 5%. The results
obtained herein that are given in Table 48 predict differences less than 2% for the cylinders with
external stringers when the nonlinear rotations about the normal are neglected in the use of
Sanders’ equations. In contrast, the results in Table 49 show differences up to 10% for the
cylinders with internal stringers when the nonlinear rotations about the normal are neglected.
Similarly, using Donnell’s equations instead of Sanders’ equations produces buckling-coefficient
differences that are less than 2% for the cylinders with external stringers and up to 10% for the
cylinders with internal stringers.

Tables 50 and 51 show the geometric parameters and predicted buckling loads, respectively,
obtained by Singer, Arbocz, and Babcock® and obtained in the present study for ring-stiffened and
stringer-stiffened isotropic cylinders. The cylinders identified with the letter "A" are made of
aluminum with a Young’s modulus E =10 X 10° psi and a Poisson’s ratio v = 0.3. The cylinders
identified with the letters "B" are made of brass with a Young’s modulus E = 15.3 X 10° psi and
a Poisson’s ratio v = 0.3. The results include cylinders with length-to-radius ratios 1.28 < L/R <

1.88 and radius-to-thickness ratios 377 <R/h <517. The generic stringer properties given by ?—;

and . | and the corresponding ring properties (‘;‘l; and 1t |
! dh

with their corresponding eccentricities e, and e, normalized by the cylinder wall thickness, h.
All of the cylinders have external stiffeners. In the stiffener parameters, A_ is the stringer cross-

are also given in Table 50 along

sectional area, d is the stringer spacing, I is the stringer centroidal moment of inertia. Likewise,

A is the ring cross-sectional area, d_ is the ring spacing, I is the ring centroidal moment of

inertia. For all the results in Table 51, the torsional stiffnesses of the rings and stringers have been
neglected.

The results in Table 51 show differences less than 4%, and for the most part much smaller,
in the buckling loads obtained in the present study and in reference 66 by using Donnell’s
equations. In addition, the results predict differences less than 1.2% when the nonlinear rotations
about the normal are neglected in the use of Sanders’ equations. Moreover, using Donnell’s
equations instead of Sanders’ equations produces buckling-load differences that are less than
2.5%. In many cases, no differences are exhibited by the three sets of results. This attribute is due
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to the fact that the three sets of equations used to calculate the buckling loads are identical for
shells that buckle into axisymmetric modes (n = 0).

Results are presented in Tables 52-54 that show the predicted values of the buckling

¢-% and obtained in the present study

coefficient 2N1;R obtained by Singer, Baruch, and Harari

for relatively short, generic ring-stiffened isotropic cylinders with L/R = 0.5, a Young’s modulus
E =10 x 10° psi, and a Poisson’s ratio v = 0.3. In Table 52, results are given for R/h =250,

% =05, J.=0, ﬁ =2 and 40, and e/h ==+ 1. These results show that the buckling loads

obtained in the present study and in references 61 and 65 by using Donnell’s equations are
indentical. Moreover, corresponding results were obtained in the present study by using Sanders’
equations with and without nonlinear rotations about the normal that differ by at most 0.03% from

those shown in Table 52. In Table 53, results are given for R/h =250, % =0.5, J.=0,e/h=0,

and 2< It

<200. This table also shows complete agreement between the results of references
dh

61 and 65 and the present study, which are based on Donnell’s equations, and these results also
differ by less than 0.03% from the corresponding results obtained by using Sanders’ equations
with and without nonlinear rotations about the normal. In Table 54, results are given for

é\}; =0.5, dl—[h; =5, J.=0,e/h=+5,and 50 <R/h <2000. This table also shows differences

between the results of references 61 and 65 and the present study, which are based on Donnell’s
equations, that are at most 3% for R/h =50 and e/h=+5 and less than 1% otherwise. These
results obtained in the present study by using Donnell’s equations also differ by less than 1% from
the corresponding results obtained by using Sanders’ equations with and without nonlinear
rotations about the normal.

The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s equations, Sanders’ equations, and Sanders’ equations with nonlinear rotations about
the normal neglected are illustrated in figures 53-94 for stringer-stiffened and for ring-stiffened
cylinders with radius-to-thickness ratios R/h =50 and 500, with Poisson’s ratio v=0.30, and with
Young’s modulus E =10.0 X 10° psi. The buckling resistance is measured by the nondimensional

coefficient NZRh for values of 0.2 <L/R <50, where D= 12(1131132) is the principal shell-wall
D -V

bending stiffness. Parameters that are used to represent the results in these figures are obtained by

expressing equations (65) as

I+= v 0
dA
A ApAg EA, (1343)
ApAnAy|=Al v 1+ 0
A Az Ags ' 1—
0 0 2V
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where A= lli—hvz is the principal membrane stiffness of the shell wall. Thus, %is and ]fifAAf are

the ratios of the smeared-stringer and smeared-ring membrane stiffnesses to the principal

membrane stiffness of the shell wall, respectively. Likewise, dElI) and Elef are the ratios of the

smeared-stringer and smeared-ring bending stiffnesses to the principal bending stiffness of the

GJ, and - 97~ are the ratios of the smeared-

shell wall, respectively. Moreover, 3a(1-VD (1D

stringer and smeared-ring twisting stiffnesses to the twisting stiffness of the shell wall,

respectively. The parameters % and % are the normalized stringer and ring eccentricities,
respectively.

The red curves in figures 53-94 corresponds to results obtained by using Donnell’s equations.
The black and the blue curves corresponds to results obtained by using Sanders’ equations and
Sanders’ equations with nonlinear rotations about the normal neglected, respectively. These
results correspond to a wide range of stringer configurations, as indicated in each figure. As a

c

1 1 ESAS = Esls = Gst = es =
frame of reference, the baseline case is taken as A 1, D s 2401 -vD 0, and 2 0
for stringer-stiffened cylinders. Similarly, the baseline case is taken as if’[:' =1, SJD: =1,
m(?iirv)l) =0, and % = 0 for ring-stiffened cylinders. The right-most branch of the black and

the blue festoon curves shown in figures 53, 55, 57, 59, 61, 63, 65, 67, and 69 correspond to a
column-like shell-buckling mode given by the wave numbers m =n = 1, and the graph
coordinates for the first column-like shell-buckling mode are indicated in the figures. The
corresponding gray curve that appears in these figures corresponds to buckling coefficients
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obtained by using the Euler column-buckling formula

N = ZEL (135)

2

2RL

for a simply supported thin-walled tubular beam with length L, cross-sectional radius R, and
thickness h that is deformed into a single half wave along its length. In this expression, N ...
is the Euler buckling load divided by 2nR and E! is the column bending stiffness. More

specifically, for the ring-stiffened cylinders considered herein, the contribution of the rings to the
column bending stiffness is neglected and the column bending stiffness is approximated by

EnR h. In contrast, for the stringer-stiffened cylinders, £ is taken as the column bending
stiffness of the composite cross-section formed by the cylinder wall and a finite number of

uniformly distributed stringer cross-sections given by ZgiR, Noting that the column bending

s

stiffness El isthe same about either of the two cross-section axes that pass through the geometric
center, it follows that

El=

fj; E(r, ) r’dA (136)

N —

where A denotes the cross-sectional area, (r, 0) are corresponding polar coordinates, and

E(r.6) signifies the fact that the cylinder wall and the stringers may, in general, have different

values for Young’s modulus. Next, equation (136) is partitioned into

=B ff, raas [ raa (137)

where A , is the cross-sectional area of the cylinder walland N_= 2gR is the number of stringer

s

cyl
cross-sections. The coordinate transformation r=R+{ is applied to the first integral,

with — % sCs % and dA = (R + {)dC d6, and the parallel-axis theorem is applied to the second

integral to get

~.

_ o n? h’ |, NE, 2 o
1=nR hE(l + 4R2) - T[AS(RJr e,) + PS] (138)
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where P. is the centroidal polar moment of inertia of the stringers. Equation (138) is

approximated herein by presuming that Lz <<1 and P;<<A(R+e,). which yields
4R

o 3 ESAS €y ’
£l =nR’hE 1+Edsh(1+R) (139)
Now, substituting equation (139) into equation (135) gives
N'...Rh _6R’ , EA e\
x, Euler — _ 5 s _S 140
=S - 1—-v + Ads(1+R) (140)
for the stringer-stiffened cylinders. For the ring-stiffened cylinders,
Ncr 6R3
x,EulerR'h _ (1 _ Vz) (141)

©'D L’h

Several plots that indicate the percent difference in the buckling loads with respect to the
results obtained by using Sanders’ equations are included in figures 53-81. Points of the red
curves appearing in these plots are obtained by computing the absolute value of the difference
between buckling loads obtained by using Donnell’s and Sanders’ equations and then dividing the
result by the corresponding buckling load obtained from Sanders’ equations. The blue curve is
obtained in a similar manner with the results obtained by using Donnell’s equations replaced with
the results obtained by using Sanders’ equations with nonlinear rotations about the normal
neglected.

The results in figures 53-72, for the stringer-stiffened cylinders with R/h = 50, show
significant differences in the buckling resistance predictions obtained from the three set of
equations, with the black curves (Sanders’ equations) generally exhibiting the lowest
corresponding values of buckling resistance. Additionally, the differences are generally more
pronounced as the cylinder length increases. Like for the unstiffened-cylinder results presented
herein, the results obtained by using Sanders’ equations predict a transition to a column buckling
mode at significantly smaller values of L/R than the corresponding results obtained by using
Sanders’ equations with nonlinear rotations about the normal neglected. The results obtained by
using Donnell’s equations predict no transition at all. In addition, the Euler column-buckling
modes predicted by equation (140) are in close agreement with the corresponding results
predicted by Sanders’ equations. Moreover, the buckling loads predicted by equation (140) are
slightly greater than the corresponding buckling loads predicted by Sanders’ equations. This
difference is attributed to the cross-section flexibility inherent to shell theory.

91



- inoer- ion oi EA, — 1 EL — GJ,  — e, =
For the baseline stringer-configuration given by A 1, D 1, 5 0D 0, and =

0 and shown in figures 53 and 54, the differences between the corresponding results predicted by
Donnell’s and Sanders’ equations, and between the two sets of Sanders’ equations, are less than
4% for L/R <9. As L/R increase beyond ten, the differences increase to values greater than 20%,
except for the aspect ratios of approximately 18 < L/R < 22. The largest differences occur for
approximately L/R > 31, where Donnell’s equations and Sanders’ equations with nonlinear
rotations about the normal neglected fail to predict a column-like buckling mode.

Relative to the baseline stringer-configuration, the results in figures 53-70, and other results
obtained in the present study that are not presented herein, exhibit the following trends. First,
increasing the smeared extentional stiffness of the stringers, relative to that of the skin, by

increasing % from the baseline value of one reduces substantially the differences between the

corresponding results predicted by Donnell’s and Sanders’ equations, and by both set of Sanders’
equations, for all values of L/R in which Sanders’ equations do not yield a column-like buckling
mode (figures 55-58). In particular, for ‘3%5 = 2, the differences do not exceed 12% and for the

s

most part do not exceed 3%. As the value of this extentional-stiffness parameter is increased to
four, the differences do not exceed approximately 2%. Next, increasing the smeared bending

stiffness of the stringers (figures 59 and 60), relative to that of the skin, by increasing dl%: from

the baseline value of one to a value of ten increases substantially the differences between the
corresponding results predicted by Donnell’s and Sanders’ equations for all values of 0.4 <L/R
< 50. A similar trend is noted for the differences between the corresponding results obtained by
using the two sets of Sanders’ equations, especially for L/R < 10.

Increasing the smeared torsional stiffness of the stringers (figures 61-64), relative to that of

the skin, by increasing 54 G, from the baseline value of zero generally increases the

2d,(1-v)D

differences between the corresponding results predicted by Donnell’s and Sanders’ equations for
L/R > 10. In contrast, increasing this parameter generally reduces the differences between the
corresponding results predicted by the two sets of Sanders’ equations. For both cases, the

differences exceed 20%. For the shorter cylnders with L/R <10, increasing - G,

0D from zero

to one, generally increases the differences between the corresponding results predicted by

Donnell’s and Sanders’ equations and by the two sets of Sanders’ equations. However, increasing

GJ,

TR R to a value of ten significantly reduces the differences between the corresponding

results predicted by all three sets of equations. For L/R <4, the differences are less than 5%.

The results in figures 65-72 indicate that increasing the outward stringer eccentricity from the
baseline value of zero up to a value of ten, signficantly increases the differences in the
corresponding results predicted by Donnell’s and Sanders’ equations and by the two sets of
Sanders’ equations. In addition, Donnell’s equations tend to produce much bigger differences
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than Sanders’ equations with nonlinear rotations about the normal neglected. Furthermore, for

% =10, very large differences are predicted for the extremely short cylinders. The results in

figures 65-72 also indicate that increasing the inward stringer eccentricity from the baseline value

of zero to a value of % = -10 has a somewhat different effect. In particular, changing % from 0
to -1 increases the differences predicted by Donnell’s and Sanders’ equations, and by the two sets
of Sanders’ equations, from a maximum of about 4% to about 8% for L/R < 10. In contrast, the

two sets of differences are reduced substantially in the range of L/R > 10. Increasing the inward

eccentricity to % = -10 has a much different effect; that is, the two sets of differences increase

greatly as the full range of L/R considered. Additionally, very large differences are predicted for
the extremely short cylinders.

The results in figures 73-81, for the shells with R/h =500, show much smaller differences in
the buckling resistance predictions, over a larger range of L/R, obtained from the three set of
equations, for the most part, than the corresponding shells with R/h = 50 and do not exhibit
column-like buckling modes. For example, the baseline stringer-configuration shown in figure 73
exhibits negligible differences for values of L/R < 30. For values of L/R >30, the differences
increase substantially, reaching maximums of about 32% and 25% for the differences obtained by
using Donnell’s and Sanders’ equations and by using the two sets of Sanders’ equations,

respectively. Likewise, for % = 2, the differences shown in figure 74 do not exceed 1% for

L/R £40 and never exceed 10%. For % = 10, the differences shown in figure 75 do not exceed

2% for L/R < 8. Moreover, for 8 <L/R <28, the largest differences between the corresponding
results predicted by Donnell’s and Sanders’ equations, and by the two sets of Sanders’ equations,
are approximately 18% and 12%, respectively. Furthermore, for L/R > 28, the largest differences
between the corresponding results predicted by Donnell’s and Sanders’ equations, and by the two
sets of Sanders’ equations, are approximately 56% and 25%, respectively.

For the cylinders with R/h = 500 and ﬁ = 1, the differences between the

corresponding results predicted by both sets of equations, shown in figure 76, are less than 4% for
L/R £14. In the range 14 <L/R < 29, difference as large as 14% are seen. Beyond L/R =29, the
differences between the corresponding results predicted by Donnell’s and Sanders’ equations, and
by the two sets of Sanders’ equations, exhibit a maximum of about 50% and 25%, respectively.
In a manner similar to that seen for the cylinders with R/h = 50, the results in figure 77 show that

increasing 5a G,

13D to a value of ten increases the differences between the corresponding

results predicted by all three sets of equations in the range of L/R > 7. Comparing the results in

figures 68 and 78 for cylinders with % = 1 indicates that increasing R/h from 50 to 500

significantly reduces the differences between the corresponding results predicted by both sets of
equations. Differences less than 10% are noted for L/R < 8. Similarly, the results in figures 69 and
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80 for cylinders with % =10 show a similar trend. The results for cylinders with % =-1and-10,

shown in figures 67 and 71 for R/h =50 and in 79 and 81 for R/h =500, indicate a very pronounced
reduction in the differences associated with increasing R/h. Differences less than 1% and less

than about 6% are noted in the range of L/R < 32 for the cylinders with R/h = 500 and wit % =

-1 and -10, respectively.

The results in figures 82-90, for the ring-stiffened cylinders with R/h = 50, also show
significant differences in the buckling resistance predictions obtained from the three set of
equations, with the black curves (Sanders’ equations) generally exhibiting the lowest
corresponding values of buckling resistance. Like for the stringer-stiffened cylinders, the
differences are generally more pronounced as the cylinder length increases and the results
obtained by using Sanders’ equations predict a transition to a column buckling mode at
significantly smaller values of L/R than the corresponding results obtained by using Sanders’
equations with the nonlinear rotations about the normal neglected. Moreover, the results obtained
by using Donnell’s equations also predict no transition at all. The Euler column-buckling modes
predicted by equation (141) for the ring-stiffened cylinders are also in close agreement with the
corresponding results predicted by Sanders’ equations. In contrast to the results for the stringer-
stiffened cylinders, the buckling loads predicted by equation (141) for ring-stiffened cylinders are
slightly less, for the most part, than the corresponding buckling loads predicted by Sanders’
equations. This difference is attributed to the neglect of contributions made by the rings to the
stiffness associated with column bending.

For the baseline ring-configuration given by i'gr =1, % =1, ﬁ =0, and % =0

and shown in figure 82, the differences between the corresponding results predicted by Donnell’s
and Sanders’ equations, and between the two sets of Sanders’ equations, are less than 4% for
L/R <6. As L/R increases beyond six, the differences increase to values greater than 20%, except
for the length-to-radius ratios of approximately 12 < L/R < 16. The largest differences occur for
approximately L/R > 23, where Donnell’s equations and Sanders’ equations with the nonlinear
rotations about the normal neglected fail to predict a column-like buckling mode.

Relative to the baseline stringer-configuration, the results in figures 83-90, and other results
obtained in the present study that are not presented herein, exhibit the following trends. First,
increasing the smeared extentional stiffness of the rings, relative to that of the skin, by increasing

i—r‘: from the baseline value of one to a value of four has a relatively small effect on the

differences between the corresponding results predicted by Donnell’s and Sanders’ equations, and

by both set of Sanders’ equations. In particular, for i—f‘: = 4, the differences are almost the same

as that for the baseline case. Next, increasing the smeared bending stiffness of the rings (figure

El

5 from the baseline value of one to a value of ten

84), relative to that of the skin, by increasing

eliminates the differences between the corresponding results predicted by Donnell’s and Sanders’
equations for all values of L/R < 17.5, which corresponds to shell buckling modes. A similar
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trend 1s noted for the corresponding results obtained by using the two sets of Sanders’ equations
for approximately L/R <26.

Increasing the smeared torsional stiffness of the rings (figures 85 and 86), relative to that of
. . . G[Jr
the skin, by increasing 01D
differences between the corresponding results predicted by both sets of equations for
approximately L/R > 6, with differences exceeding 20%. For the shorter cylnders with L/R <6,
increasing %

corresponding results predicted by Donnell’s and Sanders’ equations and by the two sets of

from the baseline value of zero generally increases the

from zero to one, generally increases the differences between the

Sanders’ equations. However, increasing 34 B to a value of ten significantly reduces the

(1-v)D

differences between the corresponding results predicted by all three sets of equations. For
approximately L/R <5, the differences are less than 5%. The results in figures 87-90 indicate that
increasing the magnitude of the ring eccentricity, outward or inward, from the baseline value of
zero up to a value of ten, eliminates the differences in the corresponding results predicted by
Donnell’s and Sanders’ equations and by the two sets of Sanders’ equations that correspond to
cylinder buckling modes. For the column-like buckling modes, large differences are present for
both cases.

Results for ring-stiffened shells with R/h = 500 were obtained in the present study for
0.2 <L/R £50 and for the same values of the nondimensional parameters used in figures 82-90.
For each case, no column-like buckling modes were predicted and the buckling resistance
predictions obtained from the three set of equations exhibit much smaller differences over a larger
range of L/R, for the most part, than the corresponding cylinders with R/h = 50. For example,
results for the baseline ring-configuration shown in figure 91 exhibit no appreciable differences
for values of approximately L/R < 22. For values of L/R > 22, the differences in the results
obtained by using Donnell’s and Sanders’ equations and by using the two sets of Sanders’
equations increase substantially, reaching magnitudes in excess of 20% at approximately L/R =

25. The results in figure 92 for =2 =2 exhibit practically the same trend. For % =10, the

results obtained in the present study by using the three sets of equations show no appreciable

differences with NZRDh = 0.90 over the full range of L/R except for approximately L/R <0.5.
Y
For the ring-stiffened cylinders with R/h =500 and - Sd: __ = [, the differences between

2d,(1-v)D

the corresponding results predicted by both sets of equations, shown in figure 93, are less than
about 3% for L/R < 10. In the range 10 <L/R < 22, difference less than about 13% are seen.
Beyond L/R =22, the differences between the corresponding results predicted by Donnell’s and
Sanders’ equations, and by the two sets of Sanders’ equations, exhibit a maximum of about 50%
and 25%, respectively. Comparing the results in figures 93 and 94 shows that increasing

GJ,

TR TR to a value of ten increases the differences between the corresponding results predicted
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by all three sets of equations, particularly in the range of L/R > 20. For the cylinders with eccentric

rings, no appreciable difference were found for % = -1, -10, and 10. For % = 1, no differences
were also found for approximately L/R <20 and all other differences are less than 5%. Moreover,

the response curves are for the most part constant valued with N,Rh — 0.69,0.97, 0.67, and 0.97

D

for % =-1, 1, -10, and 10, respectively.

Uniform external pressure loads. Results for ring-stiffened isotropic cylinders subjected to
uniform external pressure are presented in Tables 55 and 56 for selected values of the radius-to-
thickness ratios 50 < R/h <2000 and the length-to-radius ratio 0.5 < L/R < 2. Specifically, the

erey 3

predicted values of the nondimensional buckling pressure pDR obtained by Singer, Baruch, and

and obtained in the present study are shown for cylinders with the generic ring

properties are givenby A: _ 5 , L -=5, and J =0, where A is the cross-sectional area, d,

Harari®*!

r r

is the ring spacing, I, is the centroidal moment of inertia, and J_ is the torsion constant.
Moreover, results are given for cylinders with either external or internal rings having the
eccentricites e/h=+0.5 and -0.5, respectively. The results in Table 55 are for very short
cylinders with L/R = 0.5 and a Poisson’s ratio v =0.3. In contrast, the results in Table 56 are for
cylinders with L/R =1 and 2, and for values of Poisson’s ratio v =0, 0.3, and 0.5. In the

Eh’

nondimensional buckling pressure appearing in the tables, D = (1)

is the principal bending
stiffness of the cylinder wall, E is Young’s modulus, and v 1is Poisson’s ratio. In addition, the
results based on Donnell’s equations correspond to dead pressure loads, whereas those based on
Sanders’ equations are for live pressure loads.

The results in Tables 55 and 56 show differences less than 0.1% in the nondimensional
buckling pressures obtained in the present study and in references 50 and 51 by using Donnell’s
equations. Additionally, the results of the present study obtained by using Sanders’ equations
indicate that neglecting the nonlinear rotations about the normal yields differences in the buckling
loads that are less than approximately 5%. Similarly, the differences between corresponding
buckling loads obtained by using Sanders’ and Donnell’s equations are less than approximately
6%.

The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s equations (red curves), Sanders equations with dead pressure (blue curves), and
Sanders equations with live pressure (black curves) are illustrated in figures 95-109 for stringer-
stiffened and for ring-stiffened cylinders with radius-to-thickness ratios R/h =50 and 500, with
Poisson’s ratio v = 0.30, and with Young’s modulus E = 10.0 X 10° psi. The buckling resistance

orey 3

is measured by the nondimensional pressure P DR for values of 0.2 <L/R <50. In calculating

these results, the circumferential wave numbers n=0 and n=1 were not used. These two wave
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numbers correspond to axisymmetric deformation modes and column-buckling modes that are
inconsistent with the presence of only uniform external pressure loads.

i - ion i EA, — 1 EL — GJ,  —
For the baseline stringer-configuration given by A 1, D 1, 5 D 0, and

=10

0 and shown in figure 95 for the cylinders with R/h = 50, the differences between the
corresponding results predicted by Donnell’s and Sanders’ equations with live pressure, and
between the two sets of Sanders’ equations, are less than about 6% for L/R < 5. For 5<L/R <12,
differences are large as 12% are found. As L/R increase beyond 12, the curves obtained by using
Donnell’s equations and by using Sanders’ equations with dead pressure asymptotically approach

crey 3

the value P DR = 4, which is the asymptotic value of the corresponding unstiffened cylinder. In

contrast, the curve obtained by using Sanders’ equations with live pressure asymptotically

ory 3

approaches the value P DR = 3, which is also the asymptotic value of the corresponding

unstiffened cylinder. These asymptotic results correspond to a maximum difference of 33% and
tothe m=1 and n=2 flattened-cylinder buckling mode illustrated in figure 95. It is noteworthy
that overall, Donnell’s equations tend to predict buckling pressures that are closer to the
corresponding results predicted by Sanders’ equations with live pressure.

Results were also obtained in the present study for stringer-stiffened cylinders with R/h =50
and with the baseline configuration modified as follows. First, curves similar to those shown in

figure 95 were obtained in which the value iﬂ—fzs = 2 was used with the baseline set of parameters.

B

Then, seven similar sets of curves were obtained by modifying the baseline set of parameters such

EJ; _ GJ, _ R _ :
that D 10, 13D 1 and 10, and % 1, 1, -10, and 10. For all sets of curve obtained,

the plots were very similar to those shown in figure 95, including the asymptotic behavior of the
curves for large values of L/R. Thus, it appears that the stringer configuration has a relatively
small effect on the buckling pressure, likely due to the pressure load producing only
circumferential compression prior to buckling. As a result of this similarity, the differences
between the corresponding results predicted by Donnell’s and Sanders’ equations with live
pressure, and between the two sets of Sanders’ equations for the eight additional sets of curves
not shown herein are similar to those exhibited by the curves shown in figure 95.

1’ Ed, — GJ — 0,

d,D > 2d(1-v)D

ESAS
dA

Results for the baseline stringer-configuration given by

and % =0 are shown in figure 96 for stringer-stiffened cylinders with R/h = 500. For these

cylinders, the differences between the corresponding results predicted by Donnell’s and Sanders’
equations with live pressure, and between the two sets of Sanders’ equations, are less than about
5% for approximately L/R < 10. For approximately 10 < L/R < 18, the differences are less than
8%, and for 18 < L/R < 38, the differences are less than 12%. In the range L/R > 38, differences
are large as 33% are found.
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Results were also obtained in the present study for stringer-stiffened cylinders with R/h =500
and with the baseline configuration modified in the same way as described for the cylinders with
R/h=50. Specifically, curves similar to those shown in figure 96 were obtained in which the value

iﬂ—fzs = 2 was used with the rest of the baseline parameters fixed. Additionally, seven similar sets

B

of curves were obtained by modifying the baseline set of parameters such that d]%: =10,

S

ﬁ =1 and 10, and & =-1,1,-10, and 10. For all sets of curve obtained, the plots were

very similar to those shown in figure 96. As a result of this similarity, the differences between the
corresponding results predicted by Donnell’s and Sanders’ equations with live pressure, and
between the two sets of Sanders’ equations for the eight additional sets of curves not shown herein
are similar to those exhibited by the curves shown in figure 96.

Results for cylinders with R/h = 50 and with the baseline ring-configuration given by % =

1, S]I) =1, mﬁir—hv)]) =0,and ¢ =0 are shown in figure 97. The differences between the

corresponding results predicted by Donnell’s and Sanders’ equations, and between the two sets of
Sanders’ equations, are less than 6% for L/R < 3. For 3 < L/R <8, differences are large as 12%
are found. As L/R increase beyond 8, the curves obtained by using Donnell’s equations and by

using Sanders’ equations with dead pressure asymptotically approach the value P DR =8.In

contrast, the curve obtained by using Sanders’ equations with live pressure asymptotically
crp 3

approaches the value DR = 6. These asymptotic results also correspond to a maximum

difference of 33% and to the m=1 and n =2 flattened-cylinder buckling mode illustrated in
figure 97. Like for the stringer-stiffened cylinders, Donnell’s equations tend to predict buckling
pressures for the ring-stiffened cylinders that are closer to the corresponding results predicted by
Sanders’ equations with live pressure.

Results similar to those shown in figure 97 were obtained for cylinders with R/h = 50 and

with the baseline ring-configuration modified such that ]fifAAf = 2. Likewise, results were also

T

obtained for cylinders with R/h = 50 and with the baseline ring-configuration modified such that

Zd(?i“_]fvm = 1. Both sets of results exhibit practically the same buckling predictions, relative

differences, and asymptotic responses as the baseline case shown in figure 97. Results for R/h =

50 and the baseline ring-configuration modified such that 5a <EE

3D 10 are shown in figure 98.

These results vary slightly from the corresponding baseline results and exhibit nearly the same
relatives differences and asymptotic responses.

In contrast, results are presented in figure 99, for cylinders with R/h = 50 and with the
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dErD: = 10, that show large increases in the

baseline ring-configuration modified such that >c-
predicted buckling pressures, compared to the corresponding baseline results. For this ring

configuration, differences between the corresponding results predicted by Donnell’s and Sanders’
equations, and between the two sets of Sanders’ equations, are less than 6% for L/R <2. For 2 <
L/R < 6, differences are large as 12% are found. As L/R increases beyond 6, the curves obtained

by using Donnell’s equations and by using Sanders’ equations with dead pressure asymptotically

approach the value pDR =44, whereas, the curve obtained by using Sanders’ equations with live

pressure asymptotically approaches the value % = 33. Results similar to those shown in figure
99 were obtained for cylinders with R/h = 50 and with the baseline ring-configuration modified
such that e /h =1 and - 1, and are shown in figures 100 and 101, respectively. These results for
eccentric rings vary in magnitude somewhat from the corresponding results in figure 99 but
exhibit nearly the same relatives differences. For the cylinders with e /h = 1, the curves obtained
by using Donnell’s equations and by using Sanders’ equations with dead pressure asymptotically
pR’_
D

approach the value 30, whereas, the curve obtained by using Sanders’ equations with live

3

p ch _

pressure asymptotically approaches the value 22. Moreover, at L/R <50,them=1 and

n =2 flattened-cylinder buckling mode is absent from the responses. For the cylinders with e /h
=- 1, the curves obtained by using Donnell’s equations and by using Sanders’ equations with dead

erey 3

pressure asymptotically approach the value pDR = 32, whereas, the curve obtained by using

Sanders’ equations with live pressure asymptotically approaches the value % =24. For this

ring configuration, the m =1 and n=2 flattened-cylinder buckling modes occur for
approximately L/R > 7.

Results are presented in figure 102 for cylinders with R/h = 50 and with the baseline ring-
configuration modified such that e /h = 10. The results show massive increases in the predicted
buckling pressures with ring eccentricity, compared to the corresponding baseline results. For this
ring configuration, the differences between the corresponding results predicted by Donnell’s and
Sanders’ equations are as much as about 30% for L/R < 2. As L/R increase beyond 2, the
differences increase to about 60%. The differences between the corresponding results predicted
by the two sets of Sanders’ equations are as much as about 19% for L/R <2, and as L/R increase
beyond 2, the differences increase to about 50%. In addition, the curves obtained by using
Donnell’s equations, by using Sanders’ equations with dead pressure, and by using Sanders’

equations with live pressure asymptotically approach the values % = 2295, 2132, and 1426,

respectively.

Results are presented in figure 103 for cylinders with R/h =50 and with the baseline ring-
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configuration modified such that e /h =- 10. These results also show massive increases in the
predicted buckling pressures with ring eccentricity, compared to the corresponding baseline
results. The differences between the corresponding results predicted by Donnell’s and Sanders’
equations, and between the two sets of Sanders’ equations, are for the most part less than 10% for
2 <L/R £50. However, for L/R < 2, differences are large as about 14% are found. As L/R
approaches 50, the curves obtained by using Donnell’s equations and by using Sanders’ equations

with dead pressure asymptotically approach the value % = 2408. The curve obtained by using

Sanders’ equations with live pressure asymptotically approaches the value pDR =2202. These

asymptotic results also correspond to the m =1 and n=2 flattened-cylinder buckling mode.

Results for cylinders with R/h =500 and with the baseline ring-configuration given by

EA, 1 ElI, _ GJ,

A i = b anyp - 0, and % =0 are shown in figure 104. The differences between

the corresponding results predicted by Donnell’s and Sanders’ equations, and between the two
sets of Sanders’ equations, are less than about 6% for L/R <12. For 12 <L/R £26, the differences
are less than approximately 12%. As L/R increases beyond 26, differences are large as about 33%
are found. Additionally, the results shown in figure 104 correspond to the m=1 and n=2
flattened-cylinder buckling mode for values of approximately 30 < L/R < 50. Additional
calculations were made for L/R > 500 that revealed the curves obtained by using Donnell’s
equations and by using Sanders’ equations with dead pressure asymptotically approach the value

% = 8. Similarly, the curve obtained by using Sanders’ equations with live pressure

ory 3

asymptotically approaches the value % =6.

Results similar to those shown in figure 104 were obtained for cylinders with R/h =500 and

with the baseline ring-configuration modified such that E% = 2. Likewise, results were also

obtained for cylinders with R/h =500 and with the baseline ring-configuration modified such

that 2(1((1}7:]})13 =1 and 10. All three sets of results exhibit practically the same buckling

predictions, relative differences, and asymptotic responses as the baseline case shown in figure
104. In contrast, results are presented in figure 105, for cylinders with R/h =500 and with the

baseline ring-configuration modified such that % = 10 that exhibit a different trend. That is,

these results exhibit greater predicted buckling pressures, compared to the corresponding baseline

results of figure 104. For this ring configuration, differences between the corresponding results

predicted by Donnell’s and Sanders’ equations, and between the two sets of Sanders’ equations,

are less than approximately 7% for L/R < 8. For 8 <L/R <18, differences are large as 14% are

found. As L/R increase beyond 18, the curves obtained by using Donnell’s equations and by using

PR _
D

Sanders’ equations with dead pressure asymptotically approach the value 44, whereas, the
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curve obtained by using Sanders’ equations with live pressure asymptotically approaches the

cry 3
value % =33.

Results similar to those shown in figure 105 were obtained for cylinders with R/h =500 and
with the baseline ring-configuration modified such that e /h=1and - 1 and are shown in figures
106 and 107, respectively. These results for cylinders with eccentric rings vary in magnitude
somewhat from the corresponding results in figure 105 but exhibit nearly the same relatives
differences. For the cylinders with e /h =1, the curves obtained by using Donnell’s equations and

by using Sanders’ equations with dead pressure asymptotically approach the value % =30.9,

whereas, the curve obtained by using Sanders’ equations with live pressure asymptotically

approaches the value % = 23.1. These asymptotic values do not correspond to the m =1 and

n =2 flattened-cylinder buckling mode for very large values of L/R. For the cylinders with e /h
=- 1, the curves obtained by using Donnell’s equations and by using Sanders’ equations with dead

erey 3

pressure asymptotically approach the value pDR = 32, whereas, the curve obtained by using

Sanders’ equations with live pressure asymptotically approaches the value % =24. For this

case, the asymptotic values do correspond to the m=1 and n=2 flattened-cylinder buckling
mode.

Results are presented in figure 108 for cylinders with R/h = 500 and with the baseline ring-
configuration modified such that e /h = 10. The results show massive increases in the predicted
buckling pressures with ring eccentricity, compared to the corresponding baseline results shown
in figure 104. For this ring configuration, the differences between the corresponding results
predicted by Donnell’s and Sanders’ equations are as much as about 10% for approximately L/R
<4. As L/R increase beyond 4, the differences increase to about 35%. The differences between
the corresponding results predicted by the two sets of Sanders’ equations are as much as about
13% for L/R <4, and as L/R increase beyond 4, the differences increase to about 34%. In
addition, the curves obtained by using Donnell’s equations, by using Sanders’ equations with
dead pressure, and by using Sanders’ equations with live pressure asymptotically approach the

values % =12295, 2285, and 1691, respectively. These asymptotic values do not correspond to

them=1 and n=2 flattened-cylinder buckling mode.

Results are presented in figure 109 for cylinders with R/h =500 and with the baseline ring-
configuration modified such that e /h = - 10. These results also show massive increases in the
predicted buckling pressures with ring eccentricity, compared to the corresponding baseline
results. The differences between the corresponding results predicted by Donnell’s and Sanders’
equations, and between the two sets of Sanders’ equations, are for the most part less than 10% for
0.2 <L/R £ 6. However, for L/R > 6, differences are large as about 30% are found. As L/R
approaches 50, the curves obtained by using Donnell’s equations and by using Sanders’ equations
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with dead pressure asymptotically approach the value P R =

2408. The curve obtained by using

oy 3

Sanders’ equations with live pressure asymptotically approaches the value pDR = 1842. These

asymptotic results correspond to the m =1 and n=2 flattened-cylinder buckling mode.

The results in figures 95 and 96, and other results obtained in the present study, indicate that
the stringer properties have no effect on the asymptotic response of the cylinders loaded by
uniform external pressure. In contrast, the results in figures 97-109, and other results obtained in
the present study, show that the ring properties have a significant effect. Moreover, the results
indicate that the asymptotic results correspond to the m =1 and n=2 flattened-cylinder
buckling mode in almost all cases. The exceptions are for cylinders with external eccentric rings
(see figures 100, 102, 106, and 108). A closed-form expression for the asymptotic response of
extremely long cylinders that buckle into the m =1 and n =2 flattening modes, based on
Sanders’ equations with live pressure, was obtained in the present study as follows. First, the
cylinder length L is expressed as L =R/a, such that 4 - 0 as L/R — oo. Next, L=R/4 is
substituted into equations (83) to eliminate L from equation (82). Equation (82) is then multiplied
through by the largest power of a appearing in any of its denominators. Then, the limit of equation
(82) is found as & — 0 and the resulting equation is solved for the loading parameter. This process
yields

2

B22

cr 3 1 -
p.R D,, A,.D,, (142)
D]]D22 Dll 1 + 2B22 + D22
ALR AR’

where the stiffness terms are given by equations (134). For a monocoque isotropic cylinder, this
equation reduces to
cr 3 -1
p- R ’
- (1 +-h ) (143)

12R’

For Donnell’s equations, and for Sanders’ equations with dead pressure, this process yields

or o 3
PR /DL, _Bin (144)
VD, D,, D, Ay,Dy,

Equations (142) and (144) yield results that are in exact agreement with the corresponding
asymptotic results presented herein except for the cylinders with eccentric external rings. For
these exceptions, differences are expected since they did not buckle into them =1 and n=2
flattened-cylinder mode. With one exception, the differences in the corresponding asymptotic
results obtained by using Donnell’s equations, Sanders’ equations with dead pressure, Sanders’
equations with live pressure, and equations (142) and (144) are less than approximately 5%. A
difference of 13% was found between the result predicted by Sanders’ equations with dead
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pressure and equation (144) for the cylinder with R/h =50 and e /h = 10.

Uniform hydrostatic pressure loads. Results for ring-stiffened isotropic cylinders subjected
to uniform hydrostatic pressure are presented in Tables 57 and 58 for selected values of the radius-
to-thickness ratios 50 < R/h <2000 and the length-to-radius ratio 0.4 < L/R < 10. Specifically,

erey 3

the predicted values of the nondimensional buckling pressure pDR obtained by Singer, Baruch,

and obtained in the present study are shown for cylinders with the generic ring

and Harari®**'

c

properties are givenby A: _ 5, I, -=5, and J =0, where A is the cross-sectional area, d,

dh dh

is the ring spacing, I, is the centroidal moment of inertia, and J_ is the torsion constant.

Moreover, the results in Table 57 and 58 are for cylinders with e/h =+0.5 (outward) and -0.5
(inward), respectively. In addition, the results based on Donnell’s equations correspond to dead
pressure loads, whereas those based on Sanders’ equations are for live pressure loads. The results
in these tables show differences less than 0.1% in the nondimensional buckling pressures
obtained in the present study and in references 50 and 51 by using Donnell’s equations, and in
many cases are in complete agreement. Additionally, the results of the present study obtained by
using Sanders’ equations indicate that neglecting the nonlinear rotations about the normal yields
differences in the buckling loads that are less than approximately 2%. Similarly, the differences
between corresponding buckling loads obtained by using Sanders’ and Donnell’s equations are
less than approximately 6%, and in many cases are less than 2%.

Results are presented in Table 59 that show the predicted values of the nondimensional

ory 3

buckling pressure pDR obtained by Singer, Baruch, and Harari***!

and obtained in the present

study for generic stringer-stiffened isotropic cylinders, for a moderate range of cylinder
geometries. In particular, results are given for length-to-radius ratios 0.5 <L/R <3 and for radius-
to-thickness ratios in the range 50 < R/h <2000. The generic stringer properties are given by

A o5, L

05, e 5, and J =0, where A_ is the cross-sectional area, d_ is the stringer spacing,

I; is the centroidal moment of inertia, and J. is the torsion constant. Additionally, results are

given for cylinders with either external or internal stringers having the eccentricities e /h = +5
and -5, respectively. Moreover, the results based on Donnell’s equations correspond to dead
pressure loads and those based on Sanders’ equations are for live pressure loads. The results in
this table also show differences less than 0.1% in the nondimensional buckling pressures obtained
in the present study and in references 50 and 51 by using Donnell’s equations. Additionally, the
results of the present study obtained by using Sanders’ equations indicate that neglecting the
nonlinear rotations about the normal yields differences in the buckling loads that are less than
approximately 2%. Similarly, the differences between corresponding buckling loads obtained by
using Sanders’ and Donnell’s equations are less than approximately 1%.

The effects of variations in the ring section properties on the nondimensional buckling
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pressure pDR obtained by Singer, Baruch, and Harari’' and obtained in the present study for

generic ring-stiffened isotropic cylinders with L/R=0.5 and 100 <R/h <2000 are presented in
Tables 60 and 61 for eccentricities e /h=+5 and -5, respectively. The ranges of the ring section

c

properties are given by (.05 < % <0.8 and 0.5< d} < 8. In addition, the results based on

r

Donnell’s equations correspond to dead pressure loads, whereas those based on Sanders’
equations are for live pressure loads. The results in these tables show differences less than 0.1%
in the nondimensional buckling pressures obtained in the present study and in reference 51 by
using Donnell’s equations, and in many cases are in complete agreement. Additionally, the results
of the present study obtained by using Sanders’ equations indicate that neglecting the nonlinear
rotations about the normal yields differences in the buckling loads that are less than 1%. Likewise,
the differences between corresponding buckling loads obtained by using Sanders’ and Donnell’s
equations are less than 1%.

Results for the same section-property variations, radius-to-thickness ratios, and ring
eccentricities used to generate Tables 60 and 61 are presented in Tables 62 and 63 for ring-
stiffened isotropic cylinders with L/R = 1. Additionally, similar results are presented in Table 64
for ring-stiffened isotropic cylinders with L/R =2 and R/h = 1000. For each table, the results
based on Sanders’ equations are for live pressure loads. The results in these three tables show
identical predictions of the nondimensional buckling pressures obtained in the present study and
in reference 51 by using Donnell’s equations in almost every case. One notable exception appears
in the last row Table 62, which corresponds to a 9% difference.Additionally, the results of the
present study obtained by using Sanders’ equations indicate that neglecting the nonlinear rotations
about the normal yields differences in the buckling loads that are less than 3%, and in most cases
less than 1%. Likewise, the differences between corresponding buckling loads obtained by using
Sanders’ and Donnell’s equations are less than 5%, and in most cases less than 1%.

The effects of variations in the ring eccentricity on the nondimensional buckling pressure

erey 3

% obtained by Singer, Baruch, and Harari’' and obtained in the present study for generic ring-

stiffened isotropic cylinders with L/R =0.5 and with R/h =100 and 1500 are presented in Table
65. Moreover, results are presented for selected values of the ring eccentricity given by - 8 <e /h
< 8. The ring section properties are given by A: _ g5,

=5, and J = 0. In addition, the
dh dh

3

results based on Donnell’s equations correspond to dead pressure loads, whereas those based on
Sanders’ equations are for live pressure loads. The results in this table show differences less than
0.1% in the nondimensional buckling pressures obtained in the present study and in reference 51
by using Donnell’s equations, and in many cases are in complete agreement. In addition, the
results of the present study obtained by using Sanders’ equations indicate that neglecting the
nonlinear rotations about the normal yields differences in the buckling loads that are less than 1%.
Likewise, the differences between corresponding buckling loads obtained by using Sanders’ and
Donnell’s equations are less than 1%.
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Results similar to those given in Table 65 are presented in Table 66 for L/R=1 and 50 <
R/h £2000, and in Table 67 for L/R =2 and R/h = 1000. The results in these tables show no
differences in the nondimensional buckling pressures obtained in the present study and in
reference 51 by using Donnell’s equations, except for two cases which exhibit differences less
than 0.1%. In addition, the results of the present study obtained by using Sanders’ equations
indicate that neglecting the nonlinear rotations about the normal yields differences in the buckling
loads that are less than 1%, and in many cases much smaller. Likewise, the differences between
corresponding buckling loads obtained by using Sanders’ and Donnell’s equations are less than
2%, and in many cases much smaller.

The combined effects of variations in the ring eccentricity and ring section properties on the

nondimensional buckling pressure % obtained by Singer, Baruch, and Harari’' and obtained

in the present study for generic ring-stiffened isotropic cylinders with L/R =1 and for R/h =700,
800, and 900 are presented in Table 68. The ranges of the stiffener section properties are given by

0.1< % <08 and 1< ﬁ < 8. Moreover, J] =0 and the ring eccentricity given by - § < e /
h < 8. In addition, the results based on Donnell’s equations correspond to dead pressure loads,
whereas those based on Sanders’ equations are for live pressure loads. The results in this table
also show differences less than 0.1% in the nondimensional buckling pressures obtained in the
present study and in reference 51 by using Donnell’s equations, and in many cases are in complete
agreement. In addition, the results of the present study obtained by using Sanders’ equations
indicate that neglecting the nonlinear rotations about the normal yields differences in the buckling
loads that are less than 1%. Likewise, the differences between corresponding buckling loads
obtained by using Sanders’ and Donnell’s equations are less than 1%.

The effects of length-to-radius ratio L/R, for the range 0.5 < L/R < 3, on the nondimensional

buckling pressure % obtained by Singer, Baruch, and Harari’' and obtained in the present

study for generic ring-stiffened isotropic cylinders are presented in Tables 69-71 for selected

values of 500 < R/h £200. The results in Table 69 and 71 are for ({AT; =0.5, # =5, and for

e,/h =+ 8 and +1, respectively. The results in Table 70 are for (%jl =0.8, ﬁ =8, ande/h=+

5. For all three tables, the results are based on J = 0. For both tables, the results based on
Donnell’s equations correspond to dead pressure loads and those based on Sanders’ equations are
for live pressure loads.

The results in Tables 69-71 also show differences less than 0.1% in the nondimensional
buckling pressures obtained in the present study and in reference 51 by using Donnell’s equations,
and in many cases are in complete agreement. In addition, the results of the present study obtained
by using Sanders’ equations indicate that neglecting the nonlinear rotations about the normal
yields differences in the buckling loads that are less than approximately 1%. The differences
between corresponding buckling loads obtained by using Sanders’ and Donnell’s equations are
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less than 5%, and in many cases less than 1%.

Results are presented in Tables 72 and 73 that show the predicted values of the

nondimensional buckling pressure % obtained by Baruch and Singer®” and obtained in the
present study for isotropic cylinders stiffened by either stringers, rings, or rings and stringers.
These results correspond to some very specific cylinder configurations. In particular, the results
in Table 72 correspond to the wall thickness h = 0.1 in., R/h =9.78761, L/R = 4.5391, and the

stiffener spacings d/R =d/R =0.3360. Moreover, one set of results appears in Table 72 for the

stiffener properties A« _ A: _ 1477 and 121, _ 1215 _ 55219 , and stiffener eccentricites
dh dh dh’  dh’

equal to = 1.653. A second set appears for stringer-stiffened cylinders (f—f] =0.2948 , IZhI; =6.330 ,
s d,

and e /h =+ 2.817. The results in Table 73 correspond to the wall thickness h=0.1 in., R’h =
9.79912, L/R = 4.5384, and the stiffener spacings d/R =d/R =0.3350. The stiffener properties

are given by A. _ A _ 948 and 121 _ 12713
dh dh dh”  dh

T

— 6.330, and the stiffener eccentricites are

equal to +2.817. For both tables, the results based on Donnell’s equations correspond to dead
pressure loads and those based on Sanders’ equations are for live pressure loads.

The results in Tables 72 and 73 show differences less than approximately 0.5% in the
nondimensional buckling pressures obtained in the present study and in reference 67 by using
Donnell’s equations. In addition, the results of the present study obtained by using Sanders’
equations indicate that neglecting the nonlinear rotations about the normal yields differences in
the buckling loads that are less than approximately 1%. The differences between corresponding
buckling loads obtained by using Sanders’ and Donnell’s equations are between 2% and 5% for
the cylinders properties in Table 72, and between approximately 3% and 13% for the cylinders
properties in Table 73.

Results are presented in Table 74 that show the predicted buckling pressure obtained by
McElman, Mikulas, and Stein® and obtained in the present study for isotropic cylinders stiffened
by either stringers, rings, or rings and stringers. These results correspond to cylinder
configurations with blade stiffeners. The cylinders have a wall thickness h =0.028 in., a
midsurface radius R = 9.55 in., and lengths L = 12, 24, 36, and 48 in. The length of 48 in. as
reported as 60 in. in reference 69 and appears to be a mistake. The ring and stringer blades, have
a thickness of 0.096 in., a height of 0.302 in., and are spaced 1.0 in. apart, on center. Moreover,
the stiffeners are attached to either the inside or the outside of the cylinder, which corresponds to
an eccentricity magnitude of 0.165 in. The torsional stiffness used in the calculations is given by
one-third of the blade thickness cubed times the blade height. Additionally, the results based on
Donnell’s equations correspond to dead pressure loads and those based on Sanders’ equations are
for live pressure loads.

The results in Table 74 show differences less than approximately 6%, and less than 1% in
most cases, in the nondimensional buckling pressures obtained in the present study and in
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reference 68, by using Donnell’s equations, with two curious exceptions. Specifically, for the two
cylinders with L =12 in. and no stringers, the differences are approximately 33% and 53%. In
addition, the results of the present study obtained by using Sanders’ equations indicate that
neglecting the nonlinear rotations about the normal yields differences in the buckling loads that
are less than approximately 2%. The differences between corresponding buckling loads obtained
by using Sanders’ and Donnell’s equations increase with the cylinder length and are as large as
approximately 14% for the cylinders with L =48 in.

Results are presented in Table 75 that show the predicted values of the nondimensional
buckling pressure %(1 - Vz) obtained by Tian et.al.” and obtained in the present study for

isotropic cylinders stiffened by either internal or external blade-shaped rings. For these cylinders,
E=10.0x 10°psi, v =0.30, and R/h =100. The ring properties are given by
A _0.16384, If3 =1.01152, and J =0. The ring spacing is given by d /R =0.3 and satisfies

I

the relation (N + 1)d /R =L/R, where N is the number of rings. The ring eccentricities are given
by e /h==+6.2633.

The results in Table 75 show differences less than approximately 7% in the nondimensional
buckling pressures obtained in the present study by using Sanders’ equations with live pressure
and in reference 69 by using a variant of Sanders’ equations. In addition, the results of the present
study obtained by using Sanders’ equations with live pressure indicate that neglecting the
nonlinear rotations about the normal yields differences in the buckling loads that are less than
approximately 3%. The differences between corresponding buckling loads obtained by using
Sanders’ with live pressure and Donnell’s equations with dead pressure are between
approximately 3% and 34%.

The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s equations (red curves), Sanders equations with dead pressure (blue curves), and
Sanders equations with live pressure (black curves) are illustrated in figures 110-115 for stringer-
stiffened and for ring-stiffened cylinders with radius-to-thickness ratios R/h =50 and 500, with
Poisson’s ratio v =0.30, and with Young’s modulus E = 10.0 x 10° psi. The buckling resistance

ory 3

is measured by the nondimensional pressure % for values of 0.2 <L/R <50. In calculating

these results, the circumferential wave numbers n=0 and n=1 were used due to the presence

of axial compression. For the baseline stringer-configuration given by % =1, ESII)S =1,

ﬁ =0,and ¢ =0 and shown in figure 110 for the cylinders with R/h = 50, the blue and

black response curves are practically identical to the corresponding curves shown in figure 95 for
the corresponding cylinders subjected to uniform external pressure. Moreover, the red curves
shown in figures 95 and 110 are practically identical for values of approximately L/R <36.5. For
larger values of L/R, the red curve obtained by using Donnell’s equations deviates from the
asymptotic response to a column-buckling mode (m =n = 1). It was also found that eliminating
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the circumferential wave numbers n=0 and n=1 in the calculations based on Donnell’s
equations produced a red curve that is practically identical to the corresponding curve shown in

. . . cr CrR . .
figure 95 for uniform external pressure loads. By substituting N, ... = pT into equation (140),

it is found that the column-like buckling modes are given by

3

or 12n°R" EA

Results obtained by using this equation indicate that the branch of the red curve (L/R >36.5) given
by m=n=1 does not correspond to the actual column-like buckling mode. Moreover, the results
obtained by using Sander’s equations indicate that the m =n =1 solutions are erroneous.

Like for the cylinders loaded by external pressure, the differences between the corresponding
results predicted by Donnell’s and Sanders’ equations with live hydrostatic pressure, and between
the two sets of Sanders’ equations, are also less than about 6% for L/R <5. For 5 <L/R <12,
differences are large as 12% are found. As L/R increase beyond 12, the curves obtained by using

cry 3

Sanders’ equations with dead pressure asymptotically approach the value pDR =4, which is the

asymptotic value of the corresponding unstiffened cylinder. Additionally, the curve obtained by

using Sanders’ equations with live pressure asymptotically approaches the value % =3, which

is also the asymptotic value of the corresponding unstiffened cylinder. These asymptotic results
correspond to a maximum difference of 33% and to the m=1 and n=2 flattened-cylinder
buckling mode illustrated in figure 95.

Results were also obtained in the present study for stringer-stiffened cylinders with R/h =50
and with the various modified baseline configurations considered for the cylinders loaded by
uniform external pressure. Specifically, eight additional sets of curves were obtained by

ifvi i EA, —9 EJ — GJ,  —
modifying the baseline set of parameters such that A 2, ) 10, 5 a0 vD 1 and 10, and

% =-1, 1, -10, and 10. For each set of curves obtained by using Sanders’ equations (blue and
black curves), the plots were practically identical to the corresponding plots for the cylinders
loaded by uniform external pressure, including the asymptotic behavior of the curves for large
values of L/R. The corresponding red curves were also practically identical for the values of L/R
with m #n # 1, like that shown in figure 110 for values of approximately L/R <37. Thus, it
appears that the stringer configuration also has a relatively small effect on the hydrostatic
buckling pressure of the relatively long cylinders.

Results for the baseline stringer-configuration and the eight modifications were also obtained
for stringer-stiffened cylinders with R/h = 500. For every stringer configuration, the response
curves are practically identical to the response curves obtained for the corresponding cylinders
loaded by uniform external pressure.
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Results for cylinders with R/h = 50 and with the baseline ring-configuration given by 'ilf: =
], Bk =1, G = 0, and % =0 are shown in figure 111. The blue and black response

> dD > 2d,(1-v)D
curves are practically identical to the corresponding curves shown in figure 97 for the
corresponding cylinders subjected to uniform external pressure. Moreover, the red curves shown
in figures 97 and 111 are practically identical for values of approximately L/R <25.8. For larger
values of L/R, the red curve obtained by using Donnell’s equations deviates from the asymptotic
response to a column-buckling mode (m =n = 1). It was also found that eliminating the
circumferential wave numbers n=0 and n=1 in the calculations based on Donnell’s equations
produced a red curve that is practically identical to the corresponding curve shown in figure 97

cr-

. . . cr R . . . .
for uniform external pressure loads. By substituting N, ;... = pT into equation (141), it is found

that the column-like buckling modes are given by

PR _12rR (1-v?) (146)

D

Results obtained by using this equation indicate that the branch of the red curve (L/R >25.8) given
by m=n=1 does not correspond to a column-like buckling mode. Moreover, the results obtained
by using Sander’s equations indicate that the m =n =1 solutions are erroneous.

Results similar to those shown in figurel11 were obtained for cylinders with R/h =50 and

with the baseline ring-configuration modified such that ]fifAAf = 2. Likewise, results were also

T

obtained for cylinders with R/h =50 and with the baseline ring-configuration modified such that

g:g =10, ﬁ =1, ﬁ =10, e/h=1,and e /h=- 1. For each of these six cases,

curves that are practically identical to to corresponding curves for external-pressure-loaded
cylinders were obtained for the results based on Sanders’ equations. Moreover, practically
identical curves were obtained for the results based on Donnell’s equations when the m=n=1
solutions are omitted.

In contrast to the previous ring configurations, results are presented in figures 112 and 113
for cylinders with R/h =50 and with the baseline ring-configuration modified such that e /h =
10 and - 10, respectively. The curves shown in these two figures, for cylinders with significant
ring eccentricity, are substantially different from the corresponding curves obtained herein for the
external-pressure-loaded cylinders. The differences between the corresponding results predicted
by Donnell’s and Sanders’ equations, and between the two sets of Sanders’ equations, shown in
figure 112 are practically negligible for values of approximately L/R <8 and L/R <10,
respectively. However, as L/R increases beyond these values, differences between the
corresponding results predicted by Donnell’s and Sanders’ equations, and between the two sets of
Sanders’ equations, as large as about 40% and 90%, respectively, are found. The differences
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between the corresponding results predicted by Donnell’s and Sanders’ equations, and between
the two sets of Sanders’ equations, shown in figure 113 are also practically negligible for values
of approximately L/R <22 and L/R <12, respectively. For L/R =22, the differences between
the corresponding results predicted by Donnell’s and Sanders’ equations do not exceed
approximately 5%. However, the differences in the results obtained from the two sets of Sanders’
equations increase monotonically for L/R > 12, with a difference of approximately 95% for L/R
=50.

Results for cylinders with R/h =500 and with the baseline ring-configuration given by

EA, —1 El — GJ,
dA > dD > 2d,(1-v)D

=0, and % =0 were also obtained in the present study. In addition,

results were obtained for cylinders with R/h = 500 and with the baseline ring-configuration

i EA, —9 El — G, — GJ, - - —
modified such that A 2, s 10, 200 -3)D 1, 2401 VD 10, e/h=1,and e /h=-1.

For each of these seven cases, curves that are practically identical to to corresponding curves for
external-pressure-loaded cylinders were obtained for the results based on Sanders’ equations and
for those based on Donnell’s equations. Results are presented in figures 114 and 115 for cylinders
with R/h =500 and with the baseline ring-configuration modified such that e /h =10 and - 10,
respectively. The results shown in figure 114 are practically identical to those shown in figure 108
for the corresponding cylinders loaded by uniform external pressure, for values of approximately
L/R > 2.4. For values of L/R < 2, the differences in the results obtained from all three sets of
equations were found to be negligible. Likewise, the results shown in figure 115 are practically
identical to those shown in figure 109 for the corresponding cylinders loaded by uniform external
pressure, for values of approximately L/R > 5. Moreover, the differences in the results obtained
from all three sets of equations were found to be negligible for values of approximately L/R >5.2.

Axial compression and pressure loads. Results are presented in Table 76 that show the
predicted values of the critical loading parameter obtained by Schmit et.al.” and obtained in the
present study for isotropic cylinders stiffened by internal blade-shaped rings and stringers. The
cylinders have E=10.0x 10°psi, v =0.333, R=60in., and L= 165.0 in. Results for two cylinder
configurations are given and the wall thicknesses and stiffener properties are given in Table 77.
The torsion constant for the rings and stringers are given in terms of the stiffener properties by

h
J.=1,= (0.316 —0.285 e‘“gﬁ)ﬁh] (147)

The values of the critical loading parameter are given for selected values of uniform axial
compression combined with either uniform internal or external pressure. Values are also given for
pure axial compression. The results were computed by using a variant of Fliigge’s equations that
are based on the work of Hedgepeth and Hall.”

The results in Table 76 show differences less than 1% in the critical loading parameter
obtained in the present study by using Sanders’ equations with live pressure and in reference 70
by using a variant of Fliigge’ equations. In addition, the results of the present study obtained by
using Sanders’ equations with live pressure indicate that neglecting the nonlinear rotations about
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the normal yields differences in the critical loading parameters that are also less than 1%. The
differences between the corresponding critical loading parameters obtained by using Sanders’
equations with live pressure and Donnell’s equations with dead pressure are also less than
approximately 1%.

Torsion loads. Results obtained by Baruch et al***” and obtained in the present study for
cylinders subjected to uniform torsional shear loads and stiffened by ring, by stringers, or by rings
and stringers are presented in Tables 78-86. For each case, the approximate Rayleigh-Ritz
solution presented herein was used to compute the results of the present study. In particular, the

cr 2

. . . . R .
predicted values of the nondimensional buckling load YT are presented in Table 78-81 for

selected values of the radius-to-thickness ratios 100 < R/h <2000 and the length-to-radius ratio
0.35 < L/R < 3. These results correspond to ring-stiffened cylinders with the generic ring

3

properties given by A: _ (5, L _ 2, and J = 0. Moreover, the results in Table 78 are for
dh d

cylinders with e /h =+ 1 (outward) and - 1 (inward), respectively. Similar results are given in
Table 79 for cylinders with e /h =+ 5. The results in Tables 80 and 81 correspond to the generic

L

3

ring properties givenby A: _ 5 ,

=5, and J =0 and for the eccentricities e/h=+1 and
dh

+ 5, respectively.

Results showing the effects of variations in the ring eccentricity are presented in Table 82 for
cylinders with L/R =1 and 3, and with R/h = 1000. These results also correspond to the generic

Ic

ring properties given by (%; -05 »——~=5, and J =0. Similar results showing the effects of
dh’
variations in % and 173 are presented in Tables 83 and 84, respectively, fore /h =+ 5.
. dh

cr 2
Xy

D
stiffened cylinders in Table 85 for values of the radius-to-thickness ratios R/h =100 and 1000
and for the length-to-radius ratio 0.5 < L/R < 3. These results correspond to the generic stringer

Predicted values of the nondimensional buckling load are presented for stringer

A,

properties given by =

0.5, dl—h =5, and J =0. Additionally, the results in Table 85 are for

cylinders with e/h ==+ 5. Similar results are given in Table 86 for cylinders stiffened by rings
and stringers for combinations of withe /h=+35 and with e /h ==+ 5. The results in this Table

C C
Lo_ I
3 3

correspond to the generic stiffener properties givenby A _ A _ ) 5
h dh’ dh

=5, and J =
dh

o

s

The results in Tables 78-86 indicate that the approximate Rayleigh-Ritz solution presented
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herein is, for the most part, inadequate for predicting the shear-buckling loads of the cylinders
considered. Differences significantly greater than 10% are found for many cylinder
configurations and are indicated in the tables by the yellow highlighting.

Unstiffened Orthotropic and Laminated-Composite Cylinders

Results are presented subsequently that include results for laminated-composite cylinders.
For these cylinders, the plies are presumed to have the same thickness unless noted otherwise.
Moreover, the first ply in the stacking sequence is designated as the innermost ply, and ply
orientation angles are measured with respect to the cylinders generators.

Axial compression loads. Comparisons for unstiffened orthotropic and laminated-
composite cylinders subjected to uniform axial compression are shown in Tables 87-117. For
homogeneous orthotropic cylinders and cross-ply laminated-composite cylinders, the results of
the present study were obtained by using the classical solution described herein. For cylinders
with angle plies, anisotropies associated with the A, A,,, B,,, B,,, D,,, and D,, constitutive terms
appearing in equation (11) are generally present. These anisotropies are typically associated with
skewed buckle patterns and, as a result, the classical solution is invalid. In the present study, the
effects of these anisotropies are approximated by using the three-parameter Rayleigh-Ritz
solution presented herein that utilizes the displacement functions defined by equations (108). It is
important to note that when the skewedness parameter T is set equal to zero, the Rayleigh-Ritz
solution produce results that are identical to the classical solution. It is also important to note that
when unbalanced angle plies are present, the A, and A, constitutive terms are generally nonzero
and enforcement of zero-valued circumferential displacement boundary conditions produces a
nonzero shearing stress resultant in the prebuckling state.

The results in Table 87 show the predicted values of the nondimensional buckling load

N, R,(R, 1  for specially orthotropic cylinders obtained by Kardomateas™ and obtained in
EhR R,

the present study as a function of the ratio of the outer radius to the inner radius, R,/R,. For these
cylinders, the length is given by L/R, =5 and the radius-to-thickness ratio R/h is given by

R__R (148)
h R,
2(R,‘ 1)

In this table, results are given for R,/R, =1.01, 1.02, 104, and 1.05. The corresponding values of
R/h are given by 100.5, 50.5, 25.5, and 20.5. In addition, the results were calculated for a
homogeneous orthotropic material with the principal material properties E, = 15 GPa, E, =57
Gpa, G,,=5.7 GPa, and v,, = 0.277. The results of reference 71 that are presented in Table 87
include nondimensional buckling loads obtained by using the nonshallow shell equations given
by Brush and Almroth" (see pp.157-159), that neglect linear and nonlinear rotations about the
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normal, and by using Timoshenko’s equations.™

The results in Table 87 indicate that the nondimensional buckling loads obtained by
Kardomateas, by using Timoshenko’s equations, and obtained in the present study, by using
Sanders’ equations, differ by less than 3.5%. Additionally, the nondimensional buckling loads
obtained by Kardomateas, by using the nonshallow shell equations given in reference 17, and
obtained in the present study, by using Sanders’ equations with the nonlinear rotations about the
normal neglected, differ by less than 2.5% for the two thinner cylinders and by about 18% for the
two thicker cylinders.Moreover, the nondimensional buckling loads obtained by Kardomateas, by
using the nonshallow shell equations given in reference 17, and obtained in the present study, by
using Donnell’s equations are nearly identical. The results obtained in the present study also
indicate differences in the corresponding predictions obtained by using Donnell’s equations and
Sanders’ equations that range from about 1% to 18%, with the largest differences being exhibited
by the thicker cylinders. This same trend is exhibited by the two sets of results given by
Kardomateas. Similarly, the results indicate differences in the corresponding predictions obtained
by using Donnell’s equations and Sanders’ equations, neglecting nonlinear rotations about the
normal, that range from about 0.3% to 14%, with the largest differences being exhibited by the
thicker cylinders.

cr 2
Comparisons of the values predicted herein for the nondimensional buckling load 1\127L
D,

with those predicted by Jones and Morgan”™ and by Soldatos and Tzivanidis,” obtained by using
Donnell’s equations, are shown in Table 88 for cylinders with (90/0)_ antisymmetric cross-ply
laminated-composite walls. These results are for cylinders with a radius R = 10 in., a wall
thickness h=0.10 in., and for values of the stacking sequence index m =1, 2, 3, and oo. The first
ply in the stacking sequence is the innermost ply and its major principal axis is 90 degrees from
the cylinder axis. The lamina material properties are E, =30 X 10° psi, E, = 0.75 x 10° psi, G,,=
0.375 x 10° psi, and v,, = 0.25. The results presented in this table are for values of the cylinder
length L =1.00, 3.16, 10.00, and 31.63 in. Only results for the cylinders with L = 1.00 in. are
given by Soldatos and Tzivanidis.

The results in Table 88 show that the differences between the predicted buckling loads
obtained by Jones and Morgan, Soldatos and Tzivanidis, and the present study of less than 1% for
the cylinders with L = 1.00 in. For the longer shells, substantially larger differences are seen that
range from approximately 4% to 8%. From a private communication, it was found that Weaver™
obtained results based on Donnell’s equations for all cases shown in Table 88 that are practically
identical to those obtained in the present study. The results obtained in the present study also
indicate that neglecting nonlinear rotations about the normal in Sanders’ equations yields
differences less than 1%. Similarly, the differences between corresponding results obtained by
using Sanders’ equations and Donnell’s equations are at most approximately 2%.

Values of the predicted nondimensional buckling load N.L  obtained by Soldatos and

3

E.h
Tzivanidis,” by using Donnell’s equations, and obtained in the present study are given in Table
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89 for cylinders with (0/90/0_) unsymmetric cross-ply laminated-composite walls. These results
are also for cylinders with a length L =1.0 in., aradius R =10 in., a wall thickness h=0.10 in.,
and for values of the stacking sequence index m =1, 2, 4, 8, 18, and 48. The major principal axis
of the first ply is aligned with the cylinder axis, and the lamina material properties are the same
as those used to generate Table 88. Inspection of Table 89 reveals that the results obtained by
Soldatos and Tzivanidis are almost completely identical to the results obtained in the present
study. The results in Table 89 also show neglecting nonlinear rotations about the normal in
Sanders’ equations produces negligible differences. Additionally, the differences between the
corresponding results obtained by using Donnell’s equations and Sanders’equations are less than
0.2%.

Results similar to those given in Table 89 are presented in Table 90 for cylinders with (0_ /
90/0) unsymmetric cross-ply laminated-composite walls and for cylinders with all 0-degree plies.
These results are also for cylinders with a length L =34.64 in., a radius R =10 in., a wall
thickness h = 0.12 in., and for values of the stacking sequence index m =1, 8, 18, and 48.
Moreover, the lamina material properties are identical to those used in generating Table 89.
Results obtained by Jones and Morgan’ and by Shen,” obtained by using Donnell’s equations,
differ from the corresponding results obtained in the present study by 0.6%, at most, and are
identical in several cases. The results in Table 90 also show neglecting nonlinear rotations about
the normal in Sanders’ equations produces differences less than 1%, and the differences between
the corresponding results obtained by using Donnell’s equations and Sanders’equations are less
than 2.4%.

Additional results for cross-ply laminated-composite cylinders with the lamina material
properties E, =30 x 10°psi, E,=0.75x 10° psi, G,,=0.375x 10° psi, and v,,=0.25 are presented

in Tables 91-93. In Tables 91 and 92, the nondimensional buckling load is given by N?L3 and in
E,h

Table 93 by NirLz , where A, is the circumferential extensional stiffness. The results in Table 91
Ah

are for cylinders with L/R =1 and R/h = 10, and the results in Table 92 are for cylinders with L/

R =2 and R/h =40. The results in Table 93 are for selected values of 0.5<L <10 and 1 <R

< 10 that correspond to two groups of results; that is, one with L/R = 1/2 and the other with L/R

= 1. For all three tables, a wall thickness h =0.10 in. was used to compute the results.

The results in Table 91 obtained by Khdeir et al.” using Donnell’s equations differ from the
corresponding results obtained in the present study by approximately 3% to 8%. In contrast, the
results in Table 92 obtained by Nosier and Reddy”” using Donnell’s equations are identical to the
corresponding results obtained in the present study. Likewise, the results in Table 93 obtained by
Tu and Chia™ using Donnell’s equations are identical to the corresponding results obtained in the
present study, with two exceptions. Specifically, for the cylinders with L =R =10.0 in. and with
L =R =5 in. the differences with the corresponding results obtained in the present study are
approximately 33% and 16%, respectively. From a private communication, it was found that
Weaver™ obtained results based on Donnell’s equations for these two cases that are within
approximately 0.2% of the corresponding results obtained in the present study.
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The results in Table 91 also indicate that neglecting nonlinear rotations about the normal in
Sanders’ equations produces differences between approximately 2% to 6%, and the differences
between the corresponding results obtained by using Donnell’s equations and Sanders’equations
range from approximately 4% to 17%. In contrast, the results in Table 92 indicate that neglecting
nonlinear rotations about the normal in Sanders’ equations produces differences of approximately
1%, and the differences between the corresponding results obtained by using Donnell’s equations
and Sanders’equations range from approximately 3% to 4%. The results in Table 93 indicate that
neglecting nonlinear rotations about the normal in Sanders’ equations produces differences less
than 2%, and mostly less than 1%. The differences between the corresponding results obtained by
using Donnell’s equations and Sanders’equations range from approximately 1% to 6%.

Values of the applied stress resultant at buckling, N, obtained by Han and Simitses,” by

using Donnell’s equations, and obtained in the present study are given in Table 94 for
unidirectional laminated-composite cylinders with either all 0-degree or all 90-degree plies.
These results are also for cylinders with a radius R equal to either 4.0 in. or 7.5 in., a wall
thickness h=0.0212 in., and L/R=1, 2, 5, and 10. The lamina material properties are E =30
X 10°psi, E, = 2.7 x 10° psi, G,,=0.65 x 10° psi, and v, = 0.21. This table shows that the results
obtained by Han and Simitses differ from the corresponding results obtained in the present study
by less than 0.6%. The results in Table 94 also show neglecting nonlinear rotations about the
normal in Sanders’ equations produces negligible differences. Additionally, the differences
between the corresponding results obtained by using Donnell’s equations and Sanders’equations
are less than 0.8%.

Results are presented in Table 95 that show the predicted buckling load obtained by Geier et
al.,”” Meyer-Piening et al.,” Geier and Singh,” and obtained in the present study for selected
laminated-composite cylinders. These results are also for cylinders with a length L =510 mm, a
radius R =250 mm, and a wall thickness h = 1.25 mm. The lamina material properties are E, =
123,550 MPa, E, = 8,708 MPa, G,, = 5,695 MPa, and v, = 0.32. The results given in the table
that were obtained by Geier et al. and Meyer-Piening et al. are based on Donnell’s equations and
neglect the A, A,,, B,,, B,,, D,,, and D, anisotropic stiffnesses. In addition, results obtained by
Meyer-Piening et al. that are based on Sanders’ kinematic equations and that include the B, B,,
D,,, and D, anisotropic stiffnesses are presented in the table, along with results obtained from a

refined theory used by Geier and Singh that uses equations similar to those of Fliigge,'" but
includes transverse-shearing deformations.

The results in Table 95 exhibit differences less than 1% between the buckling loads obtained
in references 81 and 82, that are based on Donnell’s equations, with the corresponding results
obtained in the present study. Similarly, the results from references 82 and 83 exhibit differences
less than 2% and 1%, respectively, from the corresponding results obtained in the present study
that are based on Sanders’ equations. The results in Table 95 also show that neglecting nonlinear
rotations about the normal in Sanders’ equations produces differences less than 3%. Additionally,
the differences between the corresponding results obtained by using Donnell’s equations and
Sanders’equations are less than approximately 5%.
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Predictions of the applied stress resultant at buckling, N., obtained by Khot and Venkayya,*

by using Donnell’s equations, and obtained in the present study are given in Tables 96 and 97 for
(0/-6/+8) and (90/-6/+0) three-ply laminated-composite cylinders. These results are for cylinders
with aradius R = 6.0 in., a wall thickness h=0.036 in., and a length L = 12.5 in. Moreover, the
results in Table 96 are for glass-epoxy cylinders with the lamina material properties E, = 7.5 X
10° psi, E,=3.5x10°psi, G, =1.25x 10° psi, and v, = 0.25. The results in Table 97 are for
boron-epoxy cylinders with the lamina material properties E =40 x 10° psi, E, =4.5 X 10° psi,
G,=1.5x10°psi, and v,, = 0.25. Futhermore, the results obtained by Khot and Venkayya are
based on an approximate analysis that uses the buckle pattern given by equation (108c) with a
stress-function formulation that ignores some of the simply supported boundary conditions
addressed in the present study. The approximate solutions used in the present study and in
reference 83 use the skewedness parameter T in equations (108) to account for cylinder wall
anisotropies.

The results that are based on Donnell’s equations in Table 96, obtained by Khot and
Venkayya, for the glass-epoxy cylinders exhibit differences less than 2% from the corresponding
results obtained in the present study. The results in Table 96 also show neglecting nonlinear
rotations about the normal in Sanders’ equations produces differences less than approximately
1%. In addition, the differences between the corresponding results obtained by using Donnell’s
equations and Sanders’equations are less than approximately 2%. However, the results in Table
97, obtained by Khot and Venkayya for the boron-epoxy cylinders, exhibit differences as large as
13% from the corresponding results obtained in the present study. The results in Table 97 also
show neglecting nonlinear rotations about the normal in Sanders’ equations produces differences
less than approximately 1%, and the differences between the corresponding results obtained by
using Donnell’s equations and Sanders’equations are less than approximately 1%.

Results for the same three-ply glass-epoxy cylinders investigated by Khot and Venkayya, and
shown in Table 96, were also obtained by Arbocz* using an approximate analytical formulation
that is similar to that used by Khot and Venkayya. The results for the (0/-6/+8) and (90/-6/+0)
cylinders were found to be within approximately 5% and 3%, respectively, of the corresponding
results obtained in the present study. Results for the boron-epoxy cylinders presented in Table 97
were also obtained by Arbocz.* In particular, the results for the (0/-6/+0) and (90/-6/+0) cylinders
were found to be within approximately 19% and 16%, respectively, of the corresponding results
obtained in the present study. Arbocz* also obtained results for an eight-ply (+ 45/0/90),
laminated-composite cylinder, using same approximate analysis based on Donnell’s equations,
that are presented in Table 98 along with corresponding results obtained in the present study. This
cylinder has aradius R = 8.0 in., a wall thickness h =0.04 in., and a length L = 14.0 in. The
lamina material properties used to obtain these results are E, = 18.5111 x 10°psi, E,=1.64 x 10°
psi, G,,=0.8706 x 10° psi, and v ,=0.300235. The results in Table 98 show a difference less
than 0.3% between the buckling load obtained by Arbocz and the correspond results obtained
herein that is based on Donnell’s equations. The results in Table 98 also show that neglecting
nonlinear rotations about the normal in Sanders’ equations produces differences less than
approximately 2%, and the differences between the corresponding results obtained by using
Donnell’s equations and Sanders’equations are less than approximately 4%.
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Results are presented in Table 99 that show the predicted buckling stress (kgf/mm?*) obtained
by Uemura and Kasuya* and obtained in the present study for selected cross-ply and angle-ply
laminated-composite cylinders with a wall thickness h =1 mm, a radius R = 100 mm, and a
length L =600 mm. The lamina properties used to obtain these results are E, =13, 940 kgf/mm’,
E, =833 kgf/mm’, G, =484 kgf/mm’, v,, = 0.316, and the ply thickness = 0.125 mm. For the
cross-ply cylinders, Uemura and Kasuya obtained results by substituting displacement functions
equivalent to equations (77) into the Donnell-type differential equations governing buckling. For
the angle-ply cylinders, Uemura and Kasuya obtained results by using the Rayleigh-Ritz method.
For both solution methods, anisotropies associated with the B, B, , D,,, and D, constitutive terms
are unaccounted for in the analyses. In contrast, the results shown in this table for the present study
that were obtained by using the approximate Rayleigh-Ritz solution, which includes these
anisotropies. For comparison purposes, results are also shown in this table for the present study
that correspond to the classical solution (T = 0), which neglects these anisotropies, and are shown
in red.

The results in Table 99 show differences less than 6% between the buckling load obtained by
Uemura and Kasuya and the correspond results obtained herein that are based on Donnell’s
equations and neglect the anisotropies associated with the B, B,,, D,,, and D, constitutive terms.
Results obtained herein for the (+20,/-20,), (+45,/-45,), and (+70,/-70,) cylinders by using the
approximate Rayleigh-Ritz solution predict reductions in the buckling stress equal to
approximately 33%, 33%, and 15%, respectively. The results in Table 99 also show that
neglecting nonlinear rotations about the normal in Sanders’ equations can produces differences in
the corresponding results as large as approximately 21%. Likewise, the differences between the
corresponding results obtained by using Donnell’s equations and Sanders’equations are as large
as approximately 32%.

Results obtained by Uemura and Kasuya® for cylinders with h =0.5 mm, R = 100 mm, and
L =300 mm, that are similar to those in Table 99, are presented in Table 100. The results in Table
100 show no differences between the buckling load obtained by Uemura and Kasuya and the
correspond results obtained herein that are based on Donnell’s equations that neglect the
anisotropies associated with the B, B,, D,,, and D, constitutive terms, except for one case. A
difference of approximately 5% is found for the (+ 70), cylinder. Results obtained herein for the
(+20,/-20,), (+45,/-45,), and (+ 70), cylinders by using the approximate Rayleigh-Ritz solution
based on Donnell’s equations predict reductions in the buckling stress equal to approximately
42%, 20%, and 7%, respectively. The results in Table 100 also show that neglecting nonlinear
rotations about the normal in Sanders’ equations produces differences between the corresponding
results that are less than approximately 6%. However, the differences between the corresponding
results obtained by using Donnell’s equations and Sanders’equations are as large as
approximately 15% for the (+ 70), cylinders.

Predicted buckling loads (kN/m) obtained by Sun*’ and herein are presented in Table 101 for
selected laminated-composite cylinders made entirely from the three different material types
indicated in the table. These cylinders have a wall thickness h = 0.5 mm, a radius R = 82.5 mm,
and a length L =143.6 mm. For these cylinders, Sun obtained results by substituting displacement
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functions identical to equations (77) into the Donnell-type differential equations governing
buckling, which effectively neglects the effects of anisotropies associated with the B, B,,, D,
and D, constitutive terms in the analysis. Like in the previous two tables, the results shown in
Table 101 for the present study were obtained by using the approximate Rayleigh-Ritz solution,
which includes these anisotropies. Additional results are also shown in this table, in red, for the

present study that correspond to the classical solution (T = 0), which neglects these anisotropies.

The results in Table 101 show differences less than 2% between the buckling load obtained
by Sun and the corresponding results obtained herein that are based on Donnell’s equations and
that neglect the anisotropies associated with the B, B,,, D,,, and D, constitutive terms. Results
obtained herein by using the approximate Rayleigh-Ritz solution, including the anisotropies,
predict reductions in the buckling stress less than about 3%. The results in Table 101 also show
that neglecting nonlinear rotations about the normal in Sanders’ equations produces differences
in the corresponding results that are less than approximately 3%. The differences between the
corresponding results obtained by using Donnell’s equations and Sanders’equations are less than
approximately 4%.

Results obtained by Sun® for selected laminated-composite cylinders with h=0.5 mm and
R =82.5 mm, and for several lengths, that are similar to those in Table 101, are presented in Table
102. The results in this table show differences less than 1% between the buckling loads obtained
by Sun and the correspond results obtained herein that are based on Donnell’s equations and that
neglect the anisotropies associated with the B, B,,, D,, and D,, constitutive terms. Results
obtained herein by using the approximate Rayleigh-Ritz solution, including the anisotropies,
predict reductions in the buckling stress less than about 1%. The results in Table 102 also show
that neglecting nonlinear rotations about the normal in Sanders’ equations produces differences
in the results less than approximately 5%. The differences between the corresponding results
obtained by using Donnell’s equations and Sanders’equations are less than approximately 8%,
and in several cases less than 5%.

Additional results obtained by Sun® for (0,/+60,) _laminated-composite cylinders made of
the type 2 material are presented in Table 103 for values of m =10, 20, 40, 80, and 160. For these
cylinders, h = 0.5 mm, R = 82.5 mm, and L = 143.6 mm. The results in this table show no
differences between the buckling load obtained by Sun and the corresponding results obtained
herein that are based on Donnell’s equations. Moreover, results obtained herein by using the
approximate Rayleigh-Ritz solution, including the anisotropies, predict no reductions in the
buckling loads. The results in Table 103 also show that neglecting nonlinear rotations about the
normal in Sanders’ equations produces differences in the corresponding that are results less than
approximately 3%. The differences between the corresponding results obtained by using
Donnell’s equations and Sanders’equations are less than approximately 4%.

Buckling loads obtained by Smerdov® and in the present study, normalized by N* = 104.7
kN/m, are presented in Tables 104-107 for a variety of selected laminated-composite cylinders
with the lamina material properties E, =146 GPa, E,=10.8 GPa, G ,=5.78 GPa, and v ,=0.29.
These cylinders also have a wall thickness h = 0.5 mm, a radius R =82.5 mm, and a length L =
143.6 mm. Like Sun, Smerdov’s results were obtained by substituting displacement functions
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identical to equations (77) into the Donnell-type differential equations governing buckling. Thus,
Smerdov’s analysis also neglects the effects of the anisotropies associated with the B,, B,, D,
and D, constitutive terms. Once again, the results shown in Tables 104-107 for the present study
were obtained by using the approximate Rayleigh-Ritz solution, which includes these
anisotropies. Additional results are also shown in this table, in red, for the present study that
correspond to the classical solution (T = 0), which neglects these anisotropies.

The results in Tables 104-107 show no differences between the buckling load obtained by
Smerdov and the corresponding results obtained herein that are based on Donnell’s equations and
neglect the anisotropies associated with the B, B,, D,,, and D, constitutive terms. The results in
these tables also show a relatively small effect of neglecting nonlinear rotations about the normal
in Sanders’ equations. The differences between the corresponding results obtained by using
Donnell’s equations and Sanders’equations are less than approximately 9%, 6%, 6%, and 4% in
Tables 104-107, respectively. However, the results obtained herein by using the approximate
Rayleigh-Ritz solution with Sanders’ equations, including the anisotropies, predict substantial
reductions in the buckling loads for several laminates. Specifically, the (£71/0,), (£19.5/90,), and
(90,/£50.5) laminates in Table 104 are predicted to have buckling-load reductions due to
anisotropy equal to 37%, 22%, and 21%, respectively. Likewise, the (90,/0,/+49) laminate in
Table 105 and the (90, /£31/£31/90,) and (90, /+32.5/0,/90, ) laminates in Table 106 are
predicted to have buckling-load reductions equal to approximately 11%, 14%, and 11%,
respectively.

Additional results obtained by Smerdov* and herein that are similar to the results in Tables
104-107 are presented in Tables 108-113 for a variety of laminated-composite cylinders with
thinness ratios ranging from 50 < R/h < 1000. These cylinders are also made of laminae with the
material properties E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, and v ,=0.29. However, the

results correspond to cylinders with a radius R = 1000 mm and lengths given by L/R =1 and 3.

The normalization term N* is defined as N for the corresponding [0,/(£60),],,, laminated

160
cylinder and the value for each cylinder is listed in the tables. Like for Smerdov’s results presented
in Tables 104-107, the results in Tables 108-113 were obtained by substituting displacement
functions identical to equations (77) into the Donnell-type differential equations governing
buckling, and inherently neglect the effects ofthe anisotropies associated with the B,, B,,, D, and
D, constitutive terms.

The results in Tables 108-113 show, for the most part, no differences between the buckling
loads obtained by Smerdov and the corresponding results obtained herein that are based on
Donnell’s equations and that neglect the anisotropies associated with the B,, B,,, D,,, and D,,
constitutive terms. The few contrary cases exhibited differences less than approximately 1.5%.
The results in these tables also show a relatively small effect of neglecting nonlinear rotations
about the normal in Sanders’ equations. For most cases, the differences are less than 3%, and the
largest difference is approximately 7%. The differences between the corresponding results
obtained herein by using Donnell’s equations and Sanders’equations are less than approximately
5%, 9%, 5%, 16%, 3%, and 9% in Tables 108-113, respectively. The results obtained herein by
using the approximate Rayleigh-Ritz solution with Sanders’ equations, including the anisotropies,
predict reductions in the buckling loads that are less than 2%.
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Normalized buckling loads obtained by Smerdov* and herein are presented in Tables 114-
116 for a variety of laminated-composite cylinders with lamina moduli ratios ranging from 2 < E,
/E, £10,000. The corresponding lamina material properties are given by E, =146 GPa, E,/ G,
=2,and v, =0.29. In addition, the results correspond to cylinders with a radius R = 1000 mm,
a thinness ration R/h =150, and a length given by L/R = 1. The normalization term N* is also

defined for these cylinders as N, for the corresponding [0,/(£60),],,, laminated cylinder and

the value for each cylinder is listed in the tables. Furthermore, Smernov’s results in Tables 114-
116 were obtained from the Donnell-type classical solution that inherently neglects the effects
ofthe anisotropies associated with the B, B,,, D, and D,, constitutive terms. Again, the results
shown in Tables 114-116 for the present study were obtained by using the approximate Rayleigh-
Ritz solution, which includes these anisotropies. Additional results are also shown in this table, in
red, for the present study that correspond to the classical solution (T = 0), which neglects these
anisotropies.

The results in Tables 114-116 also show, for the most part, no differences between the
buckling load obtained by Smerdov and the corresponding results obtained herein that are based
on Donnell’s equations and neglect the anisotropies associated with the B, B,,, D, and D,,
constitutive terms. The few contrary cases exhibited differences less than approximately 1%, with
one curious exception. Smerdov’s result in the second row of Table 114 is listed as 0.91 and the
corresponding result obtained in the present study is 0.71; a difference of approximately 28%.
Based on the excellent agreement for all the other cases, it is likely that Smedov’s result is a
typographical error. The results in these tables also show an unimportant effect of neglecting
nonlinear rotations about the normal in Sanders’ equations. Similarly, the differences between the
corresponding results obtained herein by using Donnell’s equations and Sanders’ equations are
less than approximately 4%. The results obtained herein by using the approximate Rayleigh-Ritz
solution with Sanders’ equations, including the anisotropies, predict reductions in the buckling
loads that are less than 2% in almost all cases. However, the results given for E /E, = 100 and
10,000 in Table 114 exhibit buckling load reductions of approximately 133% and 254%,
respectively.

Buckling loads obtained by Wong and Weaver® and herein are presented in Table 117 for
selected laminated-composite cylinders with the lamina material properties E, = 161 GPa, E, =
11.5 GPa, G,,=7.169 GPa, and v, = 0.349. These cylinders have a wall thickness h =0.125
mm, aradius R =80 mm, and a length L =150 mm. The results given by Wong and Weaver were
obtained by using a radial displacement function equivalent to equation (108c) withm =1, and a
corresponding stress function with the Donnell-type equilibrium and compatibility differential
equations governing buckling. This solution is approximate in that it does not satisfy the simply
supported boundary conditions considered herein. More accurate results obtained from finite
element analyses conducted by Wong and Weaver are also given in Table 117.

The results in Table 117 indicates differences between the buckling load obtained by Wong
and Weaver and the corresponding results obtained herein that are based on Donnell’s equations
that are less than approximately 5%, and in several cases less than 2%. The results in this table
also show a negligible effect of neglecting nonlinear rotations about the normal in Sanders’
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equations. Similarly, the differences between the corresponding results obtained herein by using
Donnell’s equations and Sanders’ equations are less than approximately 1%. It is noteworty that
the differences between the finite element results and the corresponding results obtained in the
present study are, for the most part, less than approximately 5%. The exception is exhibited by the
results for the (90/-45,/0), cylinder which is approximately 11%.

Differences in the buckling resistance predictions obtained in the present study by using
Donnell’s equations, Sanders equations, and Sanders equations with nonlinear rotations about the
normal neglected are illustrated in figures 116-121 for [( 30),],, [(+ 45),]., and [(+ 60),],
laminated-composite cylinders with radius-to-thickness ratios R/h =50 and 500. The lamina
material properties used to obtain these results are E, =30 X 10° psi, E, =0.75 X 10° psi, G,, =
0.375 x 10° psi, and v, = 0.25. The buckling resistance is measured by the nondimensional

coefficient _ N;Rh _ for values of 0.2 < L/R < 50, where D,, and D,, are the principal shell-
n’ /DD,

wall bending stiffnesses appearing in equations (12c). For each laminate considered, it is

presumed that the anisotropy associated with the D,, and D,, constitutive terms is negligible.

The red curves in figures 116-121 corresponds to results obtained by using Donnell’s
equations. The black and the blue curves corresponds to results obtained by using Sanders’
equations and Sanders’ equations with nonlinear rotations about the normal neglected,
respectively. The rightmost branch of the black and the blue festoon curves shown in figures 116-
118 and the black curve shown in figure 121 correspond to a column-like shell-buckling mode
given by the wave numbers m =n = 1, and the graph coordinates for the first column-like shell-
buckling mode are indicated in the figures. The corresponding gray curve that appears in these
figures corresponds to buckling coefficients obtained by using the Euler column buckling formula
given by equation (135) for a simply supported thin-walled tubular beam with length L, cross-
sectional radius R, and thickness h that is deformed into a single half wave along its length. As

stated previously herein, N{.. is the Euler buckling load divided by 2nR and Et is the
column-bending stiffness. For the laminated-composite cylinders, the column-bending stiffness

is approximated by E.nmR’h, where E_is the effective axial stiffness of the shell given by

2

ALA,—A
E =2ufiz 12
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Using these results with equation (135) gives
N::(‘,—Eu]er‘R]r1 — R‘h(A”A22 _AIZ) (150)
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The results in figures 116-121, for the cylinders with R/h = 50 and 500, show significant
differences in the buckling resistance predictions are obtained from the three set of equations, with
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the black curves (Sanders’ equations) generally exhibiting the lowest corresponding values of
buckling resistance. In contrast, for the relatively short cylinders with R/h = 50, no differences
are found for the [(+ 30),], [(+ 45),]., and [(+ 60),], cylinders with approximately L/R <9, L/R
<5,and L/R <3.6, respectively. Likewise, for the relatively short cylinders with R/h = 500, no
differences are also found for the [(+ 30),], [(+45),],, and [(£ 60),], cylinders with approximately
L/R<82,L/R<4.5,and L/R <3, respectively. As the cylinder length increases, differences in
excess of 20% are generally found, with some exceptions that are associated with the festoon
nature of the blue and black curves. Like for monocoque and stiffened isotropic cylinders
examined herein, the results obtained by using Sanders’ equations predict a transition to a column
buckling mode at significantly smaller values of L/R than the corresponding results obtained by
using Sanders’ equations with nonlinear rotations about the normal neglected. The results
obtained by using Donnell’s equations predict no transition at all. In addition, the Euler column-
buckling modes predicted by equation (150) are in close agreement with the corresponding results
predicted by Sanders’ equations.

Uniform external pressure loads. Comparisons of the values predicted herein for the

cr- 2
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nondimensional buckling pressure with those predicted by Jones and Morgan,” by using

Donnell’s equations, are shown in Table 118 for cylinders with (90/0), cross-ply laminated-
composite walls. These results are for cylinders with a radius R = 10 in., a wall thickness h =
0.10 in., and for values of the stacking sequence index m = 1, 2, and oo. The first ply in the
stacking sequence is the innermost ply and its major principal axis is 90 degrees from the cylinder
axis. The lamina material properties are E, =30 x 10° psi, E,=0.75 x 10° psi, G,,=0.375x 10°
psi, and v, = 0.25. The results presented in this table are for values of the cylinder length L =
1.00, 3.16, 10.00, and 31.63 in. Results obtained in the present study are also shown in this table
that are based on Sanders’ equations with live pressure, Sanders’ equations with dead pressure,
and Sanders’ equations with dead pressure and nonlinear rotations about the normal neglected.

The results in Table 118 show that the differences between the predicted buckling pressures
obtained by Jones and Morgan and the present study, based on Donnell’s equations, are less than
2% for the cylinders with L = 1.00 in. For the longer shells, substantially larger differences are
seen that range from approximately 3% to 6%. The results obtained in the present study also
indicate that neglecting the effects of live pressure in Sanders’ equations yields differences less
than 3%, except for the cylinders with L = 31.63 in. which exhibit differences of about 4%-7%.
Moreover, the same range of differences is obtained when both live pressure and nonlinear
rotations about the normal are neglected in Sanders’ equations. Surprisingly, the differences
between the corresponding results obtained by using Sanders’ equations with live pressure and
Donnell’s equations with dead pressure are at most approximately 2%.

cr- 2

Values of the nondimensional buckling pressure P RI; obtained by Jones and Morgan,”
Shen,” and obtained in the present study are presented in Table 119 for selected unsymmetric
cross-ply cylinders with a radius R =10 in., a wall thickness h=0.10 in., and a length L =34.64
in. The lamina material properties are also E, =30 X 10° psi, E, = 0.75 X 10° psi, G,,=0.375 X
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10° psi, and v, =0.25. These results are based on Donnell’s equations with dead pressure.
Additional results obtained in the present study are presented in Table 119 that are based on
Sanders’ equations with live pressure, Sanders’ equations with dead pressure, and Sanders’
equations with dead pressure and nonlinear rotations about the normal neglected.

The results in Table 119 show no differences between the predicted buckling pressures
obtained by Jones and Morgan and the present study that are based on Donnell’s equations.
Moreover, differences between the predicted buckling pressures obtained by Shen and in the
present study are less than approximately 3%. The results obtained in the present study also
indicate that neglecting the effects of live pressure in Sanders’ equations yields differences less
than about 4%. Similar differences are obtained when both live pressure and nonlinear rotations
about the normal are neglected in Sanders’ equations. Once again, the differences between the
corresponding results obtained by using Sanders’ equations with live pressure and Donnell’s
equations with dead pressure are at most approximately 2%.

Predicted values of p_R obtained by Sun* and herein are presented in Table 120 for selected
laminated-composite cylinders made entirely from the three different material types indicated in
the table. These cylinders have a wall thickness h = 0.5 mm, a radius R = 82.5 mm, and lengths
L =454, 143.6, and 321.1 mm. For these cylinders, Sun obtained results by substituting
displacement functions identical to equations (77) into the Donnell-type differential equations
governing buckling, which effectively neglects the effects of anisotropies associated with the B,
B,,, D,., and D, constitutive terms in the analysis. Once again, the results shown in Table 120 for
the present study were obtained by using the approximate Rayleigh-Ritz solution, which includes
these anisotropies. Additional results are also shown in this table, in red, for the present study that
correspond to the classical solution (T = 0), which neglects these anisotropies.

The results in this Table 120 show differences less than 0.3% between the buckling pressures
obtained by Sun and the correspond results obtained herein that are based on Donnell’s equations
and neglect the anisotropies associated with the B, B,,, D,, and D,, constitutive terms.
Corresponding results obtained herein by using the approximate Rayleigh-Ritz solution,
including the anisotropies, predict reductions in the buckling pressures less than about 1% and in
many cases no reduction at all. Additional results obtained in the present study are given in Table
120 that are based on Sanders’ equations with live pressure and Sanders’ equations with live
pressure and nonlinear rotations about the normal neglected. These results show that neglecting
nonlinear rotations about the normal in Sanders’ equations, with live pressure, produces
differences in the results that are less than 1% for all cases. The differences between the
corresponding results obtained by using Donnell’s equations and Sanders’equations with live
pressure are less than approximately 3% for all cases. Corresponding results obtained herein by
using the approximate Rayleigh-Ritz solution, including the anisotropies, predict reductions in the
corresponding buckling pressures less than about 1% and in many cases no reduction at all.

Values of the buckling pressures obtained by Simitses and Anastasiadis™ and obtained in the
present study are given in Tables 121-124 for selected infinitely long laminated-composite
cylinders with a radius R = 19.05 cm. In particular, results are presented in Tables 121 and 122
for symmetric cross-ply cylinders with radius-to-thickness ratios R/h =15 and 10, respectively.

123



Similarly, results are presented in Tables 123 and 124 for symmetric angle-ply cylinders with
radius-to-thickness ratios R/h=15 and 10, respectively. The lamina material properties (boron-
epoxy) are E, =206.844 x 10° Pa, E,=18.6159 x 10’ Pa, G,,=4.48162 X 10’ Pa, and v ,=0.21.
The results obtained by Simitses and Anastasiadis are based on Sanders’ equations with dead
pressure and nonlinear rotations about the normal neglected. Additional results obtained in the
present study are given in Tables 121-124 that are based on Donnell’s equations with dead
pressure, Sanders’ equations with live pressure, Sanders’ equations with dead pressure, and
Sanders’ equations with dead pressure and nonlinear rotations about the normal neglected. For
each case obtained in the present study, a value of L/R =100 was used in the calculations.

The results in Tables 121-124 indicate differences between the corresponding results
obtained by Simitses and Anastasiadis and in the present study, that are based on Sanders’
equations with dead pressure and nonlinear rotations about the normal neglected, are less than 2%
and, for the most part, less than a fraction of 1%. In addition, the results obtained in the present
study indicate negligible differences between the corresponding results obtained by using
Donnell’s equations with dead pressure, Sanders’ equations with dead pressure, and Sanders’
equations with dead pressure and nonlinear rotations about the normal neglected for every case.
Moreover, the results indicate differences of approximately 33% between the results based on
these three sets of equations and the corresponding results based on Sanders’ equations with live
pressure. The results presented in Tables 123 and 124, for the angle-ply cylinders, that were
obtained herein by using the approximate Rayleigh-Ritz solution with the D,, and D, anisotropies
included, indicate reductions in the buckling pressures that are at most approximately 4%. For
most cases, these differences are less than 1%. Additional results are also shown in this table, in
red, for the present study that correspond to the classical solution (T = 0), which neglects these
anisotropies.

Normalized buckling pressures obtained by Smerdov’ and in the present study are shown
in Tables 125-130 for a variety of selected laminated-composite cylinders with the lamina
material properties E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, and v ,=0.29. These cylinders
have a wall thickness h=0.5 mm and a radius R =82.5 mm. Moreover, the results in Tables 125-
130 are for length-to-radius ratios L/R=0.5, 1, 1.74, 3, 5, and 10, respectively. Smerdov’s results
were obtained by substituting displacement functions identical to equations (77) into a variational
statement that is based on Fliigge’s cylinder-buckling kinematics and that include the effects of
live pressure.” As a result, Smerdov’s analysis neglects the effects of the anisotropies associated
with the B, B,,, D, and D, constitutive terms. The results shown in Tables 125-130 for the
present study were obtained by using the approximate Rayleigh-Ritz solution, which includes
these anisotropies. Additional results are also shown in this table, in red, for the present study that
correspond to the classical solution (T = 0), which neglects these anisotropies.

The results in Tables 125-130 indicate differences between the corresponding results
obtained by Smerdov, using Fliigge-type equations with live pressure, and in the present study,
by using Sanders’ equations with live pressure, are less than 1.5% and, for the most part, are
nonexistent. In addition, the results obtained in the present study for the cylinders with L/R=0.5
and 1 (Tables 125 and 126) indicate differences between the corresponding results obtained by
using Donnell’s equations with dead pressure and Sanders’ equations with live pressure that are
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less than 2%, for all table entries, and in many cases substantially smaller. Similar differences are
found for these short cylinders between Sanders’ equations without live pressure and with
nonlinear rotations about the normal neglected and Sanders’ equations with live pressure, and
between Sanders’ equations with and without live pressure. For the cylinders with L/R = 1.74
and 3 (Tables 127 and 128), the maximum difference obtained between Sanders’ equations with
live pressure and either of Donnell’s equations with dead pressure, Sanders’ equations without
live pressure and with nonlinear rotations about the normal neglected, and Sanders’ equations
without live pressure increases to about 5% for all table entries. For the cylinders with L/R =5
and 10 (Tables 129 and 130), the maximum difference increases to approximately 7% and 13%,
respectively.

Most of laminate constructions shown in Tables 125-130 are unbalanced (nonzero A ,and A,
constitutive terms) and, as a result, experience a uniform torsional displacement under the
application of uniform external pressure. Thus, strict adherence to the boundary conditions
considered herein, for the prebuckling and buckling states implies that shearing stresses are
induced into these cylinders by restraining the circumferential displacements at the ends. In
addition, no restraint of axial displacement is present for these boundary conditions. For the
simplified membrane prebuckling stress state considered herein, the induced uniform shearing
stress resultant is found by first setting the shearing strain and axial stress resultant equal to zero,
neglecting the B-matrix terms associated with the presence of a uniform radial displacement field,
and setting the thermal terms equal to zero in equation (21a). The resulting equations are then
solved and equations (28) are used to get the loading parameter associated with the induced
shearing stresses

_ A12A16 - A11A26
2
A111A22_A12

L, (151)

3

The values of L, obtained from this equation are shown in Tables 125-130 along with the results
that were obtained by using the approximate Rayleigh-Ritz solution with the anisotropies
included. For the cylinders with L/R=0.5 and 1 (Tables 125 and 126) the approximate analysis
predicts reductions in the buckling pressures due to wall anisotropies that are as large as
approximately 9% and 22%, respectively. These reductions in the buckling pressures are based
on comparing Smerdov’s results and the corresponding results based on Sanders’ equations with
live pressure. Similarly, for the cylinders with L/R =1.74 and 3 (Tables 127 and 128), the
reductions in the buckling pressures due to wall anisotropies are as large as approximately 62%
and 5%, respectively. For the cylinders with L/R=35 and 10 (Tables 129 and 130), the predicted
reductions are approximately 36% and 16%, respectively.

The differences in the buckling resistance predictions obtained in the present study by using
Donnell’s equations (red curves), Sanders equations with dead pressure (blue curves), and
Sanders equations with live pressure (black curves) are illustrated in figures 122-127 for [(+ 30),],,
[(£45)], and [(+ 60),], laminated-composite cylinders with radius-to-thickness ratios R/h =50
and 500. The lamina material properties used to obtain these results are E, =30 X 10° psi, E, =
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0.75 x 10° psi, G,,=0.375 x 10° psi, and v,, = 0.25. The buckling resistance is measured by the

nondimensional coefficient p“R’  for values of 0.2 <L/R < 50, where D, and D,, are the

V D 11D22
principal shell-wall bending stiffnesses appearing in equations (12¢). For each laminate
considered, it is presumed that the anisotropy associated with the D, and D, constitutive terms is
negligible. In calculating results for cylinders subjected to uniform external pressure, the
circumferential wave numbers n=0 and n=1 are typically not used because these two wave
numbers correspond to axisymmetric deformation modes and column-buckling modes that are
inconsistent with the uniform external pressure loading. However, the two wave numbers were
included in the calculation of the subsequent results to facilitate the presentation of results for
cylinders subjected to hydrostatic pressure.

For the [(+30),], cylinders with R/h =50, shown in figure 122, the differences between the
corresponding results predicted by Donnell’s and Sanders’ equations with live pressure, and
between the two sets of Sanders’ equations, are less than about 7% for L/R <5. For 5<L/R<
12, differences are large as approximately14% are found. As L/R increase beyond 12, the
differences are generally much larger. It is important to note that the rightmost branch of the red
festoon curve corresponds to m =n= 1. Upon eliminating these solutions, the red curve becomes
coincident with the blue curve. Thus, for values of L/R > 30, the curves obtained by using
Donnell’s equations and by using Sanders’ equations with dead pressure asymptotically approach

the approximate value p“R’ = 1.6. In contrast, the curve obtained by using Sanders’
\% D11D22
pcr 3
equations with live pressure asymptotically approaches the approximate value ———— =1.2.
q p ymp Yy app pp J/D.D..

These asymptotic results correspond to a maximum difference of approximately 33% and to the
m=1and n=2 flattened-cylinder buckling mode.

Results similar to those in figure 122 are presented in figures 123 and 124 for the [(+ 45),],,
and [(£ 60),], cylinders with R/h = 50, respectively. The rightmost branch of the red festoon
curves in these two figures also corresponds to m =n = 1, and upon eliminating these solutions,
each red curves becomes coincident with the corresponding blue curve. For the [(+45),],
cylinders (figure 123), the differences between the corresponding results predicted by Donnell’s
and Sanders’ equations with live pressure, and between the two sets of Sanders’ equations, are
less than about 6% for L/R < 2. For 2 <L/R <7, differences become as large as
approximately12%, and as /R increases beyond 7, the differences increase substantially. For
values of L/R > 20, the curves obtained by using Donnell’s equations and by using Sanders’

crpy 3

equations with dead pressure asymptotically approach the approximate value P2 —4m

\ D 11D22
contrast, the curve obtained by using Sanders’ equations with live pressure asymptotically
crpy 3

. R .
approaches the approximate value Il))ﬁ = 3. These asymptotic results correspond to a
11 22

maximum difference of approximately 33% and to the m=1 and n=2 flattened-cylinder
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buckling mode.

For the [(+ 60),], cylinders shown in figure 124, the differences between the corresponding
results predicted by Donnell’s and Sanders’ equations with live pressure, and between the two sets
of Sanders’ equations, are also less than about 6% for L/R <2. For 2 <L/R <5, differences
become as large as approximately12%, and as L/R increases beyond 5, the differences increase
substantially. For values of L/R > 14, the curves obtained by using Donnell’s equations and by
using Sanders’ equations with dead pressure asymptotically approach the approximate value

«/% =10.2. In contrast, the curve obtained by using Sanders’ equations with live pressure

3

. : ‘R .
asymptotically approaches the approximate value JIIDD—D =7.7. These asymptotic results also

correspond to a maximum difference of approximately 33% and to the m=1 and n=2 flattened-
cylinder buckling mode.

Results for the [(+30),], cylinders with R/h = 500, shown in figure 125, indicate that the
differences between the corresponding results predicted by Donnell’s and Sanders’ equations
with live pressure, and between the two sets of Sanders’ equations, are less than about 7% for L/
R < 18. For approximately 18 < L/R < 39, differences are large as approximately12% are found.
For 39 <L/R <50, the differences between the corresponding results predicted by Donnell’s and
Sanders’ equations with live pressure are at most 10%, whereas the differences between the
corresponding results predicted by the two sets of Sanders’ equations increase to approximately
34%. However, results for the [(+45),], cylinders with R/h =500, shown in figure 126, indicate
that the differences between the corresponding results predicted by Donnell’s and Sanders’
equations with live pressure are less than about 7% for L/R < 12. The differences predicted
between the two sets of Sanders’ equations, are less than about 7% for approximately L/R < 10.
In the range 10 <L/R <21, differences between cooresponding results obtained from the two sets
of Sanders’ equations are large as approximately12% are found. The differences in the
corresponding results obtained from Donnell’s and Sanders’ equations with live pressure are
mostly less than 10%. For 21 < L/R < 50, the differences between the corresponding results
predicted by the two sets of Sanders’ equations are, for the most part, approximately 33%. The
differences between the corresponding results predicted by Donnell’s and Sanders’ equations
with live pressure in this range increase from less than 1% to 30% as L/R increases.

Results for the [(+ 60),], cylinders with R/h =500, shown in figure 127, indicate that the
differences between the corresponding results predicted by Donnell’s and Sanders’ equations
with live pressure, and between the two sets of Sanders’ equations, are less than about 6% for L/
R <7.For approximately 7 <L/R <15, differences are large as approximately12% are found. For
15 < L/R £ 50, the differences between the corresponding results predicted by the two sets of
Sanders’ equations are, for the most part, also approximately 33%. The differences between the
corresponding results predicted by Donnell’s and Sanders’ equations with live pressure in this
range also increase from less than 1% to 30% as L/R increases. It is important to note that the
rightmost branch of the red festoon curve shown in figure 127 also corresponds to m =n=1.
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Uniform hydrostatic pressure loads. Values of the hydrostatic buckling pressures obtained
by Perry and Miller” and obtained in the present study are presented in Tables 131-133 for
selected symmetric and unsymmetric cross-ply cylinders with a wall thickness h =0.12 in. The
lamina material properties are E, =19 x 10°psi, E,=1.5x10°psi, G,,=1.0X 10°psi, and v ,=
0.28. Moreover, the results in Tables 131 and 132 are for cylinders with L/R = 6.050 and R/h =
25. The results in Tables 133 are for cylinders with L/R = 6.555 and R/h = 38. The results
obtained by Perry and Miller that are presented in these tables are based on Donnell’s equations
with dead pressure. Additional results obtained by Perry and Miller that are presented Table 133
were obtained from finite element analyses with dead pressure loads. Perry and Miller indicate in
reference 93 that the finite element analyses were not completely converged and errors in the
range of 3%-5% were expected. Values of the D,, constitutive term were also given by Perry and
Miller that were matched exactly in the present study. Additional results obtained in the present
study are also presented in Tables 131-133 that are based on Sanders’ equations with live
pressure, Sanders’ equations with live pressure and nonlinear rotations about the normal are
neglected, and Donnell’s equations with dead pressure.

The results in Table 131 show differences between the predicted buckling pressures obtained
by Perry and Miller and the corresponding results obtained in the present study that range from
2%-5%. In contrast, the results in Tables 132 and 133 show differences that range from
approximately 1%-14% and 2%-10%, respectively. The finite element results obtained by Perry
and Miller and the results obtained in the present study by using Sanders’ equations with live
pressure and nonlinear rotations about the normal neglected show differences that range from
approximately 2%-10%. The results obtained in the present study and shown in Tables 131-133
also indicate that neglecting the effects of live pressure in Sanders’ equations yields differences
as large as about 3%, 0.5%, and 26%, respectively. Similarly, the differences between the
corresponding results obtained by using Sanders’ equations with live pressure and Donnell’s
equations with dead pressure are at most approximately 10%, 5%, and 15%, respectively, in these
three tables.

Results obtained by Perry and Miller” and obtained in the present study are given in Table
134 for [90,/%0 /0, ], laminated-composite cylinders made of the same lamina material as the
cylinders in Tables 131-133 and with a wall thickness h = 0.12 in. The results in Table 134 are
also for cylinders with L/R =6.050 and R/h =25, and correspond to values of 0 =0, 15, 30, 45,
60, 75, and 90 degrees. One set of the results obtained by Perry and Miller is based on Donnell’s
equations with dead pressure and the other set was obtained from finite element analyses with
dead pressure loads. Additional results obtained in the present study are also presented in Tables
134 that are based on Sanders’ equations with live pressure, Sanders’ equations with dead
pressure, and Donnell’s equations with dead pressure.

The results in Table 134 show differences between the predicted buckling pressures obtained
by Perry and Miller and the corresponding results obtained in the present study, based on
Donnell’s equations with dead pressure, that range from approximately 2%-3%. However, the
results in Table 134 also show differences between the predicted buckling pressures obtained by
Perry and Miller, from finite element analyses, and the corresponding results obtained in the
present study, based on Sanders’ equations with dead pressure, that range from approximately
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0.6%-8%. Since the [90,/£0 /0, ], cylinder possess some anisotropies, results were obtained in the
present study by using the approximate Rayleigh-Ritz analysis based on Sanders’ equations with
dead pressure. The results of these analyses are identical to the corresponding results shown in
Table 134. The results obtained in the present study and shown in Table 134 also indicate that
neglecting the effects of live pressure in Sanders’ equations yields differences of about 27%. In
contrast, the differences between the corresponding results obtained by using Sanders’ equations
with live pressure and Donnell’s equations with dead pressure are less than 5%.

Normalized buckling pressures obtained by Smerdov”’ and in the present study are shown in
Tables 135-140 for a variety of selected laminated-composite cylinders with the lamina material
properties E, = 146 GPa, E, =10.8 GPa, G,,=5.78 GPa, and v,,=0.29. These cylinders have
a wall thickness h = 0.5 mm and a radius R = 82.5 mm. In particular, the results in Tables 135-
140 are for length-to-radius ratios L/R=0.5, 1, 1.74, 3, 5, and 10, respectively. Smerdov’s results
were obtained by substituting displacement functions identical to equations (77) into a variational
statement that is based on Fliigge’s cylinder-buckling kinematics™ and that includes the effects of
live pressure, but neglects the effects of the anisotropies associated with the B,, B,, D, and D,,
constitutive terms. The results shown in Tables 135-140 for the present study were obtained by
using the approximate Rayleigh-Ritz solution, which includes these anisotropies. Additional
results are also shown in this table, in red, for the present study that correspond to the classical
solution (T = 0), which neglects these anisotropies.

The results in Tables 135-140 indicate differences between the corresponding results
obtained by Smerdov, using Fliigge-type equations with live pressure, and in the present study,
by using Sanders’ equations with live pressure, are less than 1.5% and, to a large extent, are
nonexistent. In addition, the results obtained in the present study for the cylinders with L/R=0.5
and 1 (Tables 135 and 136) indicate differences between the corresponding results obtained by
using Donnell’s equations with dead pressure and Sanders’ equations with live pressure that are
less than 1%, for all table entries, and in many cases smaller. Similar differences are found for
these short cylinders between Sanders’ equations without dead pressure and with nonlinear
rotations about the normal neglected and Sanders’ equations with live pressure, and between
Sanders’ equations with and without live pressure. For the cylinders with L/R =1.74 and 3
(Tables 137 and 138), the maximum difference obtained between Sanders’ equations with live
pressure and either of Donnell’s equations with dead pressure, Sanders’ equations without dead
pressure and with nonlinear rotations about the normal neglected, and Sanders’ equations without
live pressure is about 5% for all table entries. For the cylinders with L/R =35 and 10 (Tables 139
and 140), the maximum differences are approximately 7% and 13%, respectively.

Most of laminate constructions shown in Tables 135-140 are unbalanced (nonzero A ,and A,
constitutive terms) and, as a result, experience a uniform torsional displacement under the
application of uniform hydrostatic pressure. Thus, strict adherence to the boundary conditions
considered herein, for the prebuckling and buckling states, implies that shearing stresses are
induced into these cylinders by restraining the circumferential displacement at the ends. For the
simplified membrane prebuckling stress state considered herein, the induced uniform shearing
stress resultant is found by first setting the shearing strain equal to zero, neglecting the B-matrix
terms associated with the presence of a uniform radial displacement field, and setting the thermal
terms equal to zero in equation (21a). The resulting equations are then solved and equations (28)
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are used to get the loading parameter associated with the induced shearing stresses

(Aleza - A22A16)L1 + (A]2A16 - AnAzé)Lz
L,= = (152)
AIIAZZ_AIZ

The values of L, obtained from this equation are shown in Tables 135-140 along with the results
that were obtained in the present study by using the approximate Rayleigh-Ritz solution with the
anisotropies included. For the cylinders with L/R = 0.5 and 1 (Tables 135 and 136) the
approximate analysis predicts reductions in the buckling pressures due to wall anisotropies that
are as large as approximately 7% and 32%, respectively. These reductions in the buckling
pressures are based on comparing Smerdov’s results and the corresponding results based on
Sanders’ equations with live pressure. Similarly, for the cylinders with L/R =1.74 and 3 (Tables
137 and 138), the reductions in the buckling pressures due to wall anisotropies that are as large as
approximately 76% and 48%, respectively. For the cylinders with L/R =5 and 10 (Tables 139
and 140), the predicted reductions are as large as approximately 41% and 18%, respectively.

Buckling pressures obtained by Fan et al.” and in the present study are given in Table 141 for
a laminated composite cylinder with a radius R =250.625 mm, a wall thickness h =1.25 mm,
and a length L =530 mm. In addition to uniform hydrostatic pressure, results are also given for
combined hydrostatic pressure and torsion defined by L, =0.5,L, =1, and L, = 1. The cylinder-
wall laminate construction is defined by the stiffnesses indicated in the table.

The results in Table 141 indicate differences between the corresponding results obtained by
Fan et al., using Fliigge-type equations with live pressure, and obtained in the present study, by
using Sanders’ equations with live pressure, are less than approximately 1%. In addition,
differences between the corresponding results obtained in the present study by using Donnell’s
equations with dead pressure and Sanders’ equations with live pressure that are less than about
1%. Moreover, the results show that neglecting the nonlinear rotations about the normal in
Sanders’ equations with live pressure has negligible effects.

Differences in the buckling resistance predictions were obtained in the present study by using
Donnell’s equations, Sanders equations with dead pressure, and Sanders equations with live
pressure for the hydrostatic-pressure loads. In particular, results were obtained for the [(+ 30),],,
[(+45),],, and [(+ 60),], laminated-composite cylinders with radius-to-thickness ratios R/h =50
and 500 that have been described previously herein. In calculating results for this loading
condition, the circumferential wave numbers n=0 and n=1 were included because of the
presence of axial compression. The results obtained for these cylinders are identical to the results
presented in figures 122-127, including the rightmost branch of the red festoon curves in these
figures that correspond to the column-buckling mode given by m =n=1.
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Concluding Remarks

A detailed, complete exposition of the nonlinear and linear-bifurcation buckling equations
for elastic, geometrically perfect, right-circular cylindrical shells subjected to combined loads has
been presented. The loads include compression, shear, and "live" external and hydrostatic
pressure in which the pressure remains normal to the shell surface during deformation. Moreover,
the loads are partitioned into one group that produces a stable prebuckling stress state prior to the
application of a second group that leads to buckling. The analysis includes elastic constitutive
equations that are applicable to stiffened or unstiffened cylinders made from isotropic or
laminated-composite materials. Complete sets of equations have been presented for the nonlinear
boundary-value problem of shell buckling and the corresponding prebuckling and linear-
bifurcation buckling problems. In addition, a variational statement for linear-bifurcation buckling
has been presented that includes live pressure loads. These sets of equations are based on Sanders’
nonlinear equations for the practical case of shell deformations with "small" strains and
"moderately small" rotations, and negligible transverse shearing deformations. In addition, these
sets of equations contain Donnell’s quasi-shallow shell equations as a special case.

In addition to a general Rayleigh-Ritz formulation for linear-bifurcation buckling, a detailed
three-parameter approximate Rayleigh-Ritz solution and a classical solution to the corresponding
boundary-eigenvalue-problem have been presented for the case of simply supported edges, in
which the circumferential and radial displacements are constrained. Extensive comparisons of
results obtained from these solutions with published results spanning nearly fifty years have also
been presented. These comparisons are for a wide variety of cylinder constructions that include
isotropic cylinders with, and without, a regular array of rings and stringers, and unstiffened
cylinders made of laminated-composite materials. Moreover, results for numerous laminated-
composite cylinders have been presented that include a wide variety of shell-wall orthotropies and
anisotropies. For almost all of the results that have been presented, the comparisons show that the
approximate Rayleigh-Ritz and classical solutions generally predict the buckling behavior
accurately. In some cases, such as cylinders subjected to torsion, the comparisons indicate that the
three-parameter approximate Rayleigh-Ritz solution is inadequate. Numerous comparisons have
also been presented that clearly show the descepancies between the results obtained by using
Donnell’s equations and variants of Sanders’ equations, as a function of cylinder geometry,
stiffnener properties, and material composition. For some cases, nondimensional parameters have
been identified and "master" curves have been presented that faciliate concise representation of a
very broad range of results. Overall, the detail and completeness of the presentation and results
should make confident-use of the equations accessable to design engineers with a less specialized
background, and provide a "stand-alone" reference document. Moreover, the comprehensive set
of comparisons with previously published results should add confidence to their usage.
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Table 1. Nondimensional buckling stress,

o,
E

(1 - vz) , for isotropic cylinders with simply

supported edges and subjected to axial compression (v =0.30, R =4.0 in., R/h =91.287)

Wave Ref. 29 Present study

number, # Fliigge Koiter-Budiansky Donnell Donnell Sanders
0.01 0.98698 0.98692 0.98697 0.98699 0.98698

0.10 0.01080 0.01081 0.10810 0.10810 0.01081

1 1.00 0.07549 0.07244 0.07614 0.07614 0.07546
10.00 0.04609 0.03539 0.07452 0.07453 0.04016

90.00 0.00055 0.00055 0.00933 0.00933 0.00055

0.01 0.98704 0.98698 0.98705 0.98705 0.98704

0.10 0.01086 0.01086 0.01086 0.01086 0.01086

2 1.00 0.04591 0.04324 0.04688 0.04688 0.04588
10.00 0.00510 0.00501 0.00705 0.00705 0.00509

90.00 0.05919 0.05917 0.13146 0.13146 0.05867

0.01 0.98714 0.98708 0.98715 0.98715 0.98714

0.10 0.01095 0.01095 0.01096 0.01096 0.01096

3 1.00 0.02492 0.02373 0.02558 0.02559 0.02491
10.00 0.00696 0.00693 0.00947 0.00947 0.00695

90.00 0.47289 0.47284 0.66496 0.66496 0.45138

0.01 0.98728 0.98722 0.98729 0.98729 0.98728

0.10 0.01108 0.01108 0.01108 0.01109 0.01108

4 1.00 0.01372 0.01327 0.01410 0.01410 0.01371
10.00 0.02207 0.02204 0.02660 0.02661 0.02204

90.00 1.7382 1.7382 2.1013 2.1013 1.2268
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Table 2. Buckling load N; (Ib/in.), for isotropic’ cylinders with simply supported edges, and
subjected to axial compression (R = 4 in.)

L/R R/h Refs. 30 and 31 Present study
Donnell Donnell Sanders* Sanders

1000 25.45 25.42 (16,19)" 25.28 (1,13) 25.15 (1,13)
500 101.81 101.68 (10,17) 100.94 (1,11) 100.23 (1,11)
: 250 407.23 406.72 (9,4) 401.86 (1,9) 397.95(1,9)
80 3977.0 3971.8 (5,3) 3930.4 (2,8) 3906.8 (2,8)
2 188.7 714.94 713.89 (14,8) 695.83 (1,6) 679.27 (1,6)
250 407.23 406.71 (28,14) 394.08 (1,4) 371.91 (1,4)
> 188.7 714.94 713.88 (38,5) 669.52 (1,4) 631.84 (1,4)
250 407.23 406.72 (35,14) 363.44 (1,3) 327.76 (1,3)
10 188.7 714.94 713.88 (21,11) 644.75 (1,3) 581.43 (1,3)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.

"E=10.5%10°psi, v="0.30

Table 3. Nondimensional buckling load +/3(1 -V’

N'R
Eh

supported edges and subjected to axial compression (h = 0.1 in.)

= for isotropic’ cylinders with simply

R/h | L/R Refs. 32 and 33 Present study
Fliigge Timoshenko Donnell Sanders* Sanders
1 0.960713 (7) 0.962416 (7)* 1.00150 (3,9)" 0.981971 (1,7) 0.968204 (1,7)
100 5 0.901542 (3) 0.904858 (3) 1.00003 (16,9) 0.981971 (5,7) 0.91319 (1,3)
10 0.883810 (4) 0.886141 (4) 1.00008 (15,8) 0.942039 (3.4) 0.891808 (3.4)
1 0.984007 (11) 0.984486 (11) 1.00004 (13,0) | 0.992698 (1,11) | 0.985727 (1,11)
500 5 0.923693 (5) 0.924240 (5) 1.00007 (1,5) 0.961337 (1,5) 0.925434 (1,5)
10 0.923693 (5) 0.924240 (5) 1.00001 (15,13) | 0.961337 (2,5) 0.925434 (2,5)

* Number in parentheses, (n) indicate the number of circumferential waves, n
* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.

"E=10.5x 10° psi, v = 0.30.
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Table 4. Nondimensional buckling load

N)c(rLZ

2

edges and subjected to uniform axial compression (v = 0.30)

for isotropic cylinders with simply supported

Batdorf—ZT Ref. 35 Present study
parameter Donnell Donnell Sanders* Sanders

0 1.0000 1.0000 (1,0)* 1.0000 (1,0) 1.0000 (1,0)
0.5 1.0308 1.0308 (1,0) 1.0308 (1,0) 1.0308 (1,0)

1 1.1232 1.1232 (1,0) 1.1232 (1,0) 1.1232 (1,0)
2 1.4928 1.4928 (1,0) 1.4928 (1,0) 1.4928 (1,0)

5 3.5099 3.5101 (1,25) 3.5092 (1,25) 3.5088 (1,25)
10 7.0197 7.0213 (1,29) 7.0174 (1,29) 7.0155 (1,29)
20 14.039 14.040 (2.,25) 14.028 (1,28) 14.021 (1,28)
50 35.099 35.099 (4,12) 35.083 (2,29) 35.072 (2,29)
70 49.138 49.139 (3,28) 49.058 (1,23) 48.999 (1,23)
100 70.197 70.198 (4,27) 70.140 (2,27) 70.098 (2,27)
150 105.30 105.30 (7.11) 105.09 (1,20) 104.90 (1,20)
200 140.39 140.40 (8,12) 140.32 (1,19) 140.02 (1,19)
250 175.49 175.49 (7,25) 175.16 (1,18) 174.73 (1,18)
300 210.59 210.59 (10,9) 209.90 (1,17) 209.31 (1,17)
350 245.69 245.69 (11,5) 24527 (2,22) 24493 (2,22)
400 280.79 280.79 (3.25) 279.72 (1,16) 278.80 (1,16)
450 315.89 315.89(11,19) 315.23(2,21) 314.72 (2,21)
500 350.99 350.99 (13,8) 349.89 (1,15) 348.57 (1,15)
600 421.18 421.19 (14,11) 420.37 (2,20) 419.58 (2,20)
700 491.38 491.39 (15,12) 488.99 (1,14) 486.81 (1,14)
800 561.58 561.58 (16,12) 560.53 (3,22) 558.96 (1,14)
900 631.78 631.78 (4,24) 629.92 (1,13) 626.63 (1,13)
1000 701.97 701.97 (14,25) 697.95 (1,13) 694.27 (1,13)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.

2
f —Li _v —
Z—RhVI v: and D=

Eh’

12(1-v)
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Table 5. Nondimensional buckling load +/3(1-V’)

ol

N
E

x

h

R for isotropic cylinders with simply

supported edges and subjected to uniform axial compression (v = 0.30, R/h = 100)

Ref. 38 Present study

L/R Fliigge Donnell Sanders* Sanders

0.150 1.0395 (1,0)* 1.0404 (1,0) 1.0404 (1,0) 1.0404 (1,0)
0.160 1.0110 (1,0) 1.0119 (1,0) 1.0119 (1,0) 1.0119 (1,0)
0.165 1.0034 (1,0) 1.0043 (1,0) 1.0043 (1,0) 1.0043 (1,0)
0.168 1.0007 (1,0) 1.0016 (1,0) 1.0016 (1,0) 1.0016 (1,0)
0.169 0.9998 (1,1) 1.0010 (1,0) 1.0010 (1,0) 1.0010 (1,0)
0.170 0.9992 (1,1) 1.0005 (1,0) 1.0005 (1,0) 1.0005 (1,0)
0.171 0.9991 (1,1) 1.0002 (1,0) 1.0002 (1,0) 1.0002 (1,0)
0.173 0.9992 (1,1) 1.0000 (1,1) 1.0000 (1,1) 1.0000 (1,1)
0.174 0.9990 (1,2) 1.0000 (1,1) 0.9999 (1,2) 0.9999 (1,2)
0.175 0.9990 (1,2) 1.0000 (1,2) 0.9999 (1,2) 0.9999 (1,2)
0.176 0.9990 (1,2) 1.0001 (1,2) 0.9999 (1,3) 0.9998 (1,3)
0.177 0.9989 (1,3) 1.0000 (1,3) 0.9998 (1,3) 0.9997 (1,3)
0.178 0.9988 (1,3) 1.0000 (1,3) 0.9997 (1,3) 0.9997 (1,3)
0.179 0.9989 (1,3) 1.0001 (1,3) 0.9998 (1,3) 0.9997 (1,3)
0.180 0.9988 (1,4) 1.0002 (1,4) 0.9998 (1,4) 0.9996 (1,4)
0.182 0.9985 (1,4) 1.0000 (1,4) 0.9995 (1,4) 0.9994 (1,4)
0.184 0.9987 (1,4) 1.0002 (1,4) 0.9997 (1,4) 0.9995 (1,4)
0.186 0.9984 (1,5) 1.0002 (1,5) 0.9995 (1,5) 0.9992 (1,5)
0.188 0.9981 (1,5) 1.0000 (1,5) 0.9992 (1,5) 0.9990 (1,5)
0.190 0.9983 (1,5) 1.0001 (1,5) 0.9993 (1,5) 0.9990 (1,5)
0.192 0.9986 (1,6) 1.0005 (1,5) 0.9997 (1,5) 0.9994 (1,6)
0.196 0.9978 (1,6) 1.0001 (1,6) 0.9989 (1,6) 0.9985 (1,6)
0.200 0.9979 (1,6) 1.0002 (1,6) 0.9990 (1,6) 0.9985 (1,6)
0.205 0.9978 (1,7) 1.0007 (1,7) 0.9990 (1,7) 0.9984 (1,7)
0.210 0.9970 (1,7) 1.0000 (1,7) 0.9983 (1,7) 0.9976 (1,7)
0.215 0.9972 (1,7) 1.0003 (1,7) 0.9985 (1,7) 0.9977 (1,7)
0.22 0.9981 (1,7) 1.0014 (1,7) 0.9995 (1,7) 0.9987 (1,7)
0.23 0.9961 (1,8) 1.0002 (1,8) 0.9976 (1,8) 0.9966 (1,8)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 5. Continued

Ref. 38 Present study

L/R Fligge Donnell Sanders* Sanders

0.24 0.9959 (1,8)" 1.0002 (1,8) 0.9975 (1,8) 0.9963 (1,8)
0.25 0.9970 (1,8) 1.0017 (1,8) 0.9987 (1,8) 0.9974 (1,8)
0.26 0.9965 (1,9) 1.0022 (1,9) 0.9983 (1,9) 0.9968 (1,9)
0.30 0.9929 (1,9) 1.0000 (1,9) 0.9952 (1,9) 0.9930 (1,9)
0.34 0.9915 (1,9) 1.0002 (1,9) 0.9944 (1,9) 0.9915 (1,9)
0.40 0.9888 (1,9) 1.0000 (1,9) 0.9926 (1,9) 0.9887 (1,9)
0.44 0.9877 (1,9) 1.0006 (1,9) 0.9921 (1,9) 0.9874 (1,9)
0.50 0.9903 (1,9) 1.0017 (2,8) 0.9955 (1,9) 0.9899 (1,9)
0.54 0.9961 (1,8) 1.0002 (3.,4) 0.9970 (2,9) 0.9952 (2,9)
0.60 0.9848 (1,8) 1.0000 (2,9) 0.9920 (1,8) 0.9844 (1,8)
0.65 0.9796 (1,8) 1.0001 (1,8) 0.9874 (1,8) 0.9792 (1,8)
0.70 0.9794 (1,8) 1.0000 (4.2) 0.9878 (1,8) 0.9789 (1,8)
0.72 0.9808 (1,8) 1.0002 (2.,9) 0.9895 (1,8) 0.9803 (1,8)
0.76 0.9865 (1,8) 1.0001 (2,9) 0.9932 (2,9) 0.9860 (1,8)
0.80 0.9888 (2,9) 1.0000 (2,9) 0.9926 (2,9) 0.9887 (2,9)
0.82 0.9884 (2,9) 1.0000 (2,9) 0.9924 (2,9) 0.9882 (2,9)
0.85 0.9825 (1,7) 1.0000 (4,7) 0.9921 (2,9) 0.9820 (1,7)
0.90 0.9736 (1,7) 1.0000 (3.9) 0.9858 (1,7) 0.9730 (1,7)
0.95 0.9690 (1,7) 1.0000 (1,7) 0.9817 (1,7) 0.9684 (1,7)
1.00 0.9689 (1,7) 1.0002 (3,9) 0.9820 (1,7) 0.9682 (1,7)
1.04 0.9718 (1,7) 1.0000 (6,1) 0.9853 (1,7) 0.9712 (1,7)
1.10 0.9813 (1,7) 1.0001 (6,4) 0.9937 (3,9) 0.9806 (1,7)
1.15 0.9890 (2,8) 1.0001 (3,9) 0.9931 (3,9) 0.9886 (2,8)
1.18 0.9864 (2,8) 1.0000 (6,6) 0.9928 (3,9) 0.9860 (2,8)
1.20 0.9827 (1,6) 1.0000 (3,9) 0.9920 (2,8) 0.9820 (1,6)
1.30 0.9606 (1,6) 1.0001 (2,8) 0.9812 (1,6) 0.9613 (1,6)
1.40 0.9538 (1,6) 1.0000 (8,2) 0.9735 (1,6) 0.9530 (1,6)
1.45 0.9539 (1,6) 1.0000 (8,4) 0.9740 (1,6) 0.9531 (1,6)
1.50 0.9567 (1,6) 1.0000 (5,9) 0.9771 (1,6) 0.9559 (1,6)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 5. Continued

Ref. 38 Present study

L/R Fligge Donnell Sanders* Sanders
1.60 0.9699 (1,6)" 1.0000 (9,3) 0.9912 (1,6) 0.9691 (1,6)
1.70 0.9825 (2,7) 1.0000 (9,5) 0.9921 (4,9) 0.9820 (2,7)
1.75 0.9776 (2,7) 1.0000 (10,2) 0.9895 (2,7) 0.9769 (2,7)
1.8 0.9708 (1,5) 1.0000 (6,9) 0.9858 (2,7) 0.9700 (1,5)
2.0 0.9372 (1,5) 1.0000 (5,9) 0.9676 (1,5) 0.9364 (1,5)
2.1 0.9308 (1,5) 1.0000 (12,2) 0.9614 (1,5) 0.9299 (1,5)
22 0.9304 (1,5) 1.0000 (7.,9) 0.9615 (1,5) 0.9295 (1,5)
24 0.9457 (1,5) 1.0000 (6,9) 0.9780 (1,5) 0.9448 (1,5)
2.6 0.9612 (2,6) 1.0000 (15,1) 0.9812 (2,6) 0.9613 (2,6)
2.7 0.9564 (2,6) 1.0000 (9.9) 0.9759 (2,6) 0.9557 (2,6)
2.8 0.9538 (2,6) 1.0000 (16,2) 0.9735 (2,6) 0.9530 (2,6)
3.0 0.9250 (1,4) 1.0000 (10,9) 0.9749 (1,4) 0.9241 (1,4)
32 0.9018 (1,4) 1.0000 (18,3) 0.9509 (1,4) 0.9007 (1,4)
3.4 0.8902 (1,4) 1.0000 (18,5) 0.9395 (1,4) 0.8892 (1,4)
3.7 0.8919 (1,4) 1.0000 (12,9) 0.9422 (1,4) 0.8910 (1,4)
4.0 0.9126 (1,4) 1.0000 (10,9) 0.9647 (1,4) 0.9117 (1,4)
4.2 0.9308 (2,5) 1.0000 (24,2) 0.9614 (2,5) 0.9299 (2,5)
44 0.9304 (2,5) 1.0000 (11,9) 0.9615 (2,5) 0.9295 (2,5)
4.7 0.9399 (2,5) 1.0000 (20,8) 0.9720 (2,5) 0.9391 (2,5)
5.0 0.9142 (1,3) 1.0000 (29,0) 0.9820 (5,7) 0.9132 (1,3)
5.6 0.8425 (1,3) 1.0000 (32,2) 0.9292 (1,3) 0.8416 (1,3)
6.0 0.8172 (1,3) 1.0000 (15,9) 0.9020 (1,3) 0.8163 (1,3)
6.5 0.8049 (1,3) 1.0000 (33,6) 0.8892 (1,3) 0.8041 (1,3)
7.0 0.8104 (1,3) 1.0000 (40,2) 0.8958 (1,3) 0.8094 (1,3)
8.0 0.8620 (1,3) 1.0000 (45,3) 0.9538 (1,3) 0.8610 (1,3)
9.0 0.9250 (3,4) 1.0000 (52,0) 0.9636 (4,5) 0.9241 (3.,4)
9.5 0.9045 (3,4) 1.0000 (45,7) 0.9540 (3,4) 0.9037 (3,4)
10 0.8934 (3,4) 1.0000 (33,9) 0.9420 (3.,4) 0.8918 (3,4)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 5. Concluded

Ref. 38 Present study
L/R Fligge Donnell Sanders* Sanders
12 0.7172 (1,2)* 1.0000 (30,9) 0.8898 (1,2) 0.7162 (1,2)
14 0.6313 (1,2) 1.0000 (35,9) 0.7845 (1,2) 0.6304 (1,2)
16 0.6034 (1,2) 1.0000 (40,9) 0.7507 (1,2) 0.6025 (1,2)
18 0.6134 (1,2) 1.0000 (45,9) 0.7638 (1,2) 0.6125 (1,2)
20 0.6505 (1,2) 1.0000 (50,9) 0.8105 (1,2) 0.6496 (1,2)
22 0.7008 (1,2) 1.0000 (55,9) 0.8831 (1,2) 0.7075 (1,2)
24 0.7172 (2,2) 1.0000 (60,9) 0.8898 (2,2) 0.7162 (2,2)
28 0.6313 (2,2) 1.0001 (20,6) 0.7845 (2,2) 0.6304 (2,2)
30 0.6116 (2,2) 1.0002 (31,7) 0.7606 (2,2) 0.6108 (2,2)
32 0.6034 (2,2) 1.0000 (23,6) 0.7507 (2,2) 0.6025 (2,2)
35 0.6084 (2,2) 1.0000 (37,7) 0.7570 (2,2) 0.6072 (2,2)
40 0.5065 (1,1) 1.0000 (19,5) 0.8100 (3,2) 0.5060 (1,1)
60 0.2258 (1,1) 1.0002 (29,5) 0.4505 (1,1) 0.2258 (1,1)
80 0.1272 (1,1) 1.0000 (13,3) 0.2540 (1,1) 0.1272 (1,1)
100 0.08145 (1,1) 1.0003 (16,3) 0.16275 (1,1) 0.08144 (1,1)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 6. Buckling stress ratio "i; for isotropic cylinders with simply supported edges, and
G*

X

subjected to axial compression (v = 0.30)

P Radius-to-Thickness Ratio, R/h

Gryier 50 100 500 1000
0.01 1.10 0.99 0.99 0.99
0.02 0.99 0.99 0.99 0.98
0.03 0.98 0.98 0.97 0.97
0.04 0.96 0.99 0.96 0.96
0.05 0.99 0.95 0.96 0.97
0.06 0.95 0.98 0.96 0.96
0.07 0.94 0.94 0.96 0.96
0.08 0.96 0.93 0.92 0.92
0.09 0.97 0.96 0.95 0.94
0.10 0.92 0.95 0.96 0.97
0.11 0.90 0.91 0.92 0.93
0.12 0.89 0.89 0.89 0.89
0.13 0.91 0.89 0.88 0.88
0.14 0.93 0.91 0.90 0.90
0.15 0.95 0.93 0.93 0.92
0.16 0.95 0.93 0.92 0.92
0.17 0.91 0.94 0.93 0.93
0.18 0.87 0.89 091 0.92
0.19 0.85 0.86 0.87 0.87
0.20 0.83 0.83 0.84 0.84
0.21 0.81 0.82 0.82 0.82
022 0.81 0.81 0.81 0.81
0.23 0.81 0.80 0.80 0.80
0.24 0.81 0.81 0.80 0.80
0.25 0.82 0.81 0.81 0.81
0.26 0.84 0.83 0.82 0.82
0.27 0.85 0.84 0.83 0.83
0.28 0.87 0.86 0.85 0.85
0.29 0.90 0.88 0.87 0.87
0.30 0.92 091 0.90 0.90
0.31 0.91 0.93 0.93 0.92
0.32 0.90 0.92 0.92 0.92
0.33 0.90 091 0.92 0.92
0.34 0.89 0.90 0.91 0.91
0.35 0.88 0.89 0.90 0.90
0.36 0.85 0.87 0.88 0.89
0.37 0.82 0.83 0.85 0.85
0.38 0.79 0.81 0.82 0.82
0.39 0.77 0.78 0.79 0.79
0.40 0.75 0.76 0.77 0.77
0.41 0.73 0.74 0.74 0.75
0.42 0.71 0.72 0.72 0.72
0.43 0.69 0.70 0.71 0.71
0.44 0.68 0.68 0.69 0.69
0.45 0.67 0.67 0.67 0.68
0.46 0.65 0.66 0.66 0.66
0.47 0.65 0.65 0.65 0.65
0.48 0.64 0.64 0.64 0.64
0.49 0.63 0.63 0.63 0.63
0.50 0.62 0.62 0.62 0.62
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Table 6. Continued

cr

Radius-to-Thickness Ratio, R/h

O*,

Grver 50 100 500 1000
0.51 0.62 0.62 0.62 0.62
0.52 0.61 0.61 0.61 0.61
0.53 0.61 0.61 0.61 0.61
0.54 0.61 0.61 0.61 0.61
0.55 0.61 0.60 0.60 0.6
0.56 0.60 0.60 0.60 0.6
0.57 0.60 0.60 0.60 0.6
0.58 0.60 0.60 0.60 0.6
0.59 0.61 0.60 0.60 0.6
0.60 0.61 0.60 0.60 0.6
0.61 0.61 0.61 0.60 0.6
0.62 0.61 0.61 0.61 0.61
0.63 0.62 0.61 0.61 0.61
0.64 0.62 0.62 0.61 0.61
0.65 0.62 0.62 0.62 0.62
0.66 0.63 0.63 0.62 0.62
0.67 0.63 0.63 0.63 0.63
0.68 0.64 0.64 0.63 0.63
0.69 0.65 0.64 0.64 0.64
0.70 0.65 0.65 0.65 0.65
0.71 0.66 0.66 0.65 0.65
0.72 0.67 0.66 0.66 0.66
0.73 0.68 0.67 0.67 0.67
0.74 0.68 0.68 0.68 0.68
0.75 0.69 0.69 0.68 0.68
0.76 0.70 0.70 0.69 0.69
0.77 0.71 0.71 0.70 0.7
0.78 0.72 0.72 0.71 0.71
0.79 0.73 0.73 0.72 0.72
0.80 0.74 0.74 0.73 0.73
0.81 0.74 0.75 0.74 0.74
0.82 0.73 0.74 0.74 0.75
0.83 0.72 0.73 0.73 0.73
0.84 0.71 0.72 0.72 0.72
0.85 0.70 0.71 0.71 0.72
0.86 0.69 0.70 0.71 0.71
0.87 0.69 0.69 0.70 0.7
0.88 0.68 0.68 0.69 0.69
0.89 0.67 0.68 0.68 0.68
0.90 0.67 0.67 0.67 0.68
091 0.66 0.66 0.67 0.67
0.92 0.65 0.66 0.66 0.66
0.93 0.65 0.65 0.66 0.66
0.94 0.65 0.65 0.65 0.65
0.95 0.64 0.64 0.65 0.65
0.96 0.64 0.64 0.64 0.64
0.97 0.63 0.63 0.64 0.64
0.98 0.63 0.63 0.63 0.63
0.99 0.63 0.63 0.63 0.63
1.00 0.62 0.62 0.62 0.62
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Table 6. Concluded

cr

Radius-to-Thickness Ratio, R/h

O*,

Grver 50 100 500 1000
1.01 0.62 0.62 0.62 0.62
1.02 0.62 0.62 0.62 0.62
1.03 0.62 0.62 0.62 0.62
1.04 0.61 0.61 0.61 0.61
1.05 0.61 0.61 0.61 0.61
1.06 0.61 0.61 0.61 0.61
1.07 0.61 0.61 0.61 0.61
1.08 0.61 0.61 0.61 0.61
1.09 0.61 0.60 0.60 0.60
1.10 0.61 0.60 0.60 0.60
1.11 0.60 0.60 0.60 0.60
1.12 0.60 0.60 0.60 0.60
1.13 0.60 0.60 0.60 0.60
1.14 0.60 0.60 0.60 0.60
1.15 0.60 0.60 0.60 0.60
1.16 0.60 0.60 0.60 0.60
1.17 0.60 0.60 0.60 0.60
1.18 0.61 0.60 0.60 0.60
1.19 0.61 0.60 0.60 0.60
1.20 0.61 0.60 0.60 0.60
1.21 0.61 0.61 0.60 0.60
1.22 0.61 0.61 0.60 0.60
1.23 0.61 0.61 0.61 0.61
1.24 0.61 0.61 0.61 0.61
1.25 0.61 0.61 0.61 0.61
1.26 0.62 0.61 0.61 0.61
1.27 0.61 0.61 0.61 0.61
1.28 0.60 0.61 0.61 0.61
1.29 0.59 0.60 0.60 0.60
1.30 0.58 0.59 0.59 0.59
1.31 0.57 0.58 0.58 0.58
1.32 0.56 0.57 0.57 0.57
1.33 0.56 0.56 0.56 0.56
1.34 0.55 0.55 0.56 0.56
1.35 0.54 0.54 0.55 0.55
1.36 0.53 0.54 0.54 0.54
1.37 0.52 0.53 0.53 0.53
1.38 0.52 0.52 0.52 0.52
1.39 0.51 0.51 0.52 0.52
1.40 0.50 0.51 0.51 0.51
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Table 7. Nondimensional buckling pressure TEI}II;

cr- 2

p

edges and subjected to uniform external pressure (v = 0.30)

for isotropic cylinders with simply supported

Batdorf-Z
pararnetelrT

Ref. 40

Present study

Donnell

Donnell

Sanders*
Live pressure

Sanders
Live pressure

100
150
200
300
400
500
700
1000

4.0000

4.0299
4.0650
4.1106
4.2240
4.3549
4.4935
4.7753
5.1836
5.8045
6.3594
7.3266
8.1629
8.9093
10.218
11.883
14.190
16.142
19.426
22.199
24.645
28.894
34.254

4.0000 (1,970)"
4.0300 (1,98)
4.0651 (1,82)
4.1107 (1,72)
4.2242 (1,62)
4.3549 (1,56)
4.4938 (1,52)
4.7755 (1,48)
5.1840 (1,44)
5.8047 (1,40)
63614 (1,37)
7.3272 (1,34)
8.1630 (1,32)
8.9178 (1,30)
10.221 (1,28)
11.884 (1,26)
14.202 (1,24)
16.145 (1,22)
19.428 (1,20)
22.217 (1,19)
24.664 (1,18)
28.988 (1,16)
34.255 (1,15)

4.0000 (1,970)
4.0301 (1,98)
4.0653 (1,82)
4.1109 (1,72)
4.2245 (1,62)
43552 (1,56)
4.4942 (1,52)
4.7758 (1,48)
5.1841 (1,44)
5.8046 (1,40)
6.3612 (1,37)
7.3264 (1,34)
8.1615 (1,32)
8.9161 (1,30)
10.218 (1,28)
11.878 (1,26)
14.193 (1,24)
16.133 (1,22)
19.410 (1,20)
22.191 (1,19)
24.631 (1,18)
28.949 (1,16)
34.190 (1,15)

4.0000 (1,970)
4.0300 (1,98)
4.0651 (1,82)
4.1107 (1,72)
4.2242 (1,62)
4.3549 (1,56)
4.4938 (1,52)
47753 (1,48)
5.1836 (1,44)
5.8039 (1,40)
6.3603 (1,37)
7.3253 (1,34)
8.1603 (1,32)
8.9138 (1,30)
10.216 (1,28)
11.876 (1,26)
14.190 (1,24)
16.130 (1,22)
19.406 (1,20)
22.186 (1,19)
24.626 (1,18)
28.943 (1,16)
34.183 (1,15)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.

2
f =L7 _v —
Z Rh«/1 v: and D=

Eh’

12(1-v)
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Table 7. Concluded

Batdorf-ZT Ref. 40 Present study

parameter Donnell Donnell Sanders* Sanders
Live pressure Live pressure
1500 41.634 41.806 (1,14)" 41.693 (1,14) 41.686 (1,14)
2000 47.858 48.009 (1,13) 47.860 (1,13) 47.852 (1,13)
3000 58.301 58.899 (1,12) 58.661 (1,12) 58.652 (1,12)
4000 67.106 67.387 (1,11) 67.084 (1,11) 67.073 (1,11)
5000 74.864 74.935 (1,10) 74.612 (1,10) 74.598 (1,10)
7000 88.329 88.981 (1,9) 88.584 (1,9) 88.565 (1,9)
10 000 105.31 106.95 (1,9) 106.13 (1,9) 106.11 (1,9)
15000 128.67 129.62 (1,8) 128.44 (1,8) 128.42 (1,8)
20 000 148.36 148.97 (1,7) 147.75 (1,7) 147.72 (1,7)
30 000 181.40 186.90 (1,7) 184.32 (1,7) 184.30 (1,7)
40 000 209.26 209.33 (1,6) 206.66 (1,6) 206.62 (1,6)
50 000 233.80 236.80 (1,6) 232.75 (1,6) 232.72 (1,6)
70 000 276.39 280.88 (1,5) 277.36 (1,5) 277.30 (1,5)
100 000 330.09 332.84 (1,5) 324.97 (1,5) 324.92 (1,5)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.

2
f =L7 _v —
Z Rh«/1 v and D=

Eh’

12(1-v)
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Table 8. Buckling pressure (X 10* MPa) for isotropic cylinders with simply supported edges and
subjected to external pressure (E =200 GPa, v=0.30, h=0.01 m)

L/R R/h Ref. 41 Ref. 42 Present study
Fligge FEM* Donnell Sanders* Sanders
Live pressure Live pressure | Live pressure
300 2766.2 (15)" 2632.0 (15) 2769.0 (1,15)° 2766.7 (1,5) 2765.1 (1,15)
500 - 716.2 (17) 743.10 (1,18) 742.56 (1,18) 742.03 (1,18)
0.5 1000 123.6 21) 126.49 (1,21) 126.40 (1,21) 126.37 (1,21)
1500 44.4 (23) 45213 (1,24) 45.178 (1,24) 45.173 (1,24)
2000 - 21.48 (25) 21.821 (1,25) 21.809 (1,25) 21.806 (1,25)
3000 7.816 (28) 774 (28) 7.822 (1,28) 7.818 (1,28) 7.817 (1,28)
300 1269.6 (11) 1251.0 (11) 1273.5 (1,11) 1269.9 (1,11) 1269.1 (1,11)
500 348.43 (13) 346.1 (13) 349.45 (1,13) 348.48 (1,13) 348.35 (1,13)
1 1000 60.488 (15) 60.16 (15) 60.600 (1,5) 60.494 (1,15) 60.481 (1,15)
1500 21.767 (17) 21.72 (17) 21.804 (1,17) 21.768 (1,17) 21.766 (1,17)
2000 10.559 (18) 10.54 (18) 10.574 (1,18) 10.560 (1,18) 10.559 (1,18)
3000 3.810 (20) 3.809 (20) 3.815 (1,20) 3.811 (1,20 3.811 (1,20
300 607.33 (8) 612.0 (8) 611.80 (1,8) 607.50 (1,8) 607.12 (1,8)
500 169.4 (9) 169.18 (1,9) 168.29 (1,9) 168.22 (1,9)
2 1000 29.74 (11) 29.675 (1,11) 29.550 (1,11) 29.545 (1,11)
1500 10.74 (12) 10.712 (1,12) 10.677 (1,12) 10.676 (1,12)
2000 5.221(13) 5.208 (1,13) 5.193 (1,13) 5.192 (1,13)
3000 1.884 (14) 1.895 (14) 1.889 (1,14) 1.885 (1,14) 1.885 (1,14)
300 407.17 (7) 414.7 (7) 412.62 (1,7) 407.27 (1,7) 407.07 (1,7)
500 115.2 (8) 114.16 (1,7) 113.55 (1,7) 113.50 (1,7)
3 1000 19.75 (9) 19.645 (1,9) 19.519 (1,9) 19.515 (1,9)
1500 7.149 (10) 7.115 (1,10) 7.077 (1,10) 7.076 (1,10)
2000 3.500 (11) 3.487 (1,11) 3.470 (1,11) 3.470 (1,11)
3000 1.251 (12) 1.261 (12) 1.256 (1,12) 1.251 (1,12) 1.251 (1,12)
300 235.34 (5) 244.8 (5) 239.43 (1,5) 235.42 (1,5) 235.27 (1,5)
500 - 67.8 (6) 66.984 (1,6) 65.902 (1,6) 65.881 (1,6)
5 1000 11.85 (7) 11.727 (1,7) 11.599 (1,7) 11.597 (1,7)
1500 4327 (8) 4299 (1,8) 4257 (1,8) 4257 (1,8)
2000 2.092 (8) 2.071 (1,8) 2.057 (1,8) 2.057 (1,8)
3000 0.744 (9) 0.754 (9) 0.748 (1,9) 0.744 (1,9) 0.744 (1,9)

* Number in parentheses, (n) indicate the number of circumferential waves, n
° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.

¢ Results obtained by using a finite element method.

151



Table 9. Nondimensional buckling pressure

supported edges, and subjected to external pressure (v = 0.30)

erpy 3

pR

£ for isotropic cylinders with R/h = 10, simply

D

L/R Ref. 43 Present study
Fliigge Timoshenko Sanders Sanders* Donnell

Live pressure | Lijve pressure | Live pressure | Live pressure
1 51.46 (1,5) 51.46 (1,5) 51.37 (1,5) 51.82 (1,5) 51.76 (1,4)
2 20.10 (1,3) 20.03 (1,3) 20.04 (1,3) 20.48 (1,3) 20.23 (1,3)
3 11.94 (1,3) 12.00 (1,3) 11.89(1,3) 12.03 (1,3) 12.76 (1,3)
4 9.82(1,3) 9.87 (1,3) 9.79 (1,3) 9.86 (1,3) 10.20 (1,2)
5 6.83 (1,2) 6.89 (1,2) 6.79 (1,2) 6.98 (1,2) 7.03 (1,2)
6 5.08 (1,2) 5.15(1,2) 5.04 (1,2) 5.15(1,2) 5.69 (1,2)
7 425(1,2) 4.30(1,2) 422(1,2) 429(1,2) 5.04 (1,2)
8 3.81(1,2) 3.85(1,2) 3.79 (1,2) 3.83(1,2) 4.69 (1,2)
9 3.56 (1,2) 3.59(1,2) 3.54(1,2) 3.57(1,2) 4.49 (1,2)
10 3.40(1,2) 3.43(1,2) 3.39(1,2) 3.42(1,2) 436 (1,2)
50 3.01(1,2) 3.01(1,2) 3.00 (1,2) 3.01(1,2) 4.01(1,2)
100 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
150 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
200 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
250 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.

! Results calculated for live pressure load.
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ery 3

Table 10. Nondimensional buckling pressure % for isotropic cylinders with R/h = 100, simply

supported edges, and subjected to external pressure (v = 0.30)

L/R Ref. 43 Present study
Fligge Timoshenko Sanders Sanders* Donnell
Live pressure Live pressure Live pressure Live pressure
1 115.24 (1,8) 115.73 (1,8) 115.19 (1,8) 115.41 (1,8) 115.72 (1,8)
2 52.95 (1,6) 53.57 (1,6) 52.91 (1,6) 53.00 (1,6) 53.58 (1,6)
3 34.28 (1,5) 34.79 (1,5) 34.25(1,5) 34.31(L1,5) 34.95(1,5)
4 26.30 (1,4) 26.97 (1,4) 26.28 (1,4) 26.34 (1,4) 26.66 (1,4)
5 20.02 (1,4) 20.35 (1,4) 20.01 (1,4) 20.04 (1,4) 20.76 (1,4)
6 17.62 (1,4) 17.79 (1,4) 17.61 (1,4) 17.62 (1,4) 18.49 (1,4)
7 14.96 (1,3) 15.47 (1,3) 14.94 (1,3) 14.99 (1,3) 15.22 (1,3)
8 12.19 (1,3) 12.51 (1,3) 12.18 (1,3) 12.20 (1,3) 12.75(1,3)
9 10.68 (1,3) 10.89 (1,3) 10.67 (1,3) 10.69 (1,3) 11.41 (1,3)
10 9.80 (1,3) 9.95(1,3) 9.80 (1,3) 9.81(1,3) 10.63 (1,3)
50 3.04 (1,2) 3.04 (1,2) 3.04 (1,2) 3.04 (1,2) 4.03 (1,2)
100 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
150 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
200 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
250 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
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Table 11. Nondimensional buckling pressure

erpy 3

D

simply supported edges, and subjected to external pressure (v = 0.30)

PR for isotropic cylinders with R/h = 1000,

L/R Ref. 43 Present study
Fligge Timoshenko Sanders Sanders* Donnell
Live pressure Live pressure Live pressure Live pressure
1 330.25 (1,15)" | 335.77(1,15) | 33023 (1,15) | 330.29(1,15) | 330.87(1,15)
2 161.33 (1,11) 164.28 (1,11) 161.31 (1,11) 161.34 (1,11) 162.03 (1,11)
3 106.56 (1,9) 108.68 (1,9) 106.55 (1,9) 106.57 (1,9) 107.26 (1,9)
4 80.03 (1,8) 81.46 (1,8) 80.03 (1,8) 80.04 (1,8) 80.79 (1,8)
5 63.32 (1,7) 64.66 (1,7) 63.32(1,7) 63.33 (1,7) 64.03 (1,7)
6 53.37 (1,6) 55.01 (1,6) 53.37 (1,6) 53.38 (1,6) 53.88 (1,6)
7 45.06 (1,6) 45.97 (1,6) 45.06 (1,6) 45.07 (1,6) 45.79 (1,6)
8 40.98 (1,6) 41.52 (1,6) 40.98 (1,6) 40.99 (1,6) 41.73 (1,5)
9 34.95 (1,5) 35.96 (1,5) 34.95(1,5) 34.95(1,5) 35.52(1,5)
10 31.23(1,5) 31.90 (1,5) 31.23(1,5) 31.24 (1,5) 31.95(1,5)
50 6.54 (1,2) 6.89 (1,2) 6.55(1,2) 6.55(1,2) 6.66 (1,2)
100 3.22(1,2) 3.24(1,2) 3.22(1,2) 3.22(1,2) 4.17 (1,2)
150 3.04 (1,2) 3.05(1,2) 3.04 (1,2) 3.04 (1,2) 4.03 (1,2)
200 3.01(1,2) 3.01(1,2) 3.01(1,2) 3.01(1,2) 4.01 (1,2)
250 3.00 (1,2) 3.00 (1,2) 3.01(1,2) 3.01(1,2) 4.00 (1,2)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
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Table 12. Nondimensional buckling pressure

supported edges, and subjected to external pressure (v = 0)

ory 3

% for isotropic cylinders with R/h = 10, simply

L/R Ref. 43 Present study
Fligge Timoshenko Sanders Sanders* Donnell

Live pressure Live pressure Live pressure Live pressure
1 51.72 (1,5) 52.16 (1,5) 51.84 (1,5) 52.29 (1,5) 52.48 (1,5)
2 20.64 (1,3) 20.99 (1,3) 20.75 (1,3) 21.21(1,3) 20.78 (1,3)
3 12.04 (1,3) 12.14 (1,3) 12.06 (1,3) 12.21 (1,3) 12.90 (1,3)
4 9.84 (1,3) 9.90 (1,3) 9.84 (1,3) 9.92 (1,3) 10.68 (1,2)
5 7.08 (1,2) 7.11(1,2) 7.10 (1,2) 7.30 (1,2) 7.25(1,2)
6 5.19 (1,2) 5.23(1,2) 5.20 (1,2) 5.31(1,2) 5.80 (1,2)
7 4.30(1,2) 434 (1,2) 431(1,2) 437 (1,2) 5.10(1,2)
8 3.84(1,2) 3.87(1,2) 3.84(1,2) 3.89(1,2) 473 (1,2)
9 3.57(L,2) 3.60 (1,2) 3.57(1,2) 3.61(1,2) 4.51(1,2)
10 3.41(1,2) 3.43 (1,2) 3.41(1,2) 3.44 (1,2) 437 (1,2)
50 3.01(1,2) 3.01(1,2) 3.00 (1,2) 3.01(1,2) 4.01 (1,2)
100 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
150 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
200 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
250 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
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Table 13. Nondimensional buckling pressure

erpy 3

pR

D

simply supported edges, and subjected to external pressure (v = 0)

for isotropic cylinders with R/h = 100,

L/R Ref. 43 Present study
Fligge Timoshenko Sanders Sanders* Donnell
Live pressure Live pressure Live pressure Live pressure
1 118.24 (1,8) 118.86 (1,9) 118.28 (1,8) 118.50 (1,8) 118.73 (1,8)
2 54.18 (1,6) 54.27 (1,6) 54.19 (1,6) 54.28 (1,6) 54.82 (1,6)
3 35.05 (1,5) 35.09 (1,5) 35.05 (1,5) 35.11(1,5) 35.72 (1,5)
4 27.27(1,4) 27.30(1,4) 27.28 (1,4) 27.34(1,4) 27.59 (1,4)
5 20.42 (1,4) 20.44 (1,4) 20.42 (1,4) 20.46 (1,4) 21.15(1,4)
6 17.81 (1,4) 17.82 (1,4) 17.81 (1,4) 17.83 (1,4) 18.68 (1,4)
7 15.59(1,3) 15.60 (1,3) 15.59(1,3) 15.64 (1,3) 15.80 (1,3)
8 12.56 (1,3) 12.57 (1,3) 12.56 (1,3) 12.59(1,3) 13.09 (1,3)
9 10.91 (1,3) 10.92 (1,3) 10.91 (1,3) 10.93 (1,3) 11.62(1,3)
10 9.96 (1,3) 9.96 (1,3) 9.95(1,3) 9.97 (1,3) 10.77 (1,3)
50 3.05(1,2) 3.05(1,2) 3.05(1,2) 3.05(1,2) 4.04 (1,2)
100 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
150 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
200 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)
250 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 3.00 (1,2) 4.00 (1,2)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
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Table 14. Nondimensional buckling pressure

erpy 3

D

simply supported edges, and subjected to external pressure (v = 0)

PR for isotropic cylinders with R/h = 1000,

L/R Ref. 43 Present study
Fligge Timoshenko Sanders Sanders* Donnell
Live pressure Live pressure Live pressure Live pressure
1 338.74 (1,15)" | 338.93(1,15) | 338.75(1,15) | 338.81(1,15) | 339.35(1,15)
2 164.90 (1,11) 164.93 (1,11) 164.91 (1,11) 164.94 (1,11) 165.59 (1,11)
3 108.96 (1,9) 108.98 (1,9) 108.96 (1,9) 108.98 (1,9) 109.64 (1,9)
4 81.59 (1,8) 81.60 (1,8) 81.59 (1,8) 81.60 (1,8) 82.33 (1,8)
5 64.76 (1,7) 64.76 (1,7) 64.76 (1,7) 64.77 (1,7) 65.44 (1,7)
6 55.13 (1,6) 55.14 (1,6) 55.13 (1,6) 55.14 (1,6) 55.59 (1,6)
7 46.01 (1,6) 46.02 (1,6) 46.01 (1,6) 46.02 (1,6) 46.72 (1,6)
8 41.54 (1,6) 41.55 (1,6) 41.54 (1,6) 41.55 (1,6) 42.37 (1,6)
9 39.14 (1,6) 39.15(1,6) 36.00 (1,5) 36.01 (1,5) 36.54 (1,5)
10 31.93 (1,5) 31.93 (1,5) 31.93 (1,5) 31.93 (1,5) 32.62(1,5)
50 6.90 (1,2) 6.90 (1,2) 6.90 (1,2) 6.90 (1,2) 6.92 (1,2)
100 3.25(1,2) 3.25(1,2) 3.25(1,2) 3.25(1,2) 4.18 (1,2)
150 3.05(1,2) 3.05(1,2) 3.05(1,2) 3.05(1,2) 4.04 (1,2)
200 3.02 (1,2) 3.02 (1,2) 3.02 (1,2) 3.02 (1,2) 4.01 (1,2)
250 3.01(1,2) 3.01(1,2) 3.01(1,2) 3.01(1,2) 4.00 (1,2)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
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Table 15. Buckling pressure

p R

cr.

Eh

subjected to uniform external pressure (v = 0.30)

x10° for isotropic cylinders with simply supported edges, and

L/R R/h Ref. 17, p.165 Present study
Fligge Brush and Sanders Sanders* Donnell
Live pressure Almroth” Live pressure Live pressure
Live pressure
1000 | 0.2947 (2)* 0.2947 (2) 0.2948 (1,2) 0.2948 (1,2) 0.3814 (1,2)
32n 400 1.738 (2) 1.738 (2) 1.738 (1,2) 1.738 (1,2) 1.525(1,1)
100 27.51(2) 27.51(2) 27.51(1,2) 27.51(1,2) 10.13 (1,1)
1000 1.111 (3) 1.111 (3) 1.111 (1,3) 1.111 (1,3) 1.161 (1,3)
8n 400 4.972 (3) 4.971 (3) 4.971 (1,3) 4.972 (1,3) 5.503 (1,3)
100 32.80 (2) 32.79 (2) 32.78 (1,2) 32.82(1,2) 40.70 (1,2)
1000 4.610 (6) 4.609 (6) 4.610 (1,6) 4.611(1,6) 4.664 (1,6)
2n 400 18.11 (5) 18.10 (5) 18.10 (1,5) 18.11 (1,5) 18.52 (1,5)
100 157.7 (4) 157.7 (4) 157.6 (1,4) 157.8 (1,4) 165.9 (1,4)
1000 18.95(12) 18.94(12) 18.94 (1,12) 18.95 (1,12) 19.00 (1,12)
/2 400 76.27 (10) 76.24 (10) 76.26 (1,10) 76.29 (1,10) 76.70 (1,10)
100 634.5 (7) 632.8 (7) 634.1 (1,7) 635.1 (1,7) 641.2 (1,7)
1000 38.94 (17) 38.91 (17) 38.94 (1,17) 38.94 (1,17) 39.00 (1,17)
/4 400 159.9 (14) 159.5 (13) 159.8 (1,13) 159.9 (1,14) 160.2 (1,13)
100 1395.0 (9) 1374.0 (9) 1394.7 (1,9) 1397.2 (1,9) 1399.6 (1,9)
1000 82.42 (24) 82.05 (24) 82.41 (1,24) 82.43 (1,24) 82.48 (1,24)
/8 400 348.8 (19) 343.6 (19) 348.8 (1,19) 348.9 (1,19) 349.2 (1,19)
100 3383.0 (13) | 3299.0(13) 3382.9 (1,13) 3387.0 (1,13) 3388.2 (1,13)
1000 185.3 (33) 180.9 (33) 185.3 (1,33) 185.4 (1,33) 185.4 (1,33)
/16 400 845.6 (25) 824.5 (25) 845.6 (1,25) 845.9 (1,25) 845.9 (1,25)
100 | 10110.0 (18) | 14960.0 (18) | 10109.9 (1,18) 10117.9 (1,18) 10109.3 (1,18)

* Number in parentheses, (n) indicate the number of circumferential waves, n

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.

~ All rotations about the normal are neglected.
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Table 16. Buckling pressure

p R

cr.

Eh

subjected to uniform external pressure (v = 0.30)

x10° for isotropic cylinders with simply supported edges, and

R/h

L/R

Ref. 44 Present study
Budiansky- Donnell Sanders Sanders* Donnell
Koiter** Live pressure Live pressure

Live pressure

35

/3

3n

on

15n
1007

70.5175 (1,6)"
20.0807 (1,4)
6.44560 (1,2)
3.06322 (1,2)
3.01306 (1,2)
3.00000 (1,2)

70.9200 (1,6)
20.9160 (1,4)
6.63478 (1,2)
4.04066 (1,2)
4.01094 (1,2)
4.00000 (1,2)

70.5714 (1,6)
20.1123 (1,4)
6.48657 (1,2)
3.06374 (1,2)
3.01308 (1,2)
2.99997 (1,2)

70.9020 (1,6)
20.1875 (1,4)
6.54450 (1,2)
3.06688 (1,2)
3.01419 (1,2)
3.00000 (1,2)

71.1133 (1,6)
20.9554 (1,4)
6.66815 (1,2)
4.05639 (1,2)
4.01301 (1,2)
4.00020 (1,2)

200

/3

3n

on

15n
1007

147.483 (1,10)
46.0042 (1,6)
16.2343 (1,3)
4.38325(1,2)
3.18545 (1,2)
3.00000 (1,2)

148.198 (1,10)
46.7699 (1,6)
16.3429 (1,3)
5.04407 (1,2)
414115 (1,2)
4.00000 (1,2)

147.855 (1,10)
46.1230 (1,6)
16.3439 (1,3)
440153 (1,2)
3.18719 (1,2)
3.00025 (1,2)

147.968 (1,10)
46.1609 (1,6)
16.3689 (1,3)
4.40606 (1,2)
3.18838 (1,2)
3.00028 (1,2)

148.589 (1,10)
46.8907 (1,6)
16.4415 (1,3)
5.05858 (1,2)
4.14341 (1,2)
4.00027 (1,2)

1000

/3
T
3n
on
15n
1007

313.523 (1,15)
102.096 (1,9)
33.0159 (1,5)
10.5828 (1,3)
7.40602 (1,2)
3.00000 (1,2)

314.207 (1,15)
102.789 (1,9)
33.6668 (1,5)
11.2230 (1,3)
7.29077 (1,2)
4.00000 (1,2)

314.448 (1,15)
102.303 (1,9)
33.1282 (1,5)
10.5852 (1,3)
7.49330 (1,2)
3.00245 (1,2)

314.506 (1,15)
102.320 (1,9)
33.1344 (1,5)
10.5870 (1,3)
7.49607 (1,2)
3.00247 (1,2)

315.155 (1,15)
103.062 (1,9)
33.7747 (1,5)
11.3016 (1,3)
737179 (1,2)
4.00191 (1,2)

" Numbers in parentheses, (m,n), indicate the number of axial half~-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 17. Nondimensional buckling pressure PRS-V for isotropic cylinders with simply

Eh’

supported edges and subjected to uniform external pressure (v = 0.30)

R/h L/R Ref. 45 Present study
Sanders Donnell Sanders Sanders Donnell
Live pressure Live pressure
0.5 0.4035 (11)° 0.4047 (11) 0.4062 (11) 0.4040 (1,11) 0.4047 (1,11)
1 0.1741 (8) 0.1751 (8) 0.1765 (1,8) 0.1743 (1,8) 0.1751 (1,8)
2 0.0799 (6) 0.0811(6) 0.0821 (1,6) 0.0801 (1,6) 0.0811 (1,6)
100 4 0.0397 (4) 0.0403 (4) 0.0423 (1,4) 0.0398 (1,4) 0.0403 (1,4)
10 0.0148 (3) 0.0161 (3) 0.0166 (1,3) 0.0148 (1,3) 0.0161 (1,3)
20 0.00667 (2) 0.00768 (2) 0.00887 (1,2) 0.00668 (1,2) 0.00768 (1,2)
40 0.00468 (2) 0.00617 (2) 0.00624 (1,2) 0.00469 (1,2) 0.00617 (1,2)
0.5 0.2055 (15) 0.2058 (15) 0.2063 (1,15) 0.2056 (1,15) 0.2059 (1,15)
1 0.0943 (11) 0.0947 (11) 0.0951 (1,11) 0.0944 (1,11) 0.0947 (1,11)
2 0.0451 (8) 0.0455 (8) 0.0458 (1,8) 0.0451 (1,8) 0.0455 (1,8)
300 4 0.0223(6) 0.0227 (6) 0.0229 (1,6) 0.0223 (1,6) 0.0227 (1,6)
10 0.00890 (4) 0.00933 (4) 0.00949 (1,4) 0.00890 (1,4) 0.00933 (1,4)
20 0.00452 (3) 0.00498 (3) 0.00508 (1,3) 0.00452 (1,3) 0.00498 (1,3)
40 0.00191 (2) 0.00232 (2) 0.00254 (1,2) 0.00191 (1,2) 0.00232 (1,2)
0.5 0.1532 (18) 0.1535(18) 0.1537(1,18) 0.1533 (1,18) 0.1535 (1,18)
1 0.0719 (13) 0.0722 (13) 0.0723 (1,13) 0.0719 (1,13) 0.0722 (1,13)
2 0.0347 (9) 0.0349 (9) 0.0352 (1,9) 0.0347 (1,9) 0.0349 (1,9)
500 4 0.0176 (7) 0.0178 (6) 0.0179 (1,7) 0.0176 (1,7) 0.0178 (1,6)
10 0.00667 (4) 0.00684 (4) 0.00711 (1,4) 0.00667 (1,4) 0.00684 (1,4)
20 0.00321 (3) 0.00342 (3) 0.00361 (1,3) 0.00321 (1,3) 0.00342 (1,3)
40 0.00156 (2) 0.00170 (2) 0.00208 (1,2) 0.00156 (1,2) 0.00170 (1,2)
0.5 0.1270 (19) 0.1271 (19) 0.1273 (1,19) 0.1270 (1,19) 0.1272 (1,19)
1 0.0601 (14) 0.0603 (14) 0.0604 (1,14) 0.0601 (1,14) 0.0603 (1,14)
2 0.0292 (10) 0.0294 (10) 0.0295 (1,10) 0.0292 (1,10) 0.0294 (1,10)
700 4 0.0144 (7) 0.0145 (7) 0.0147 (1,7) 0.0144 (1,7) 0.0145 (1,7)
10 0.00597 (5) 0.00616 (5) 0.00622 (1,5) 0.00597 (1,5) 0.00616 (1,5)
20 0.00282 (3) 0.00292 (3) 0.00317 (1,3) 0.00282 (1,3) 0.00292 (1,3)
40 0.00156 (2) 0.00155 (2) 0.00202 (1,3) 0.00157 (1,2) 0.00155 (1,2)

* Numbers in parentheses, (n), indicate the number of circumferential waves.

° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
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Table 17. Concluded

R/h L/R Ref. 45 Present study
Sanders Donnell Sanders Sanders Donnell
Live pressure Live pressure
0.5 0.0991 (22)* 0.0992 (22) 0.0993 (1,22)" 0.0991 (1,22) 0.0992 (1,22)
1 0.0477 (16) 0.0478 (16) 0.0478 (1,16) 0.0477 (1,16) 0.0478 (1,16)
2 0.0232 (11) 0.0233 (11) 0.0234 (1,11) 0.0232 (1,11) 0.0233 (1,11)
1100 4 0.0115 (8) 0.0116 (8) 0.0116 (1,8) 0.0115 (1,8) 0.0116 (1,8)
10 0.00450 (5) 0.00459 (5) 0.00469 (1,5) 0.00450 (1,5) 0.00459 (1,5)
20 0.00236 (4) 0.00248 (4) 0.00251 (1,4) 0.00236 (1,4) 0.00248 (1,4)
40 0.00121 (3) 0.00133 (3) 0.00136 (1,3) 0.00121 (1,3) 0.00133 (1,3)
0.5 0.0840 (24) 0.0840 (24) 0.0841 (1,24) 0.0840 (1,24) 0.0840 (1,24)
1 0.0405 (17) 0.0405 (17) 0.0406 (1,17) 0.0405 (1,17) 0.0405 (1,17)
2 0.0198 (12) 0.0199 (12) 0.0200 (1,12) 0.0198 (1,12) 0.0199 (1,12)
1500 4 0.0099 (9) 0.0100 (9) 0.0101 (1,9) 0.0100 (1,9) 0.0100 (1,9)
10 0.00404 (5) 0.00407 (5) 0.00420 (1,6) 0.00404 (1,5) 0.00407 (1,5)
20 0.00191 (4) 0.00199 (4) 0.00204 (1,4) 0.00191 (1,4) 0.00199 (1.,4)
40 0.00095 (3) 0.00104 (3) 0.00107 (1,3) 0.00095 (1,3) 0.00104 (1,3)
0.5 0.0739 (25) 0.0740 (25) 0.0740 (1,25) 0.0739 (1,25) 0.0740 (1,25)
1 0.0358 (18) 0.0359 (18) 0.0359 (1,18) 0.0358 (1,18) 0.0359 (1,18)
2 0.0176 (13) 0.0177 (13) 0.0177 (1,13) 0.0176 (1,13) 0.0177 (1,13)
1900 4 0.00871 (9) 0.00876 (9) 0.00882 (1,9) 0.00871 (1,9) 0.00876 (1,9)
10 0.00347 (6) 0.00353 (6) 0.00357 (1,6) 0.00347 (1,6) 0.00353 (1,6)
20 0.00169 (4) 0.00174 (4) 0.00181 (1,4) 0.00169 (1,4) 0.00174 (1,4)
40 0.000820 (3) | 0.000881 (3) | 0.000925 (1,3) 0.000822 (1,3) 0.000881 (1,3)

* Numbers in parentheses, (n), indicate the number of circumferential waves.
° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

161



Table 18. Nondimensional buckling pressure EI}II;

cr

p

2

for isotropic cylinders with simply

supported edges and subjected to uniform hydrostatic pressure (v = 0.30)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

Batdorf-ZT Ref. 47 Present study
parameter Donnell Donnell Sanders* Sanders

Live pressure Live pressure

0 2.0000 2.0000 (1,0)* 2.0000 (1,0) 2.0000 (1,0)
1 2.1774 2.1775 (1,40) 2.1776 (1,40) 2.1775 (1,40)
1.5 23173 23174 (1,43) 2.3175(1,43) 23174 (1,43)
2 2.4571 2.4571 (1,44) 2.4573 (1,44) 2.4571 (1,44)
3 2.7204 2.7204 (1,44) 2.7206 (1,44) 2.7203 (1,44)
4 2.9601 2.9603 (1,44) 2.9604 (1,44) 2.9600 (1,44)
5 3.1797 3.1797 (1,43) 3.1798 (1,43) 3.1794 (1,43)
7 3.5727 3.5732(1,42) 3.5732(1,42) 3.5727 (1,42)
10 4.0815 4.0817 (1,40) 4.0816 (1,40) 4.0809 (1,40)
15 4.7947 4.7960 (1,37) 4.7957 (1,37) 4.7948 (1,37)
20 5.4028 5.4053 (1,36) 5.4046 (1,36) 5.4035 (1,36)
30 6.4307 6.4307 (1,33) 6.4294 (1,33) 6.4281 (1,33)
40 7.3016 7.3022 (1,31) 7.3004 (1,31) 7.2988 (1,31)
50 8.0710 8.0733 (1,30) 8.0706 (1,30) 8.0689 (1,30)
70 9.4092 9.4137 (1,28) 9.4097 (1,28) 9.4076 (1,28)
100 11.100 11.110 (1,26) 11.104 (1,26) 11.100 (1,26)
150 13.429 13.449 (1,23) 13.441 (1,23) 13.436 (1,23)
200 15.395 15.396 (1,22) 15.383 (1,22) 15.379 (1,22)
300 18.694 18.695 (1,20) 18.675 (1,20) 18.670 (1,20)
400 21.477 21.516 (1,19) 21.488 (1,19) 21.482 (1,19)
500 23.929 23.968 (1,18) 23.933 (1,18) 23.926 (1,18)
700 28.185 28.246 (1,16) 28.205 (1,16) 28.196 (1,16)
1000 33.553 33.553 (1,15) 33.486 (1,15) 33.477 (1,15)

* Nonlinear rotations about the normal are neglected.

=

Rh

2
L 1~V and D=

Eh’

12(1-v)
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Table 18. Concluded

Batdorf-ZT Ref. 47 Present study

parameter Donnell Donnell Sanders* Sanders
Live pressure Live pressure
1500 40.939 41.147 (1,14) 41.033 (1,14) 41.023 (1,14)
2000 47.167 47.349 (1,13) 47.199 (1,13) 47.187 (1,13)
3000 57.614 58.206 (1,11) 58.024 (1,12) 58.011 (1,11)
4000 66.422 66.740 (1,11) 66.432 (1,11) 66.416 (1,11)
5000 74.182 74.236 (1,10) 73.909 (1,10) 73.888 (1,10)
7000 87.650 88.248 (1,9) 87.845 (1,9) 87.818 (1,9)
10 000 104.63 106.33 (1,9) 105.51 (1,9) 105.48 (1,9)
15000 127.99 128.98 (1,9) 127.80 (1,8) 127.77 (1,8)
20 000 147.69 148.25 (1,7) 147.03 (1,7) 146.99 (1,7)
30 000 180.73 186.30 (1,7) 183.72 (1,7) 183.68 (1,7)
40 000 208.59 208.65 (1,6) 205.97 (1,6) 205.91 (1,6)
50 000 233.13 236.19 (1,6) 232.13 (1,6) 232.08 (1,6)
70 000 275.72 280.12 (1,5) 276.58 (1,5) 276.49 (1,5)
100 000 329.42 332.22(1,5) 324.33 (1,5) 324.25(1,5)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.

2
f Z:%«/l—vZ and D=

Eh’

12(1-v)
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Table 19. Nondimensional buckling pressure

cr

p R

P =x10" for isotropic cylinders with R/h = 100,

Eh

simply supported edges, and subjected to uniform hydrostatic pressure (v = 0.30)

L/R Ref. 48 Ref. 49 Ref. 50 Present study
Livlgl;;éegsZure Donnell Donnell Sanders Livseagf:srssure Ligglgzrssszre Donnell

0.5 2.096 (11)" 2.106 (11) 2.106 (11) 2.098 (1,11)° | 2.102(1,11) | 2.106 (1,11)
0.6 1.715 (10) 1.708 (1,10) | 1.711(1,10) | 1.715(1,10)
0.75 1.344 (9) 1.337(1,9) 1.341 (1,9) 1.344 (1,9)
1.0 0.9776 (8) 0.9838(8) | 0.9838(8) 0.9890 0.9773 (1,8) | 0.9773 (1,8) | 0.9839 (1,8)
1.5 0.6417 (7) 0.6343 (1,7) | 0.6357 (1,7) | 0.6417 (1,7)
2.0 0.4679 (6) 0.4744 (6) | 0.4744 (6) 0.4790 0.4676 (1,6) | 0.4688 (1,6) | 0.4744 (1,6)
3.0 0.3066 (5) 0.3132(5) | 0.3132(5) 0.3064 (1,5) | 0.3072 (1,5) | 0.3132(1.5)
4.0 0.2395 (4) 0.2502 0.2355(1,4) | 0.2364 (1,4) | 0.2396 (1,4)
5.0 0.1878 (4) 0.1920 0.1807 (1,4) | 0.1811 (1,4) | 0.1878(1,4)
6.0 0.1598 (4) 0.1679(4) | 0.1679 (4) 0.1690 0.1597 (1,4) | 0.1599 (1,4) | 0.1679 (1,4)
7.0 0.1378 (3) 0.1350 (1,3) | 0.1355(1,3) | 0.1378(1,3)
8.0 0.1158 (3) 0.1236 0.1104 (1,3) | 0.1107 (1,3) | 0.1158(1,3)
9.0 0.1038 (3) 0.09693 (1,3) | 0.09717 (1,3) | 0.1038 (1,3)
10.0 | 0.08916 (3) | 0.09678 (3) | 0.09678 (3) 0.0999 0.08912 (1,3) | 0.08930 (1,3) | 0.09677 (1,3)

* Number in parentheses, (n), indicates the number of circumferential waves.
* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 20. Nondimensional buckling pressure PR /3(1-V) for isotropic cylinders with simply

2

Eh

supported edges, and subjected to uniform hydrostatic pressure (v = 0.30)

R/h L/R Ref. 45 Present study
Sanders Donnell Sanders Sanders Donnell
Live pressure Live pressure
0.5 0.3465 (11)° 0.3479 (11) 0.3483 (1,11) 0.3466 (1,11) 0.3479 (1,11)
1 0.1614 (8) 0.1626 (8) 0.1634 (1,8) 0.1615 (1,8) 0.1626 (1,8)
2 0.0772 (6) 0.0784 (6) 0.0792 (1,6) 0.0773 (1,6) 0.0784 (1,6)
100 4 0.0389 (4) 0.0396 (4) 0.0413 (1,4) 0.0389(1.,4) 0.0396 (1,4)
10 0.0147 (3) 0.0160 (3) 0.0165 (1,3) 0.0147 (1,3) 0.0160 (1,3)
20 0.00664 (2) 0.00766 (2) 0.00881 (1,2) 0.00664 (1,2) 0.00766 (1,2)
40 0.00468 (2) 0.00616 (2) 0.00623 (1,2) 0.00468 (1,2) 0.00616 (1,2)
0.5 0.1889 (15) 0.1893 (15) 0.1895 (1,15) 0.1889 (1,15) 0.1893 (1,15)
1 0.0906 (11) 0.0910 (11) 0.0913 (1,11) 0.0906 (1,11) 0.0910 (1,11)
2 0.0443 (8) 0.0446 (8) 0.0449 (1,8) 0.0443 (1,8) 0.0446 (1,8)
300 4 0.0221 (6) 0.0225 (6) 0.0227 (1,6) 0.0221(1,6) 0.0225 (1,6)
10 0.00887 (4) 0.00931 (4) 0.00946 (1,4) 0.00887 (1,4) 0.00931 (1,4)
20 0.00451 (3) 0.00497 (3) 0.00507 (1,3) 0.00451 (1,3) 0.00497 (1,3)
40 0.00191 (2) 0.00232 (2) 0.00254 (1,2) 0.00191 (1,2) 0.00232 (1,2)
0.5 0.1442 (17) 0.1444 (17) 0.1446 (1,17) 0.1442 (1,17) 0.1444 (1,17)
1 0.0699 (13) 0.0701 (13) 0.0703 (1,13) 0.0699 (1,13) 0.0701 (1,13)
2 0.0342 (1,9) 0.0344 (1,9) 0.0346 (1,9) 0.0342 (1,9) 0.0344 (1,9)
500 4 0.0174 (7) 0.0176 (6) 0.0178 (1,7) 0.0174 (1,7) 0.0176 (1,6)
10 0.00664 (4) 0.00682 (4) 0.00708 (1,4) 0.00664 (1,4) 0.00682 (1,4)
20 0.00320 (3) 0.00342 (3) 0.00360 (1,3) 0.00320 (1,3) 0.00342 (1,3)
40 0.00156 (2) 0.00170 (2) 0.00208 (1,2) 0.00156 (1,2) 0.00170 (1,2)
0.5 0.1204 (19) 0.1206 (19) 0.1207 (1,19) 0.1204 (1,19) 0.1206 (1,19)
1 0.0587 (14) 0.0588 (14) 0.0589 (1,14) 0.0587 (1,14) 0.0588 (1,14)
2 0.0289 (10) 0.0290 (10) 0.0292 (1,10) 0.0289 (1,10) 0.0290 (1,10)
700 4 0.0143 (7) 0.0144 (7) 0.0146 (1,7) 0.0143 (1,7) 0.0144 (1,7)
10 0.00596 (5) 0.00615 (5) 0.00621 (1,5) 0.00596 (1,5) 0.00615 (1,5)
20 0.00282 (3) 0.00291 (3) 0.00317 (1,3) 0.00282 (1,3) 0.00291 (1,3)
40 0.00156 (2) 0.00155 (2) 0.00202 (1,3) 0.00156 (1,2) 0.00155 (1,2)

* Numbers in parentheses, (n), indicate the number of circumferential waves.
° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
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Table 20. Concluded

R/h L/R Ref. 45 Present study
Sanders Donnell Sanders Sanders Donnell
Live pressure Live pressure
0.5 0.0952 (22)" 0.0953 (22) 0.0954 (1,22)" 0.0952 (1,22) 0.0953 (1,22)
1 0.0468 (16) 0.0469 (16) 0.0469 (1,16) 0.0468 (1,16) 0.0469 (1,16)
2 0.0230 (11) 0.0231 (11) 0.0232 (1,11) 0.0230 (1,11) 0.0231 (1,11)
1100 4 0.0114 (8) 0.0115 (8) 0.0116 (1,8) 0.0114 (1,8) 0.0115 (1,8)
10 0.00449 (5) 0.00458 (5) 0.00468 (1,5) 0.00449 (1,5) 0.00458 (1,5)
20 0.00236 (4) 0.00248 (4) 0.00251 (1,4) 0.00236 (1,4) 0.00248 (1,4)
40 0.00121 (3) 0.00133 (3) 0.00136 (1,3) 0.00121 (1,3) 0.00133 (1,3)
0.5 0.0811 (23) 0.0812 (23) 0.0812 (1,23) 0.0811 (1,23) 0.0812 (1,23)
1 0.0397 (17) 0.0398 (17) 0.0399 (1,17) 0.0398 (1,17) 0.0398 (1,17)
2 0.0197 (12) 0.0197 (12) 0.0198 (1,12) 0.0197 (1,12) 0.0197 (1,12)
1500 4 0.00992 (9) 0.0100 (9) 0.0100 (1,9) 0.00992 (1,9) 0.0100 (1,9)
10 0.00403 (5) 0.00407 (5) 0.00419 (1,6) 0.00403 (1,5) 0.00407 (1,5)
20 0.00191 (4) 0.00198 (4) 0.00203(1,4) 0.00191 (1,4) 0.00198 (1,4)
40 0.00095 (3) 0.00104 (3) 0.00107 (1,3) 0.00095 (1,3) 0.00104 (1,3)
0.5 0.0717 (25) 0.0717 (25) 0.0718 (1,25) 0.0717 (1,25) 0.0717 (1,25)
1 0.0353 (18) 0.0353 (18) 0.0354 (1,18) 0.0353 (1,18) 0.0353 (1,18)
2 0.0175 (13) 0.0176 (13) 0.0176 (1,13) 0.0175 (1,13) 0.0176 (1,13)
1900 4 0.00868 (9) 0.00873 (9) 0.00878 (1,9) 0.00868 (1,9) 0.00873 (1,9)
10 0.00347 (6) 0.00353 (6) 0.00357 (1,6) 0.00347 (1,6) 0.00353 (1,6)
20 0.00169 (4) 0.00174 (4) 0.00181 (1,4) 0.00169 (1,4) 0.00174 (1,4)
40 0.000820 (3) | 0.000881 (3) | 0.000924 (1,3) 0.000822 (1,3) 0.000881 (1,3)

* Numbers in parentheses, (n), indicate the number of circumferential waves.
® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
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ory 3

Table 21. Nondimensional buckling pressure % for isotropic cylinders with simply supported

edges and subjected to uniform hydrostatic pressure (v = 0.30)

Present Study
R/h L/R Ref. 51 and 52
Donnell Donnell Sanders* Sanders

Live pressure Live pressure

0.5 173.2 173.2 (1’9)13 172.9 (1,9) 172.3 (1,9)

50 1 78.48 78.48 (1,7) 77.90 (1,7) 77.59 (1,7)
1.5 51.14 51.14 (1,6) 50.44 (1,6) 50.24 (1,6)

0.65 150.7 150.7 (1,9) 150.3 (1,9) 149.9 (1,9)

B 0.8 120.3 120.3 (1,8) 120.0 (1,8) 119.6 (1,8)
0.5 229.9 2299 (1,11) 229.6 (1,11) 229.1 (1,11)

1 107.4 107.4 (1,8) 107.0 (1,8) 106.7 (1,8)

100 1.5 70.07 70.07 (1,7) 69.42 (1,7) 69.27 (1,7)
2 51.81 51.81 (1,6) 51.19 (1,6) 51.07 (1,6)

150 0.8 164.4 164.4 (1,10) 163.9 (1,10) 163.7 (1,10)
200 1 148.6 148.6 (1,10) 148.0 (1,10) 147.8 (1,10)
0.5 345.9 345.9 (1,14) 345.5(1,14) 3452 (1,14)

1 166.8 166.8 (1,11) 166.1 (1,11) 166.0 (1,11)

250 1.5 109.3 109.3 (1,9) 108.6 (1,9) 108.5 (1,9)
2 82.14 82.14 (1,8) 81.39 (1,8) 81.32(1,8)

3 53.97 53.97 (1,6) 53.46 (1,6) 53.39(1,6)

300 1 180.4 180.4 (1,11) 179.8 (1,11) 179.7 (1,11)
400 1 207.2 207.2 (1,12) 206.6 (1,12) 206.5 (1,12)
475 0.65 352.7 352.7 (1,15) 3522 (1,15) 352.0 (1,15)
0.5 477.2 477.2 (1,17) 476.7 (1,17) 476.5 (1,17)

1 231.7 231.7 (1,13) 231.0(1,13) 230.9 (1,13)

500 1.5 153.8 153.8 (1,10) 153.3 (1,10) 153.2(1,10)
2 113.7 113.7 (1,9) 113.1(1,9) 113.0 (1,9)

3 77.05 77.05 (1,7) 76.62 (1,7) 76.57 (1,7)

550 0.8 305.7 305.7 (1,14) 305.2 (1,14) 305.0 (1,14)
600 1 252.8 252.8 (1,13) 2522 (1,13) 252.1(1,13)
700 1 272.2 272.1(1,14) 271.5(1,14) 271.4 (1,14)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
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Table 21. Concluded

Present Study
R/h L/R Ref. 51 and 52
Donnell Donnell Sanders* Sanders

Live pressure Live pressure

0.6 476.4 4764 (1,18) 4758 (1,18) 475.6 (1,18)

0.7 406.7 406.7 (1,17) 406.1 (1,17) 405.9 (1,17)

750 | 08 3545 354.5 (1,16) 353.9 (1,16) 353.7 (1,16)
0.9 313.6 313.6 (1,15) 312.9 (1,15) 312.8 (1,15)

1 281.2 281.2 (1,14) 280.6 (1,14) 280.5 (1,14)

800 1 290.9 290.9 (1,14) 290.3 (1,14) 290.2 (1,14)
900 1 307.7 307.8 (1,15) 307.2 (1,15) 307.1 (1,15)
05 661.1 661.1 (1,21) 660.5 (1,21) 660.3 (1,21)

0.6 547.8 547.8 (1,19) 547.3 (1,19) 547.1 (1,19)

0.7 466.5 466.5 (1,18) 465.9 (1,18) 465.7 (1,18)

0.8 406.8 406.8 (1,17) 406.1 (1,17) 406.0 (1,17)

1000 0.9 360.4 360.4 (1,16) 359.8 (1,16) 359.7 (1,16)
1 323.8 323.8 (1,15) 323.2(1,15) 323.1 (1,15)

1.5 215.9 215.9 (1,12) 215.4 (1,12) 215.3 (1,12)

2 160.4 160.4 (1,11) 159.7 (1,11 159.7 (1,11

3 106.5 106.5 (1,9) 105.8 (1,9) 105.8 (1,9)

1500 0.5 804.9 804.9 (1,23) 804.3 (1,23) 804.2 (1,23)
04 1163 1163 (1,28) 1162 (1,82) 1162 (1,28)

0.5 924.0 924.0 (1,25) 923.4(1,25) 923.2 (1,25)

0.6 765.9 765.9 (1,23) 765.3 (1,23) 765.2 (1,23)

0.7 655.5 655.5 (1,22) 654.9 (1,22) 654.8 (1,22)

0.9 506.2 506.2 (1,19) 505.6 (1,19) 505.5 (1,19)

2000 1 454.9 4549 (1,18) 4543 (1,18) 4542 (1,18)
1.5 301.9 301.9 (1,15) 301.2 (1,15) 301.2 (1,15)

2 225.8 225.8 (1,13) 2252 (1,13) 225.1(1,13)

25 181.9 181.9 (1,12) 181.1 (1,12) 181.1 (1,12)

3 151.6 151.6 (1,11 150.9 (1,11) 150.9 (1,11)

4 112.6 112.6 (1,9) 112.0 (1,9) 112.0 (1,9)

6 76.80 76.80 (1,8) 76.00 (1,8) 75.99 (1,8)

10 4521 4521 (1,6) 44.47 (1,6) 44.46 (1,6)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 22. Nondimensional buckling coefficients

cr

NI L

2

simply supported edges, and subjected to unform torsion (v = 0.30)

for isotropic cylinders with R/h = 100,

Batdorf-Z | Ref. 54 Refs. 55 Present study Percent
parameter (p. 51) and 56 difference
Donnell Donnell Donnell Sanders* Sanders
0 5.34 5.34 5.66 (1,inf, .71)"* 6.0
1 5.41 534 572(1,26,70) | 5.72(1,26,.70) | 5.72(1,26,.70) 57
1.5 --- 5.45 5.78 (1,21,.71) 6.1
2 --- 5.53 5.87(1,19,.70) 6.1
3 --- 5.73 6.09 (1,17,.68) 6.3
4 --- 5.96 6.34 (1,15,.69) 6.4
5 6.22 6.62(1,14,.69) | 6.63(1,14,.69) | 6.63(1,14,.69) 6.4
7 --- 6.72 7.21(1,13,.67) 7.3
10 7.55 7.52 8.09(1,13,.63) | 8.10(1,13,.63) | 8.10(1,13,.63) 72
15 --- 8.84 9.57 (1,12,.61) 83
20 10.13 11.04 (1,12,.58) | 11.05 (1,12,.58) | 11.05 (1,12,.58) 9.0
30 12.69 --- 13.83 (1,11,.55) 9.0
40 --- 14.96 16.61 (1,11,.52) 11.0
50 --- 17.22 19.30 (1,10,.49) 12.1
100 27.86 27.51 32.23 (1,10,.44) 17.2
200 --- 45.27 56.61 (1,9,.37) 56.59 (1,9,.37) 56.59 (1,9,.37) 25.0
300 61.47 --- 80.25 (1,8,.31) 30.6
500 --- 89.27 126.97 (1,8,.30) | 126.90 (1,8,0.29) | 126.90 (1,8,0.29) 42.2
1,000 153.0 150.2 240.5 (1,7,.23) 57.2
2,000 253.0 464.36 (1,6,.17) | 464.18 (1,6,.17) | 464.18 (1,6,.17) 83.5
5,000 504.5 1129 (1,5,12) | 1129(1,5,.12) | 1129(1,5,.12) 123.8
10,000 851.9 849.9 2228 (1,5,0.12) 161.5
100,000 4800 21,922 (1,4,.08) | 22,057 (1,5..12) | 22,057 (1,5..12) | 359.5

* Numbers in parentheses, (m,n,t), indicate the number of axial half-waves, the number of circumferential waves,
and the values of the skewedness parameter, respectively

* Nonlinear rotations about the normal are neglected

* same as Timoshenko and Gere*
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Table 23. Nondimensional buckling coefficients

cr 2
Xy

D

supported edges and subjected to unform torsion (v = 0.30)

for isotropic cylinders with simply

L/R R/h | Refs. 57 and 58 Present study Percent
Donnell Sanders Sanders* Donnell difference
035 | 100 6427 (12 | 6942 (112,640 | 6942(1,12,64) | 6933 (1,12,64) 7.9
04 | 100 551.8 (12) 5954 (1,12,61) | 5954 (1,12,61) | 594.9 (1,12,61) 7.8
100 438.7 (11) 479.6 (1,11,57) | 479.6 (1,11,57) | 479.1 (1,11,.57) 9.2
250 764.9 (15) 859.7 (1,16,.48) 859.7 (1,16,.48) 859.6 (1,16,.48) 12.4
05 | 500 1234 (20) 1456 (1,21,.41) 1456 (1,21,.41) 1456 (1,21,.41) 18.0
1000 2041 (25) 2593 (1,27,.34) 2593 (1,27,.34) 2593 (1,27,.34) 27.0
2000 3418 (31) 4790 (134,28) | 4790 (1,34,28) | 4790 (1,34,28) 40.1
100 263.5 (9) 3062 (1,10,44) | 3062 (1,10,44) | 306.4 (1,10,44) 16.3
250 511.7 (13) 649.0 (1,13,32) | 649.0(1,13,.32) | 649.0(1,13,32) 26.8
1.0 500 854.7 (16) 1198 (1,17,.27) 1198 (1,17,.27) 1198 (1,17,.28) 40.2
1000 1437 (19) 2270 (122,23) | 2270(122,23) | 2270(1,22,23) 60.0
2000 2419 (24) 4380 (1,28,19) | 4380 (1,28,19) | 4380 (1,28,.19) 81.1
100 209.9 (8) 263.9 (1,9,37) 263.9 (1,9,37) 264.1 (1,9,37) 258
250 4147 (11) 5923 (1,12,27) | 592.3(1,12,27) | 592.4(1,12,27) 4.9
15 | 500 698.7 (13) 1127 (1,15,21) | 1127(1,15,21) | 1127 (1,15,22) 613
1000 1176 (16) 2179 (1,19,.17) 2179 (1,19,.17) 2178 (1,19,.17) 85.2
2000 1979 (20) 4264 (124,14) | 4264 (124,.14) | 4264 (1,24,.14) 115.5
100 181.6 (7) 244.8 (1,8,.30) 244.8 (1,8,.30) 244.9 (1,8,.30) 34.9
250 359.7 (10) 567.4(1,11,23) | 567.4(1,11,23) | 567.5(1,11,23) 57.8
20 | 500 604.9 (12) 1095 (1,14,.19) 1095 (1,14,.19) 1095 (1,14,.19) 81.0
1000 1020 (14) 2139 (1,17,.14) | 2139 (1,17,.14) | 2139 (1,17..14) 109.7
2000 1717 (17) 4213 (1,22,.12) 4213 (1,22,.12) 4213 (1,22,.12) 145.4
100 148.1 (6) 2284 (1,7,23) 2284 (1,7,23) 2286 (1,7,23) 544
250 293.9 (8) 545.4 (1,10,.19) 545.6 (1,10,.19) 545.6 (1,10,.19) 85.6
30 | 500 494.8 (10) 1066 (1,12,.14) 1066 (1,12,.14) 1066 (1,12,.14) 115.4
1000 833.3 (12) 2102 (1,15,.11) 2102 (1,15,.11) 2102 (1,15,.11) 152.3
2000 1404 (14) 4166 (1,19,09) | 4166 (1,19,.09) 4166 (1,19,.09 196.7

* Numbers in parentheses indicate the number of circumferential waves, n

* Numbers in parentheses, (m,n,t), indicate the number of axial half-waves, the number of circumferential waves,

and the values of the skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected.
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Table 24. Nondimensional buckling pressure “5i- x 10" for isotropic cylinders with R/h = 100,

simply supported edges, and subjected to uniform hydrostatic pressure and torsion (v = 0.30)

cr-

p R

L/R

Present study

Sanders

Sanders*

Donnell

0.5

1.0
2.0
3.0
6.0
10.0

Ref. 59
Fligge Donnell
1.666 (11)* 1.672 (11)
0.8557 (8) 0.8597 (8)
0.4390 (6) 0.4442 (6)
0.2944 (5) 0.3001 (5)
0.1553 (4) 0.1627 (4)
0.08798 (3) | 0.09524 (3)

1.730 (1,11,.24)"
0.8939 (1,8,.10)
0.4531 (1,6,0.03)
0.3018 (1,5,.02)
0.1592 (1,4,.01)
0.08909 (1,3,.00)

1.745 (1,11,.24)
0.8959 (1,8,.10)
0.4541 (1,6,.03)
0.3025 (1,5,.02)
0.1595 (1,4,.01)
0.08928 (1,3,.00)

1.747 (1,11,.24)
0.8984 (1,8,.10)
0.4591 (1,6,.04)
0.3081 (1,5,.02)
0.1671 (1,4,.01)
0.09678 (1,3,.00)

* Numbers in parentheses indicate the number of circumferential waves, n

* Numbers in parentheses, (m,n,t), indicate the number of axial half-waves, the number of circumferential waves,

and the values of the skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected.

171




Table 25. Nondimensional buckling loads

edges, subjected to axial compression, and stiffened by rings and stringers”

N
X

for isotropic’ cylinders with simply supported

Ring spacing,
d/R

Ref. 60
Donnell

Present study

Donnell

Sanders*

Sanders

Internal rings with eccentricity e = - 2.05 in. and external stringers with eccentricity e = 1.05 in.

0.05 0.004111 (3,7)° 0.004112 (3,7) 0.004099 (3,7) 0.004096 (3,7)
0.10 0.003836 (3,7) 0.003837 (3,7) 0.003830 (3,7) 0.003827 (3,7)
0.20 0.003629 (3,8) 0.003629 (3,8) 0.003623 (3,8) 0.003621 (3,8)
0.25 0.003574 (3,8) 0.003574 (3,8) 0.003569 (3,8) 0.003567 (3,8)

Internal rings with eccentricity e, = - 2.05 in. and internal stringers with eccentricity e, =-1.05 in.

0.05 0.003764 (3,7) 0.003764 (3,7) 0.003741 (3,7) 0.003728 (3,7)
0.10 0.003430 (3,7) 0.003430 (3,7) 0.003415 (3,8) 0.003404 (3,8)
0.20 0.002988 (2,7) 0.002988 (2,7) 0.002960 (2,8) 0.002945 (2,8)
0.25 0.002779 (2,8) 0.002779 (2,8) 0.002753 (2,8) 0.002738 (2,8)

External rings with eccentricity e = 2.05 in. and external stringers with eccentricity e = 1.05 in.

0.05 0.005970 (3,6) 0.005970 (4,5) 0.005953 (4,5) 0.005946 (4,5)
0.10 0.005121 (3,6) 0.005121 (4,5) 0.005114 (4,5) 0.005111 (4,5)
0.20 0.004467 (3,7) 0.004467 (3,7) 0.004453 (3,7) 0.004447 (3,7)
0.25 0.004137 (3,8) 0.004283 (3,8) 0.004269 (3,8) 0.004264 (3,8)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.

"E=10x 10° psi, v = 0.32, R = 200.0 in., L = 200.0 in., h = 0.10 in.
"Stringer properties: spacing d. =2.50 in. , area A, = 0.36 in’, I, =0.2112 in*, J. =0.0012 in*

Ring properties: A_ =0.78 in’, I =1.9786 in*,J. = 0.0026 in*, h = ‘3— +h=0.24in.

s
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Table 26. Nondimensional buckling loads

simply supported edges and subjected to axial compression

cr
Ix

for stringer-stiffened” isotropic’ cylinders with

Length-to-radius
ratio, L/R

Ref. 60
Donnell

Present study

Donnell

Sanders*

Sanders

External stringers with eccentricity e = 1.05 in.

0.15

0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.007043 (1,0)"
0.004739 (1,8)
0.003614 (1,18)
0.002814 (1,25)
0.002243 (1,27)
0.001843 (1,27)
0.001554 (1,26)
0.001340 (1,25)

0.007043 (1,0)
0.004739 (1,8)
0.003614 (1,18)
0.002814 (1,25)
0.002243 (1,27)
0.001842 (1,27)
0.001554 (1,26)
0.001340 (1,25)

0.007043 (1,0)
0.004739 (1,8)
0.003614 (1,18)
0.002813 (1,25)
0.002243 (1,27)
0.001842 (1,27)
0.001554 (1,26)
0.001339 (1,25)

0.007043 (1,0)
0.004739 (1,8)
0.003614 (1,18)
0.002813 (1,25)
0.002243 (1,27)
0.001842 (1,27)
0.001553 (1,26)
0.001339 (1,25)

Internal stringers with eccentricity e,

=-1.051n.

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.006747 (1,21)
0.003804 (1,20)
0.002443 (1,19)
0.001706 (1,18)
0.001262 (1,18)
0.000975 (1,18)
0.000780 (1,18)
0.000641 (1,17)

0.006747 (1,21)
0.003804 (1,20)
0.002443 (1,19)
0.001706 (1,18)
0.001262 (1,18)
0.000975 (1,18)
0.000780 (1,18)
0.000642 (1,17)

0.006747 (1,21)
0.003804 (1,20)
0.002443 (1,19)
0.001706 (1,18)
0.001261 (1,18)
0.000975 (1,18)
0.000780 (1,18)
0.000641 (1,17)

0.006717 (1,21)
0.003789 (1,20)
0.002434 (1,19)
0.001700 (1,18)
0.001257 (1,18)
0.000972 (1,18)
0.000778 (1,18)
0.000639 (1,17)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.

"E=10x 10°psi, v=0.32, R =200.0 in., h=0.10 in.

"Stringer properties: spacing d. =2.50 in. , area A_ =0.36 in*, I, =0.2112in*, ], =0.0012 in*, h=
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Table 27. Nondimensional buckling loads

cr
Ix

11

for isotropic’ cylinders with simply supported

edges, subjected to axial compression, with a corrugated shell wall, and stiffened by rings”

Ring spacing, Ref. 60 Present study

/R Donnell Donnell Sanders* Sanders
External rings with eccentricity e =3.812 in.

0.20 0.004289 (2,0)" 0.004289 (2,0) 0.004289 (2,0) 0.004289 (2,0)

0.25 0.003826 (2,0) 0.003826 (2,0) 0.003826 (2,0) 0.003826 (2,0)

0.50 0.002900 (2,0) 0.002900 (2,0) 0.002900 (2,0) 0.002900 (2,0)
Internal rings with eccentricity e, =-3.812 in.

0.20 0.001491 (1,6) 0.001496 (1,6) 0.001493 (1,6) 0.001492 (1,6)

0.25 0.001324 (1,6) 0.001329 (1,6) 0.001327 (1,6) 0.001327 (1,6)

0.50 0.000967 (1,6) 0.000971 (1,6) 0.000971 (1,6) 0.000971 (1,6)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.

"E=10x10°psi, v=0.32, R =200.0 in., L =200.0 in., h =0.10 in.
" Ring properties: A, =0.78 in>, I =1.9786 in*, ] = 0.0026 in*
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Table 28. Buckling load N; (Ibs/in.) for isotropic’ cylinders with simply supported edges,
subjected to axial compression, and stiffened by internal or external blade stringers (figure 51)

Length, | Cylinder wall |  Ref. 61 Ref. 62 Ref. 62 Present study
in. thickness, Sanders** | Donnell Donnell
hi 1=0 Donnell Donnell | Sanders* | Sanders
, in. s T=0
External stringers with eccentricity e, =0.165 in.

38.00 0.0283 1115 (6)° 1043 (6) 1193 (6) 1029 (1,6)° | 1173 (1,6) | 1137 (1,6) | 1109 (1.6)
23.75 0.0275 1354 (7) 1183 (7) 1389 (7) | 1171 (1,7) | 1368 (1,7) | 1346 (1,7) | 1324 (1,7)
Internal stringers with eccentricity e, = - 0.165 in.

38.00 0.0277 689 (5) 587 (7) 719 (5) 580 (2,7) | 707 (1,5) | 681(1,5) | 657 (1,5)
23.75 0.0280 725 (6) 611 (7) 765 (6) 602 (1,7) | 752(1,6) | 733 (1,6) | 715(1,6)

* Numbers in parentheses indicate the number of circumferential waves, n

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
"E=10.5x10°psi, v=10.32, R = 9.55 in., stringer spacing d. = 1.0 in.

** Selected terms are neglected in Sanders’ nonlinear equilibrium equations.

Table 29. Buckling load Ny (Ibs/in.) for isotropic cylinders with simply supported edges,
subjected to axial compression, and stiffened by internal or external blade stringers (figure 51)

Length, | Cylinder wall Ref. 64 Present study
in. thickn Donnell
- lﬁ Hess, Donnell | Sanders* | Sanders
, in.
External stringers with eccentricity e = 0.165 in.

38.00 0.0283 1145 1144 (1,6)* | 1110 (1,6) | 1083 (1,6)
23.75 0.0275 1326 1328 (1,7) | 1308 (1,7) | 1287 (1,7)
Internal stringers with eccentricity e, = - 0.165 in.

38.00 0.0277 687 687(1,5) | 662 (1,5) | 639(1,5)
23.75 0.0280 722 723 (1,6) | 705(1,6) | 688 (1,6)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.
"E=10.5x 10° psi, v=10.32, R = 9.55 in., stringer spacing d, = 1.0 in.
** Selected terms are neglected in Sanders’ nonlinear equilibrium equations.
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Table 30. Buckling load N; (Ibs/in.) for isotropic’ cylinders with simply supported edges,
subjected to axial compression, and stiffened by internal or external Z-shaped stringers (figure 32)

Thickness, in. Stringe.r Ref. 61 Present study
ecc:ztfllflty’ Sanders™ Donnell Sanders* Sanders
0.0410 0.2538 1125 (6)" 1231 (1,6)° | 1203 (1,6) | 1173 (1,6)
0.0401 -0.2533 735 (6) 779 (1,6) 753 (1,6) 733 (1,6)

* Numbers in parentheses indicate the number of circumferential waves, n

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
* Nonlinear rotations about the normal are neglected.

"E=10.5x10°psi, v=10.32, R =15.80 in., L = 59.0 in., stringer spacing d. = 1.24 in.

** Selected terms are neglected in Sanders’ nonlinear equilibrium equations.

Table 31. Buckling load N (Ibs/in.) for isotropic’ cylinders with simply supported edges,

subjected to axial compression, and stiffened by internal or external Z-shaped stringers (figure 32)

Length, in. | Thickness, |  Stringer Ref. 64 Present study
b, in. eccznt;ilc.:ity, Donnell Donnell Donnell Sanders Sanders
® J=0 J.=0

59.00 0.0410 0.2538 1193 1213 (1,6)° | 1223 (1,6) | 1157(1,6) | 1166 (1.6)
59.00 0.0401 -0.2533 766 759 (1,6) 769 (1,6) 715 (1,6) 724 (1,6)
41.83 0.0391 0.2528 1283 1310 (1,7) | 1324(1,7) | 1271(1,7) | 1284 (1,7)
41.83 0.0401 -0.2533 773 766 (1,7) 779 (1,7) 734 (1,7) 747 (1,7)
29.68 0.0392 0.2529 1574 1606 (1,9) | 1629(1,9) | 1577(1,9) | 1599 (1,9)
29.68 0.0403 -0.2534 838 832 (1,8) 851 (1,8) 809 (1,8) 826 (1,8)
20.77 0.0395 0.2530 2068 2133 (1,10) | 2162 (1,10) | 2111 (1,10) | 2138 (1,10)
20.77 0.0401 -0.2533 1027 1035 (1,9) | 1058(1,9) | 1016(1,9) | 1038(1,9)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.
"E=10.5x 10°psi, v=10.32, R = 15.92 in., stringer spacing d, = 1.24 in.
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Table 32. Nondimensional buckling coefficient

2Nf) R for isotropic cylinders with

simply supported edges, central stringers,” and subjected to axial compression (v = 0.3)

Central stringers, e/h =0
L/R R/h Ref. 66 Present Study
Donnell Donnell Sanders* Sanders
50 4991 (1,6)° 4991 (1,6) 4984 (1,6) 4956 (1,6)
- 100 5714 (1,9) 5714 (1,9) 5701 (1,9) 5674 (1,9)
50 1814 (1,6) 1814 (1,6) 1794 (1,6) 1768 (1,6)
100 2561 (1,7) 2561 (1,7) 2535 (1,7) 2505 (1,7)
1 250 4914 (1,9) 4914 (1,9) 4875 (1,9) 4833 (1,9)
500 8865 (1,11) 8865 (1,11) 8810 (1,11) 8753 (1,11)
1000 16860 (1,14) 16861 (1,14) 16774 (1,14) 16701 (1,14)
500 8219 (1,8) 8219 (1,8) 8108 (1,8) 7997 (1,8)
? 2000 32410 (1,12) 32411 (1,12) 32170 (1,12) 31960 (1,12)
4 2000 32410 (2,12) 32411 (2,12) 32170 (2,12) 31827 (1,8)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

# A o5 L5 ana g =0

s s
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for isotropic stringer-stiffened’

Table 33. Nondimensional buckling coefficient 2Ng R

cylinders with simply supported edges, and subjected to axial compression (v = 0.3)

Present Study
Ref. 66
Donnell Donnell Sanders* Sanders
L/R R/h External stringers, e/h = +2
50 2434 (1,6)° 2434 (1,6) 2415 (1,6) 2394 (1,6)
100 3402 (1,7) 3402 (1,7) 3377 (1,7) 3345 (1,7)
1 250 6196 (1,9) 6196 (1,9) 6154 (1,10) 6108 (1,9)
500 10620 (1,11) 10619 (1,11) 10560 (1,12) 10498 (1,11)
1000 19120 (1,14) 19119 (1,14) 19032 (1,14) 18952 (1,14)
2 1000 17340 (1,10) 17342 (1,10) 17173 (1,10) 17016 (1,10)
3 1000 16900 (1,8) 16898 (1,8) 16658 (1,8) 16416 (1,8)
Internal stringers, e/h = -2
50 1866 (1,5) 1867 (1,5) 1850 (1,5) 1804 (1,5)
100 2443 (1,7) 2443 (1,7) 2416 (1,7) 2380 (1,7)
1 250 4395 (1,9) 4395 (1,9) 4355(1,9) 4314 (1,9)
500 7901 (1,11) 7901 (1,11) 7845 (1,11) 7792 (1,11)
1000 | 15320 (1,13) 15324 (1,13) 15248 (1,13) 15171 (1,13)
2 1000 15320 (2,13) 15324 (2,13) 15196 (1,10) 15056 (1,10)
3 1000 | 15190 (2,11) 15186 (2,11) 15068 (2,11) 14956 (2,11)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.

=0.5,

I,

s

3

=5, and J . =0
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Table 34. Nondimensional buckling coefficient

INTR’
D

for isotropic cylinders with simply

supported edges, external stringers,” and subjected to axial compression (v = 0.3)

External stringers, e /h = +5
L/R R/h Ref. 66 Present Study
Donnell Donnell Sanders* Sanders
0.25 50 46360 (1,3)" 46362 (1,3) 46364 (1,3) 43638 (1,8)
0.35 50 23650 (1,0) 23649 (1,0) 23649 (1,0) 23582 (1,3)
50 12110 (1,0) 12097 (1,0) 12097 (1,0) 12097 (1,0)
100 14830 (1,5) 14833 (1,5) 14831 (1,5) 14829 (1,5)
05 250 20050 (1,12) 20050 (1,12) 20032 (1,12) 20010 (1,12)
500 26440 (1,16) 26435 (1,16) 26405 (1,16) 26365 (1,16)
1000 37640 (1,19) 37640 (1,19) 37597 (1,19) 37538 (1,19)
2000 58020 (1,24) 58019 (1,24) 57953 (1,24) 57881 (1,24)
50 4659 (1,5) 4659 (1,5) 4646 (1,5) 4629 (1,5)
100 6016 (1,7) 6016 (1,7) 5992 (1,7) 5955 (1,7)
250 9411 (1,10) 9411 (1,10) 9365 (1,10) 9310 (1,10)
| 500 14500 (1,12) 14505 (1,12) 14440 (1,12) 14368 (1,12)
1000 24030 (1,14) 24031 (1,14) 23945 (1,14) 23847 (1,14)
2000 42280 (1,17) 42284 (1,17) 42160 (1,17) 42033 (1,17)
5000 94870 (1,21) 94866 (1,21) 94680 (1,21) 944383 (1,21)
50000 | 847600 (1,38) 847582 (1,38) 846989 (1,38) 846408 (1,38)
50 2805 (1,5) 2805 (1,5) 2778 (1,5) 2738 (1,5)
1.5 100 3961 (1,6) 3961 (1,6) 3922 (1,6) 3864 (1,6)
250 6985 (1,8) 6985 (1,8) 6920 (1,8) 6842 (1,8)
100 3193 (1,6) 3193 (1,6) 3129 (1,6) 3069 (1,6)
250 6008 (1,7) 6008 (1,7) 5922 (1,7) 5826 (1,7)
2 500 10700 (1,8) 10704 (1,8) 10594 (1,8) 10454 (1,8)
2000 36590 (1,12) 36592 (1,12) 36352 (1,12) 36116 (1,12)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.

== 0.5,

I,

s

3

=5, and J.=0

179




Table 34.

Concluded
External stringers, e/h = +5
L/R R/h Ref. 66 Present Study
Donnell Donnell Sanders* Sanders

50 1326 (1,3)" 1326 (1,3) 1265 (1,3) 1166 (1,3)
100 2191 (1,4) 2191 (1,4) 2083 (1,4) 1977 (1,4)
4 250 4843 (1,5) 4843 (1,5) 4677 (1,5) 4512 (1,5)
500 9148 (1,6) 9148 (1,6) 8910 (1,6) 8683 (1,6)
1000 17610 (1,7) 17609 (1,7) 17286 (1,7) 16955 (1,7)
2000 34930 (1,8) 34929 (1,8) 34509 (1,8) 33995 (1,8)
250 4550 (1,4) 4550 (1,4) 4316 (1,4) 4077 (1,4)
¢ 1000 17270 (1,6) 17272 (1,6) 16746 (1,6) 16305 (1,6)
10 500 8713 (1,4) 8713 (1,4) 8077 (1,4) 7611 (1,4)
20 500 8713 (2,4) 8713 (2,4) 7846 (1,3) 7068 (1,3)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.

1

—==5,and J,=0

s
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Table 35. Nondimensional buckling coefficient

INTR’
D

for isotropic cylinders with simply

supported edges, internal stringers,” and subjected to axial compression (v = 0.3)

L/R

R/h

Internal stringers, e/h = -5

Present Study

Ref. 66
Donnell Donnell Sanders* Sanders
0.25 50 46640 (1,8)° 46643 (1,8) 46624 (1,8) 40688 (1,10)
0.35 50 23890 (1,7) 23886 (1,7) 23870 (1,7) 22216 (1,7)
50 11800 (1,6) 11800 (1,6) 11786 (1,6) 11210 (1,6)
100 12050 (1,8) 12054 (1,8) 12038 (1,8) 11791 (1,8)
05 250 12980 (1,11) 12984 (1,11) 12964 (1,11) 12858 (1,11)
500 15030 (1,14) 15033 (1,14) 15006 (1,14) 14937 (1,14)
1000 20000 (1,17) 19996 (1,17) 19959 (1,17) 19900 (1,17)
2000 31590 (1,21) 31589 (1,21) 31537 (1,21) 31475 (1,21)
50 3156 (1,5) 3156 (1,5) 3139 (1,5) 3013 (1,5)
100 3551 (1,6) 3551 (1,6) 3529 (1,6) 3446 (1,6)
250 5045 (1,9) 5045 (1,9) 5005 (1,9) 4950 (1,9)
1 500 7933 (1,11) 7933 (1,11) 7877 (1,11) 7819 (1,11)
1000 14300 (1,13) 14302 (1,13) 14226 (1,13) 14152 (1,13)
2000 28080 (1,16) 28080 (1,16) 27968 (1,16) 27869 (1,16)
5000 70650 (2,28) 70647 (2,28) 70560 (2,28) 70474 (2,28)
50000 | 701900 (5,80) 701987 (5,80) 701875 (5,80) 701769 (5,80)
50 1648 (1,4) 1648 (1,4) 1627 (1,4) 1547 (1,4)
1.5 100 2160 (1,6) 2160 (1,6) 2120 (1,6) 2067 (1,6)
250 3908 (1,7) 3908 (1,7) 3857 (1,7) 3790 (1,7)
100 1673 (1,5) 1673 (1,5) 1625 (1,5) 1570 (1,5)
250 3693 (1,7) 3693 (1,7) 3607 (1,7) 3541 (1,7)
2 500 7020 (1,8) 7020 (1,8) 6909 (1,8) 6812 (1,8)
2000 28080 (2,16) 28080 (2,16) 27968 (2,16) 27869 (2,16)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.

= = 0.5,

I

3

s

=5, and J,=0
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Table 35.

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

Concluded
Internal stringers, e/h = -5
L/R R/h Ref. 66 Present Study
Donnell Donnell Sanders* Sanders
50 731.7 (1,3)° 731.7 (1,3) 669.5 (1,3) 609.5 (1,3)
100 1454 (1,4) 1454 (1,4) 1346 (1,4) 1272 (1,4)
4 250 3608 (1,5) 3608 (1,5) 3441 (1,5) 3316 (1,5)
500 7020 (2,8) 7020 (2,8) 6909 (2,8) 6812 (2,8)
1000 14200 (3,12) 14192 (3,12) 14081 (3,12) 13992 (3,12)
2000 28080 (4,16) 28080 (4,16) 27968 (4,16) 27869 (4,16)
250 3670 (1,4) 3670 (1,4) 3436 (1,4) 3242 (1,4)
¢ 1000 14050 (4,11) 14054 (4,11) 13936 (4,11) 13831 (4,11)
10 500 7020 (5,8) 7020 (5,8) 6909 (5,8) 6812 (5,8)
20 500 7020 (10,8) 7020 (10,8) 6909 (10,8) 6800 (1,3)

* Nonlinear rotations about the normal are neglected.

c

1

3

s

== 0.5, *-=5and J ., =0
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Table 36. Nondimensional buckling coefficient 2NTRZ for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression (v = 0.3)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

Present Study

Ref. 66
LR R/ Donnell Donnell Sanders* Sanders
External stringers, e/h = +10

os 250 49160 (1,10)° 49160 (1,10) 49149 (1,10) 49145 (1,10)
500 59540 (1,16) 59545 (1,16) 59516 (1,16) 59472 (1,16)

50 11420 (1,3) 11418 (1,3) 11414 (1,3) 11413 (1,3)

100 13980 (1,7) 13984 (1,7) 13962 (1,7) 13930 (1,7)
1 250 18640 (1,10) 18645 (1,10) 18599 (1,10) 18519 (1,10)
500 24960 (1,12) 24962 (1,12) 24898 (1,12) 24790 (1,12)
1000 36280 (1,14) 36283 (1,14) 36196 (1,15) 36058 (1,14)

100 5659 (1,6) 5659 (1,6) 5595 (1,6) 5504 (1,6)

2 150 6886 (1,6) 6886 (1,6) 6822 (1,6) 6698 (1,6)
1000 23800 (1,10) 23805 (1,10) 23636 (1,10) 23426 (1,10)

100 3824 (1,5) 3824 (1,5) 3727 (1,5) 3617 (1,5)

3 150 4862 (1,5) 4862 (1,5) 4765 (1,5) 4618 (1,5)
1000 20840 (1,8) 20841 (1,8) 20601 (1,8) 20305 (1,8)

Internal stringers, e/h =-10

250 33810 (1,9) 33812 (1,9) 33795 (1,9) 33266 (1,9)
. 500 34870 (1,12) 34866 (1,12) 34844 (1,12) 34580 (1,12)
50 8413 (1,4) 8413 (1,4) 8398 (1,4) 7722 (1,4)

100 8653 (1,5) 8653 (1,5) 8635 (1,5) 8292 (1,5)

1 250 9479 (1,8) 9479 (1,8) 9446 (1,8) 9298 (1,8)
500 11460 (1,10) 11461 (1,10) 11413 (1,10) 11306 (1,10)
1000 16610 (1,12) 16611 (1,12) 16545 (1,12) 16440 (1,12)

100 2713 (1,5) 2713 (1,5) 2665 (1,5) 2562 (1,5)

2 150 3139 (1,5) 3139 (1,5) 3091 (1,5) 2982 (1,5)
1000 13710 (1,9) 13712 (1,9) 13573 (1,9) 13418 (1,9)

100 1711 (1,4) 1711 (1,4) 1647 (1,4) 1556 (1,4)

3 150 2390 (1,5) 2390 (1,5) 2293 (1,5) 2208 (1,5)
1000 13800 (1,8) 13796 (1.8) 13557 (1,8) 13356 (1,8)

* Nonlinear rotations about the normal are neglected.

c
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Table 37. Nondimensional buckling coefficient 2NTRZ for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression (v = 0.3)

External stringers, e/h = +5

L/R R/h Present Study
Ref. 66
Donnell Donnell Sanders* Sanders
250 28670 (1,12) 28672 (1,12) 28654 (1,12) 28623 (1,12)
. 500 35060 (1,16) 35058 (1,16) 35027 (1,16) 34974 (1,16)
50 6814 (1,5) 6814 (1,5) 6802 (1,5) 6776 (1,5)
100 8172 (1,7) 8172 (1,7) 8148 (1,7) 8097 (1,7)
1 250 11570 (1,10) 11567 (1,10) 11520 (1,10) 11453 (1,10)
500 16660 (1,12) 16660 (1,12) 16595 (1,12) 16513 (1,12)
1000 26190 (1,14) 26187 (1,14) 26100 (1,14) 25993 (1,14)
100 3732 (1,6) 3732 (1,6) 3668 (1,6) 3598 (1,6)
2 150 4661 (1,6) 4661 (1,6) 4597 (1,6) 4505 (1,6)
1000 19910 (1,10) 19912 (1,10) 19743 (1,10) 19565 (1,10)
100 2798 (1,5) 2798 (1,5) 2702 (1,5) 2616 (1,5)
3 150 3630 (1,5) 3630 (1,5) 3534 (1,5) 3419 (1,5)
1000 18440 (1,8) 18440 (1,8) 18201 (1,8) 17937 (1,8)

Internal stringers, e /h = -5

L/R R/h Present Study
Ref. 66
Donnell Donnell Sanders* Sanders
250 21610 (1,11) 21606 (1,11) 21586 (1,11) 21410 (1,11)
. 500 23660 (1,14) 23655 (1,14) 23628 (1,14) 23519 (1,14)
50 5312(1,5) 5312 (1,5) 5294 (1,5) 5077 (1,5)
100 5706 (1,6) 5706 (1,6) 5684 (1,6) 5551 (1,6)
1 250 7201 (1,9) 7201 (1,9) 7161 (1,9) 7082 (1,9)
500 10090 (1,11) 10088 (1,11) 10032 (1,11) 9959 (1,11)
1000 16460 (1,13) 16458 (1,13) 16382 (1,13) 16296 (1,13)
100 211 (1,5) 2211 (1,5) 2164 (1,5) 2091 (1,5)
2 150 2878 (1,6) 2878 (1,6) 2813 (1,6) 2744 (1,6)
1000 14970 (1,10) 14970 (1,10) 14801 (1,10) 14663 (1,10)
100 1713 (1,4) 1713 (1,4) 1649 (1,4) 1564 (1,4)
3 150 2395 (1,5) 2395 (1,5) 2298 (1,5) 2217 (1,5)
1000 14920 (1,8) 14918 (1,8) 14678 (1,8) 14463 (1,8)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected

# A g5 L 5 and 5,=0
d;h dn’

B
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Table 38. Nondimensional buckling coefficient 2NTRZ for isotropic stringer-stiffened” cylinders

with simply supported edges, and subjected to axial compression (v =0.3)

External stringers, e/h = +5

L/R R/h Present Study
Ref. 66
Donnell Donnell Sanders* Sanders
250 33470 (1,9) 33474 (1,9) 33466 (1,9) 33465 (1,9)
. 500 47010 (1,15) 47013 (1,15) 46988 (1,15) 46970 (1,15)
50 7376 (1,3) 7376 (1,3) 7372 (1,3) 7372 (1,3)
100 10580 (1,7) 10584 (1,7) 10563 (1,7) 10555 (1,7)
1 250 16590 (1,10) 16586 (1,10) 16542 (1,10) 16493 (1,10)
500 24690 (1,13) 24691 (1,13) 24617 (1,13) 24542 (1,13)
1000 38880 (1,15) 38879 (1,15) 38781 (1,15) 38667 (1,15)
100 5387 (1,6) 5387 (1,6) 5324 (1,6) 5258 (1,6)
2 150 6966 (1,7) 6966 (1,7) 6882 (1,7) 6803 (1,7)
1000 28630 (1,11) 28630 (1,11) 28427 (1,11) 28228 (1,11)
100 4017 (1,5) 4017 (1,5) 3922 (1,5) 3821 (1,5)
3 150 5526 (1,5) 5526 (1,5) 5430 (1,5) 5282 (1,5)
1000 25800 (1,9) 25802 (1,9) 25501 (1,9) 25218 (1,9)

Internal stringers, e /h = -5

L/R R/h Present Study
Ref. 66
Donnell Donnell Sanders* Sanders
250 18110 (1,9) 18113 (1,9) 18097 (1,9) 17845 (1,9)
. 500 19350 (1,12) 19348 (1,12) 19326 (1,12) 19193 (1,12)
50 4492 (1,4) 4492 (1,4) 4477 (14) 4169 (1,4)
100 4738 (1,6) 4738 (1,6) 4715 (1,6) 4564 (1,6)
1 250 5716 (1,8) 5716 (1,8) 5683 (1,8) 5601 (1,8)
500 8222 (1,10) 8222 (1,10) 8174 (1,10) 8103 (1,10)
1000 14310 (1,13) 14308 (1,13) 14232 (1,13) 14158 (1,13)
100 1789 (1,5) 1789 (1,5) 1741 (1,5) 1678 (1,5)
2 150 2421 (1,6) 2421 (1,6) 2356 (1,6) 2295 (1,6)
1000 14310 (2,13) 14308 (2,13) 14232 (2,13) 14158 (2,13)
100 1476 (1,4) 1476 (1,4) 1412 (1,4) 1340 (1,4)
3 150 2159 (1,5) 2159 (1,5) 2062 (1,5) 1990 (1,5)
1000 14310 (3,13) 14308 (3,13) 14232 (3,13) 14158 (3,13)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
PN Ig
s=15 —5=5 =0
ah e , and Jg
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Table 39. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges, and subjected to axial compression (v =0.3, L/R=1)

Present Study
R/h e/h Ref. 62
’ Donnell Donnell Sanders* Sanders
7 23380 (10)* 24376 (1,10)° 24332 (1,10) 24285 (1,10)
250 -7 8432 (7) 8432 (1,7) 8405 (1,7) 8243 (1,7)
10 39700 (10) 39707 (1,10) 39664 (1,10) 39633 (1,10)
-10 14780 (7) 14781 (1,7) 14752 (1,7) 14394 (1,7)
7 33900 (13) 33897 (1,13) 33823 (1,13) 33737 (1,13)
500 7 10150 (10) 10148 (1,10) 10100 (1,10) 10002 (1,10)
10 51720(13) 51722 (1,13) 51649 (1,13) 51551 (1,13)
-10 15730 (9) 15731 (1,9) 15691 (1,9) 15491 (1,9)
7 50060 (15) 50062 (1,15) 49964 (1,15) 49829 (1,15)
1000 -7 15180 (13) 15176 (1,13) 15100 (1,13) 15016 (1,13)
10 70690 (16) 70695 (1,16) 70585 (1,16) 70433 (1,16)
-10 19240 (12) 19243 (1,12) 19177 (1,12) 19046 (1,12)

* Numbers in parentheses indicate the number of circumferential waves, n

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
f-=35, and J,=0

h3

# A 1
S =1.5
dsh ’ d

B
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Table 40. Nondimensional buckling coefficient

IN'R
D

for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression (v = 0.3, L/R =2)

Present Study
A/(d, h) e/h Ref. 62
Donnell Donnell Sanders* Sanders
1.5 10 25890 (9)" 25888 (1,9)° 25751 (1,9) 25529 (1,9)
-10 7471 (8) 7471 (1,8) 7361 (1,8) 7250 (1,8)
3 10 39650 (10) 39654 (1,10) 39487 (1,10) 39269 (1,10)
-10 7597 (7) 7597 (1,7) 7510 (1,7) 7370 (1,7)
5 10 81770 (12) 54735 (1,10) 54568 (1,10) 54356 (1,10)
-10 13970 (10) 7636 (1,7) 7549 (1,7) 7407 (1,7)
5 10 81773 (1,12) 81534 (1,12) 81202 (1,12)
(R/h=1000)
-10 - 13974 (1,10) 13805 (1,10) 13673 (1,10)

* Numbers in parentheses indicate the number of circumferential waves, n
* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.

I )
! 4 1513 =5, J;=0, and % =500 unless noted otherwise

s
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Table 41. Nondimensional buckling coefficient 2N]§ R

with simply supported edges and subjected to axial compression (v =0.3)

for isotropic stringer-stiffened” cylinders

Present Study
LR R/ c/h ggﬁni?l Donnell Sanders* Sanders
0 5714 9y 5714 (1,9) 5701 (1,9) 5674 (1,9)
1 6344 (9) 6344 (1,9) 6332 (1,9) 6314 (1,9)
-1 5729 (9) 5729 (1,9) 5715 (1,9) 5676(1,9)
3 9477 (8) 9477 (1,8) 9469 (1,8) 9461 (1,8)
0.5 100 -3 7641 (8) 7642 (1,8) 7628 (1,8) 7529 (1,8)
7 21460 (0) 21459(1,0) 21459 (1,0) 21459 (1,0)
7 18810 (7) 18811 (1,7) 18797 (1,7) 18226 (1,7)
10 35220 (0) 35219(1,0) 35219 (1,0) 35219 (1,0)
-10 33400 (6) 33399 (1,6) 33386 (1,6) 31808 (1,6)
0 8219 (8) 8219 (1,8) 8108 (1,8) 7997 (1,8)
1 8613 (8) 8613 (1,8) 8503 (1,8) 8387 (1,8)
-1 7876 (8) 7876 (1,8) 7766 (1,8) 7659 (1,8)
2 500 3 9556 (8) 9556 (1,8) 9445 (1,8) 9319 (1,8)
-3 7345 (8) 7345 (1,8) 7235 (1,8) 7134 (1,8)
10 14300 (9) 14300 (1,9) 14162 (1,9) 14014 (1,9)
-10 7107 (8) 7108 (1,8) 6997 (1,8) 6895 (1,8)
0 32410 (12) 32411 (2,12) 32170 (2,12) 31827 (1,8)
1 33140 (12) 33141 (2,12) 32722 (1,8) 32234 (1,8)
-1 31480 (14) 31479 (3,14) 31330 (3,14) 31184 (3,14)
3 34010 (8) 34009 (1,8) 33589 (1,8) 33089 (1,8)
4 2000 -3 29350 (18) 29350 (5,18) 29259 (5,18) 29166 (4,16)
7 35900 (8) 35902 (1,8) 35483 (1,8) 34955 (1,8)
—7 27570 (14) 27566 (3,14) 27417 (3,14) 27287 (3,14)
10 37460 (8) 37462 (1,8) 37042 (1,8) 36492 (1,8)
-10 27190 (14) 27191 (3,14) 27042 (3,14) 26912 (3,14)

* Numbers in parentheses indicate the number of circumferential waves, n

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

s A I.

Bs—0s5, . =5 and J.=0
dh dh’ o
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Table 42. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges, and subjected to axial compression (v =0.3)

External stringers, e/h = +5
Present Study
o o D ggf{ni?l Donnell Sanders* Sanders

0.1 8064 (9)° 8064 (1,9)° 8052 (1,9) 8027 (1,9)

0.3 12020 (8) 12023 (1,8) 12015 (1,8) 12007 (1,8)

0.5 14830 (5) 14833 (1,5) 14831 (1,5) 14829 (1,5)

05 | 100 0.7 16530 (2) 16533 (1,2) 16533 (1,2) 16531 (1,2)
1.0 18040 (0) 18038 (1,0) 18038 (1,0) 18038 (1,0)

1.5 19750 (0) 19754 (1,0) 19754 (1,0) 19754 (1,0)

0.1 7689 (8) 7689 (1,8) 7579 (1,8) 7472 (1,8)

0.3 9224 (8) 9224 (1,8) 9114 (1,8) 8990 (1,8)

2 500 0.5 10700 (8) 10704 (1,8) 10594 (1,8) 10454 (1,8)
1.0 13650 (9) 13652 (1,9) 13514 (1,9) 13378 (1,9)

1.5 16260 (9) 16258 (1,9) 16121 (1,9) 15968 (1,9)

0.1 28210 (8) 28211 (1,8) 27792 (1,8) 27373 (1,8)

0.3 31590 (8) 31587 (1,8) 31167 (1,8) 30700 (1,8)

0.5 34930 (8) 34929 (1,8) 34509 (1,8) 33995 (1,8)

4 | 2000 0.7 37720 (9) 37722 (1,9) 37192 (1,9) 36752 (1,9)
1.0 41070 (9) 41071 (1,9) 40541 (1,9) 40065 (1,9)

1.5 46570 (9) 46568 (1,9) 46038 (1,9) 45503 (1,9)

* Numbers in parentheses indicate the number of circumferential waves, n
" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

P
dn’

=5 and J;,=0
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Table 43. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression (v = 0.3)

Internal stringers, e/h = -5
Present Study
o o D ggf{ni?l Donnell Sanders* Sanders

0.1 7293 (8)" 7293 (1,8)° 7279 (1,9) 7215 (1,8)

0.3 9963 (8) 9963 (1,8) 9949 (1,8) 9801 (1,8)

0.5 12050 (8) 12054 (1,8) 12038 (1,8) 11791 (1,8)

100 0.7 13650 (7) 13649 (1,7) 13635 (1,7) 13282 (1,7)
1.0 15490 (7) 15491 (1,7) 15477 (1,7) 14977 (1,7)

1.5 17660 (6) 17655 (1,6) 17641 (1,7) 16926 (1,7)

0.1 6925 (8) 6925 (1,8) 6814 (1,8) 6717 (1,8)

0.3 6973 (8) 6973 (1,8) 6863 (1,8) 6765 (1,8)

500 0.5 7020 (8) 7020 (1,8) 6909 (1,8) 6812 (1,8)

1.0 7130 (8) 7130 (1,8) 7019 (1,8) 6921 (1,8)

1.5 7230 (8) 7230 (1,8) 7120 (1,8) 7022 (1,8)

0.1 27390 (11) | 27389 (2,11) 26970 (1,8) 26564 (1,8)
0.3 27900 (16) | 27893 (4,16) 27774 (3,14) 27642 (3,14)
0.5 28080 (16) | 28080 (4,16) 27968 (4,16) 27869 (4,16)
2000 0.7 28260 (16) 28260 (4,16) 28148 (4,16) 28049 (4,16)
1.0 28410 (18) | 28409 (5,18) 28317 (5,18) 28238 (5,18)
1.5 28450 (18) | 28447 (5,18) 28355 (5,18) 28277 (5,18)

* Numbers in parentheses indicate the number of circumferential waves, n

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
P

dn’

=5 and J;,=0
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Table 44. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression (v = 0.3)

External stringers, e/h = +5
3 Present Study

o o v ggf{ni?l Donnell Sanders* Sanders
1 11380 (5)* 11384 (1,5)° 11382 (1,5) 11381 (1,5)
3 13110 (5) 13109 (1,5) 13106 (1,5) 13105 (1,5)
05 100 10 19140 (5) 19144 (1,5) 19142 (1,5) 19139 (1,5)
15 23460 (5) 23455 (1,5) 23453 (1,5) 23452 (1,5)
20 27770 (5) 27766 (1,5) 27764 (1,5) 27763 (1,5)
1 10490 (8) 10489 (1,8) 10379 (1,8) 10241 (1,8)
3 10600 (8) 10597 (1,8) 10486 (1,8) 10347 (1,8)
2 500 10 10970 (8) 10974 (1,8) 10864 (1,8) 10720 (1,8)
15 11240 (8) 11243 (1,8) 11133 (1,8) 10985 (1,8)
1 34880 (8) 34875 (1,8) 34455 (1,8) 33942 (1,8)
3 34900 (8) 34902 (1,8) 34482 (1,8) 33969 (1,8)
4 2000 10 35000 (8) 34996 (1,8) 34577 (1,8) 34062 (1,8)
15 35060 (8) 35064 (1,8) 34644 (1,8) 34128 (1,8)
20 35130 (8) 35131 (1,8) 34711 (1,8) 34194 (1,8)

* Numbers in parentheses indicate the number of circumferential waves, n
" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

4 Ay
dsh

=0.5 and J;=0
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Table 45. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression (v = 0.3)

Internal stringers, e/h = -5
3 Present Study
o o v ggf{ni?l Donnell Sanders* Sanders
1 8605 (8)" 8605 (1,8)° 8589 (1,8) 8415 (1,8)
3 10330 (8) 10329 (1,8) 10314 (1,8) 10103 (1,8)
05 100 10 16360 (8) 16365 (1,8) 16349 (1,8) 16010 (1,8)
15 20680 (8) 20676 (1,8) 20660 (1,8) 20227 (1,8)
20 24990 (8) 24987 (1,8) 24971 (1,8) 24443 (1,7)
1 6804 (8) 6804 (1,8) 6694 (1,8) 6599 (1,8)
3 6912 (8) 6912 (1,8) 6802 (1,8) 6706 (1,8)
2 500 10 7289 (8) 7289 (1,8) 7179 (1,8) 7078 (1,8)
15 7559 (8) 7559 (1,8) 7448 (1,8) 7343 (1,8)
1 26930 (19) 26928 (6,19) 26856 (6,19) 26790 (6,19)
3 27650 (16) 27648 (4,16) 27537 (4,16) 27439 (4,16)
4 2000 10 29010 (14) 29008 (3,14) 28859 (3,14) 28723 (3,14)
15 29610 (14) 29614 (3,14) 29466 (3,14) 29326 (3,14)
20 30220 (14) 30220 (3,14) 30072 (3,14) 29917 (2,12)

* Number in parentheses indicate the number of circumferential waves, n
" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

4 Ay
dsh

=0.5 and J;=0
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Table 46. Nondimensional buckling coefficient 2N]§ R

with simply supported edges and subjected to axial compression (v = 0.3)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

#

for isotropic stringer-stiffened” cylinders

External stringers, e/h = +5

Torsional
LR | Rh | stiffness, Present Study
GJ/(dD) ]I){grf{ng?l Donnell Sanders* Sanders
0 20050 20050 (1,12)° 20032 (1,12) 20010 (1,12)
20 20 24370 24374 (1,9) 24316 (1,9) 24279 (1,9)
03 0 58020 58019(1,24) 57953 (1,24) 57881 (1,24)
2000 20 78270 78269 (1,22) 78140 (1,22) 78028 (1,22)
0 4659 4659 (1,5) 4646 (1,5) 4629 (1,5)
%0 20 5460 5460 (1,4) 5411 (1,4) 5383 (1,4)
0 9411 9411 (1,10) 9365 (1,10) 9310 (1,10)
1 20 20 12790 12787 (1,9) 12680 (1,9) 12593 (1,9)
0 42280 42284 (1,17) 42160 (1,17) 42033 (1,17)
2000 20 53060 53058 (1,16) 52870 (1,16) 52693 (1,16)
0 94870 94866 (1,21) 94680 (1,21) 94483 (1,21)
2000 20 112500 112506 (1,21) 112241 (1,21) 112008 (1,21)
0 4843 4843 (1,5) 4677 (1,5) 4512 (1,5)
! 20 20 5843 5843 (1,5) 5600 (1,5) 5403 (1,5)

A

d

s

s

h

=0.5 and

1

s

c
s

3

=5
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Table 47. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression (v = 0.3)

Internal stringers, e/h = -5
Torsional
L/R R/h (S}tljfﬁj?;’) Ref. 66 Present Study
ENAUN Donnell Donnell Sanders* Sanders
0 12980 12984 (1,11)° 12964 (1,11) 12858 (1,11)
5 14020 14025 (1,10) 13987 (1,10) 13865 (1,10)
250 10 15020 15025 (1,10) 14968 (1,10) 14837 (1,10)
20 16680 16683 (1,9) 16592 (1,9) 16437 (1,9)
05 40 19500 19498 (1,8) 19342 (1,8) 19151 (1,8)
0 31590 31589 (1,21) 31537 (1,21) 31475 (1,21)
5 36000 35999 (1,21) 35928 (1,21) 35857 (1,21)
2000 10 40330 40326 (1,20) 40239 (1,20) 40154 (1,20)
20 48330 48326 (1,20) 48200 (1,20) 48099 (1,20)
40 62980 62981 (1,19) 62783 (1,19) 62640 (1,19)
0 3156 3156 (1,5) 3139 (1,5) 3013 (1,5)
5 3406 3406 (1,5) 3368 (1,5) 3232 (L,5)
50 10 3611 3611 (1,4) 3561 (1,4) 3401 (1,4)
20 3931 3931 (1,4) 3844 (1,4) 3670 (1,4)
40 4571 4571 (1,4) 4410 (1,4) 4207 (1,4)
0 5045 5045 (1,9) 5005 (1,9) 4950 (1,9)
5 5744 5744 (1,8) 5692 (1,8) 5619 (1,8)
250 10 6384 6384 (1,8) 6313 (1,8) 6232 (1,8)
1 20 7664 7664 (1,8) 7554 (1,8) 7458 (1,8)
40 9842 9842 (1,7) 9666 (1,7) 9521 (1,7)
0 28080 28080 (1,16) 27968 (1,16) 27869 (1,16)
5 30640 30640 (1,16) 30509 (1,16) 30400 (1,16)
2000 10 33200 33200 (1,16) 33049 (1,16) 32931 (1,16)
20 37840 37838 (1,15) 37662 (1,15) 37511 (1,15)
40 46840 46838 (1,15) 46583 (1,15) 46398 (1,15)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
s A I
s =05 s_=5
dh ad

s
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Table 47. Concluded

Internal stringers, e/h = -5
Torsional
LR | Rh stiffness, Present Study
Ref. 66
GJ/(dD) Donnell Donnell Sanders* Sanders
0 70650 70647 (2,28) 70560 (2,28) 70474 (2,28)
5 76060 76057 (1,20) 75867 (1,20) 75684 (1,20)
1 5000 10 80060 80057 (1,20) 79848 (1,20) 79654 (1,20)
20 88060 88057 (1,20) 87808 (1,20) 87603 (1,20)
40 103700 103705 (1,19) 103394 (1,19) 103129 (1,19)
0 3608 3608 (1,5) 3441 (1,5) 3316 (1,5)
5 3858 3858 (1,5) 3672 (1,5) 3539 (1,5)
4 250 10 4108 4108 (1,5) 3903 (1,5) 3761 (1,5)
20 4608 4608 (1,5) 4364 (1,5) 4205 (1,5)
40 5608 5608 (1,5) 5286 (1,5) 5094 (1,5)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
A _ I _
s =0.5 =5
dsh ad

s
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Table 48. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to axial compression

External stringers, e/h = +5

L/R R/h P;)aitsiiori/’s Present Study
’ Ref. 66
Donnell Donnell Sanders* Sanders
0 26690 26688 (1,0) 26688 (1,0) 26687 (1,0)
0.35 50 0.3 23650 23649 (1,0) 23649 (1,0) 23582 (1,3)
0.5 19540 19536 (1,3) 19538 (1,3) 19174 (1,5)
0 14230 14232 (1,0) 14232 (1,0) 14232 (1,0)
50 0.3 12130 12097 (1,0) 12097 (1,0) 12097 (1,0)
0.5 9699 9699 (1,0) 9699 (1,0) 9699 (1,0)
05 0 17480 17479 (1,7) 17473 (1,7) 17469 (1,7)
100 0.3 14830 14833 (1,5) 14831 (1,5) 14829(1,5)
0.5 11660 11664 (1,4) 11662 (1,4) 11661 (1,4)
0 5299 5299 (1,6) 5281 (1,6) 5256 (1,6)
50 0.3 4659 4659 (1,5) 4646 (1,5) 4629 (1,5)
0.5 3759 3759 (1,5) 3747 (1,5) 3736 (1,5)
0 6737 6737 (1,8) 6706 (1,8) 6664 (1,8)
100 0.3 6016 6016 (1,7) 5992 (1,7) 5955 (1,7)
0.5 4967 4967 (1,7) 4943 (1,7) 4916 (1,7)
0 10310 10311 (1,10) 10264 (1,10) 10200 (1,10)
250 0.3 9411 9411 (1,10) 9365 (1,10) 9310 (1,10)
1 0.5 8027 8027 (1,9) 7989 (1,9) 7937 (1,9)
0 15690 15694 (1,12) 15628 (1,12) 15547 (1,12)
500 0.3 14500 14505 (1,12) 14440 (1,12) 14368 (1,12)
0.5 12600 12600 (1,11) 12544 (1,11) 12475 (1,11)
0 44990 44986 (1,17) 44862 (1,17) 44725 (1,17)
2000 0.3 42280 42284 (1,17) 42160 (1,17) 42033 (1,17)
0.5 37610 37610 (1,16) 37499 (1,16) 37375 (1,16)
0 100600 100621 (1,21) 100434 (1,21) 100215 (1,21)
5000 0.3 94870 94866 (1,21) 94680 (1,21) 94482 (1,21)
0.5 85210 85209 (1,21) 85023 (1,21) 84847 (1,21)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

c

L

s

=5, and J,=0
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Table 49. Nondimensional buckling coefficient 2N]§ R for isotropic stringer-stiffened” cylinders

with simply supported edges, and subjected to axial compression

Internal stringers, e/h = -5
L/R R/h P;)aitsiiori/’s Present Study
’ Ref. 66
Donnell Donnell Sanders* Sanders

0 26070 26071 (1,5)° 26063 (1,5) 25016 (1,6)

0.35 50 0.3 23890 23886 (1,7) 23870 (1,7) 22216 (1,7)
0.5 19860 19862 (1,7) 19842 (1,8) 18038 (1,8)

0 12860 12860 (1,5) 12851 (1,5) 12417 (1,5)

50 0.3 11800 11800 (1,6) 11786 (1,6) 11210 (1,6)

0.5 9830 9830 (1,6) 9815 (1,6) 9240 (1,6)

05 0 13070 13075 (1,7) 13063 (1,7) 12841 (1,7)
100 0.3 12050 12054 (1,8) 12038 (1,8) 11791 (1,8)

0.5 10070 10066 (1,8) 10050 (1,8) 9816 (1,8)

0 3421 3421 (1,5) 3404 (1,5) 3284 (1,5)

50 0.3 3156 3156 (1,5) 3139 (1,5) 3013 (1,5)

0.5 2660 2660 (1,5) 2642 (1,5) 2527 (1,5)

0 3811 3811 (1,6) 3790(1,6) 3707 (1,6)

100 0.3 3551 3551 (1,6) 3529 (1,6) 3446 (1,6)

0.5 3027 3027 (1,6) 3005 (1,6) 2931 (1,6)

0 5348 5348 (1,9) 5308 (1,9) 5251 (1,9)

250 0.3 5045 5045 (1,9) 5005 (1,9) 4950 (1,9)

1 0.5 4425 4425 (1,8) 4392 (1,8) 4335 (1,8)
0 8350 8350 (1,11) 8294 (1,11) 8234 (1,11)

500 0.3 7933 7933 (1,11) 7877 (1,11) 7819 (1,11)

0.5 7103 7103 (1,10) 7055 (1,10) 6995 (1,10)
0 28140 29488 (1,16) 29376 (1,16) 29271 (1,16)
2000 0.3 28080 28080 (1,16) 27968 (1,16) 27869 (1,16)
0.5 25640 25638 (1,16) 25527 (1,16) 25436 (1,16)
0 74300 74298 (2,28) 74211 (2,28) 74121 (2,28)
5000 0.3 70650 70647 (2,28) 70560 (2,28) 70474 (2,28)
0.5 63890 63887 (2,27) 63806 (2,27) 63722 (2,27)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

I,

3

== 0.5, =5, and J,=0
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Table 50. Geometric properties of aluminum and brass stiffened cylinders given in reference 67

Ring-Stiffened Shells
Shell | hx10%in. | R/h L/R d, in. A e/h .
dh an’
AR-1 9.29 431 1.31 0.250 0.205 1.13 0.0288
AR-2 9.50 421 1.31 0.250 0.198 1.11 0.0262
AR-3 10.05 398 1.31 0.250 0.305 1.55 0.1287
AR-4 10.43 384 1.31 0.250 0.293 1.52 0.1189
AR-5 8.38 4717 1.31 0.250 0.315 1.54 0.1266
AR-6 8.46 473 1.31 0.250 0.307 1.51 0.1160
AR-7 8.26 484 1.44 0.320 0.248 1.43 0.0738
AR-9 8.32 481 1.88 0.250 0.678 2.88 1.6326
AR-10 8.80 455 1.38 0.250 0.630 2.78 1.3711
AR-11 8.13 492 1.35 0.200 0.777 2.63 1.5527
AR-12 10.43 384 1.40 0.180 0.575 2.28 0.7978
BR-1 10.55 379 1.31 0.250 0.193 1.04 0.0199
BR-4 10.61 377 1.28 0.300 0.156 1.09 0.0208
Stringer-Stiffened Shells

Shell hx 10, in. R/h L/R d, in. A/(d, h) e/h I/(d h’)
AS-2 7.74 517 1.38 0.316 0.506 1.72 0.2466
AS-3 11.05 362 1.38 0.316 0.330 1.29 0.0679
AS-4 10.21 392 1.38 0.316 0.235 1.07 0.0248
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Table 51. Buckling load N “ (Ib.in) for aluminum and brass stiffened cylinders with simply
supported edges and subjected to axial compression

Present Study
Shell II){SIf{ngl Donnell Sanders* Sanders
AR-1 143.2 143.5 (16,0)° 143.5 (16,0) 143.5 (16,0)
AR-2 149.7 149.6 (16,0) 149.6 (16,0) 149.6 (16,0)
AR-3 174.6 174.6 (16,0) 174.6 (16,0) 174.6 (16,0)
AR-4 187.2 187.0 (16,0) 187.0 (16,0) 187.0 (16,0)
AR-5 122.1 122.0 (18,0) 122.0 (18,0) 122.0 (18,0)
AR-6 123.9 123.9(18,0) 123.9(18,0) 123.9 (18,0)
AR-7 115.4 115.5(19,0) 115.5(19,0) 115.5(19,0)
AR-9 136.0 135.6 (27,0) 135.6 (27,0) 135.6 (27,0)
AR-10 149.8 149.5 (19,0) 149.5 (19,0) 149.5 (19,0)
AR-11 1333 133.3 (20,0) 133.3 (20,0) 133.3 (20,0)
AR-12 206.7 206.4 (18,0) 206.4 (18,0) 206.4 (18,0)
AS-2 123.8 121.8 (1,10) 120.7 (1,10) 119.7 (1,10)
AS-3 219.8 224.7 (1,9) 222.0(1,9) 219.7 (1,9)
AS-4 173.5 180.2 (1,9) 178.1 (1,9) 176.2 (1,9)
BR-1 281.7 282.0 (15,0) 282.0 (15,0) 282.0 (15,0)
BR-4 280.3 280.2 (15,0) 280.2 (15,0) 280.2 (15,0)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
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Table 52. Nondimensional buckling coefficient 2ng R for isotropic ring-stiffened” cylinders with

simply supported edges, and subjected to axial compression (v = 0.3, L/R = 0.5, R/h = 250).

External rings, e/h = +1 Internal rings, e/h = -1
1/(d i) Refs. 62 and 66 Present Study Refs. 62 and 66 Present Study
T Donnell Donnell Donnell Donnell
2 4048 (5,0)° 4048 (5,0) 3854 (5,7) 3854 (5,7)
40 4048 (5,0) 4048 (5,0) 4030 (5,2) 4030 (5,2)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected. A/(d_h)=0.5

# A,
dh

=05 andJ =0

Table 53. Nondimensional buckling coefficient 2N]; R for isotropic ring-stiffened” cylinders

with simply supported edges, and subjected to axial compression (v = 0.3, L/R = 0.5, R/h = 250)

I/(d,h*) | Refs. 62 and 66 Present Study
Donnell Donnell
2 4016 (5.5)° 4016 (5,5)
5 4033 (5,3) 4033 (5,3)
20 4044 (5,2) 4044 (5,2)
40 4046 (5,1) 4046 (5,1)
200 4048 (5,0) 4048 (5,0)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

# A _
dh

0.5,e/h=0,andJ =0
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Table 54. Nondimensional buckling coefficient 2ng R for isotropic ring-stiffened” cylinders

with simply supported edges, and subjected to axial compression (v = 0.3, L/R = 0.5).

External rings, e/h = +5 Internal rings, e/h = -5
R/h Refs. 62 and 66 Present Study Refs. 62 and 66 Present Study
Donnell Donnell Donnell Donnell

50 809.4 (2,0)° 834.5(2,0) 714.8 (2,3) 718.4 (2,3)
100 1619 (3,0) 1633 (3,0) 1420 (3,4) 1421 (3,4)
250 4048 (5,0) 4048 (5,0) 3578 (5,6) 3578 (5,6)
500 8094 (6,0) 8103 (7,0) 7063 (6,8) 7063 (6,8)
1000 16190 (9,0) 16194 (10,0) 14050 (9,11) 14049 (9,11)
2000 32380 (13,0) 32411 (14,0) 28080 (13,16) 28083 (13,16)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
=05, =5 and =0
d;h

r

# A,
dh
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PR for isotropic ring-stiffened” cylinders with

Table 55. Nondimensional buckling pressure 5

L/R = 0.5, simply supported edges, and subjected to uniform external pressure (v = 0.3 and

e/h=+5)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

External rings, e/h = +5

Present Study

R/ Ref. 52
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
50 4664 4664 (1,4)° 4724 (1,4) 4480 (1,4)
100 6997 6997 (1,5) 7067 (1,5) 6865 (1,5)
250 11430 11429 (1,7) 11429 (1,7) 11300 (1,7)
500 16410 16406 (1,9) 16352 (1,9) 16267 (1,9)
1000 23470 23472 (1,11) 23402 (1,11) 23344 (1,11)
2000 33410 33413 (1,13) 33350 (1,13) 33307 (1,13)
Internal rings, e /h = -5
R/h Rt 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
50 2803 2803 (1,4) 2854 (1,4) 2847 (1,4)
100 4589 4589 (1,5) 4649 (1,5) 4635 (1,5)
250 9094 9094 (1,7) 9136 (1,7) 9118 (1,7)
500 14470 14472 (1,8) 14549 (1,8) 14517 (1,8)
1000 22830 22829 (1,10) 22879 (1,10) 22850 (1,10)
2000 34900 34898 (1,13) 34890 (1,13) 34869 (1,13)

* Nonlinear rotations about the normal are neglected.

c

# A s, =5 and 1=0
dh

dh
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Table 56. Effect of Poisson’s ratio on nondimensional buckling pressure pDR

cr.

3

for isotropic ring-

stiffened” cylinders with simply supported edges and subjected to uniform external pressure

(e./h==5)
External rings, e/h = +5
Poisson’s
R LR matio.V ) pefs. 51 and 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0 3175 3175 (1,3) 3150 (1,4) 3028 (1,4)
50 1 0.3 2643 2643 (1,3) 2650 (1,4) 2532 (1,4)
0.5 2071 2071 (1,3) 2102 (1,4) 1996 (1,3)
0 12720 12717 (1,7) 12676 (1,8) 12643 (1,7)
750 1 0.3 10370 10370 (1,7) 10331 (1,7) 10292 (1,7))
0.5 8036 8036 (1,7) 7997 (1,7) 7967 (1,7)
0 10340 10335 (1,7) 10229 (1,7) 10218 (1,7)
2000 2 0.3 8517 8517 (1,7) 8416 (1,7) 8407 (1,7)
0.5 6660 6660 (1,7) 6574 (1,7) 6567 (1,7)
Internal rings, e/h = -5
Poisson’s
R/ LR ratio, v Refs. 51 and 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0 1971 1971 (1,3) 2136 (1,3) 2096 (1,3)
50 1 0.3 1883 1883 (1,3) 1969 (1,3) 1941 (1,3)
0.5 1612 1612 (1,3) 1643 (1,3) 1624 (1,3)
0 11010 11014 (1,7) 11029 (1,7) 11003 (1,7)
750 1 03 11120 11123 (1,7) 11127 (1,7) 11104 (1,7)
0.5 9950 9950 (1,7) 9945 (1,7) 9925 (1,7)
0 9967 9967 (1,7) 9884 (1,7) 9874 (1,7)
2000 2 0.3 10210 10208 (1,7) 10130 (1,7) 10121 (1,7)
0.5 9283 9283 (1,7) 9215 (1,7) 9208 (1,7)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

oA _ 1
dh 0.5,

c
r
3

=5,and J =0
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Table 57. Nondimensional buckling pressure % for isotropic ring-stiffened” cylinders with

simply supported edges and subjected to uniform hydrostatic pressure (v =0.3 and e /h=+5)

External rings, e/h = +5
R LR Refs. 51 and 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure

0.5 834.5 (2,0 834.5 (2,0) 838.4 (2,0) 838.4 (2,0)
50 1 825.4 (5,0) 825.4 (5,0) 827.9 (5,0) 827.9 (5,0)
1.5 810.9 (7.0) 810.9 (7,0) 813.7 (7,0) 813.7 (7,0)
0.65 1241 (4,0) 1241 (4,0) 1243 (4,0) 1243 (4,0)
B 0.8 1240 (4,0) 1240 (4,0) 1244 (4,0) 1244 (4,0)
0.5 1633 (3,0) 1633 (3,0) 1636 (3,0) 1636 (3,0)
1 1633 (6,0) 1633 (6,0) 1636 (6,0) 1636 (6,0)
100 1.5 1624 (10,0) 1624 (10,0) 1627 (10,0) 1627 (10,0)
2 1620 (13,0) 1620 (13,0) 1586 (1,3) 1526 (1,3)
150 0.8 2438 (6,0) 2438 (6,0) 2442 (6,0) 2441 (6,0)
0.5 4048 (5,0) 4048 (5,0) 4052 (5,0) 4052 (5,0)
1 4048 (10,0) 4048 (10,0) 4052 (10,0) 4052 (10,0)
250 1.5 3774 (1,4) 3774 (1,4) 3689 (1,5) 3650 (1,5)
2 2757 (1,4) 2757 (1,4) 2669 (1,4) 2633 (1,4)
3 1954 (1,3) 1954 (1,3) 1937 (1,3) 1899 (1,3)
475 0.65 7691 (9,0) 7691 (9,0) 7694 (9,0) 7694 (9,0)
0.5 8103 (7,0) 8103 (7,0) 8106 (7,0) 8106 (7,0)
1 7680 (1,6) 7680 (1,6) 7639 (1,7) 7590 (1,6)
500 1.5 5366 (1,5) 5366 (1,5) 5339 (1,5) 5292 (1,5)
2 4083 (1,5) 4083 (1,5) 3974 (1,5) 3950 (1,5)
3 2734 (1,4) 2734 (1,4) 2637 (1,4) 2619 (1,4)
550 0.8 8904 (12,0) 8904 (12,0) 8907 (12,0) 8907 (12,0)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

c

# A5 I 5 and 1 =0
dh °

dh
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Table 57.

Concluded
External rings, e /h = +5
R/ LR Refs. 51 and 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.6 12190 (11,0)° 12190 (11,0) 12193 (11,0) 12193 (11,0)
0.7 12150 (12,0) 12154 (12,0) 12158 (12,0) 12158 (12,0)
750 0.8 11410 (1,8) 11415 (1,8) 11336 (1,8) 11284 (1,8)
0.9 10490 (1,8) 10486 (1,8) 10382 (1,8) 10340 (1,8)
1 9421 (1,7) 9421 (1,7) 9362 (1,7) 9314 (1,7)
0.5 16190 (10,0) 16194 (10,0) 16197 (10,0) 16197 (10,0)
0.6 16190 (12,0) 16194 (12,0) 16197 (12,0) 16197 (12,0)
0.7 15100 (1,9) 15098 (1,9) 15032 (1,9) 14977 (1,9)
0.8 13560 (1,9) 13559 (1,9) 13460 (1,9) 13418 (1,9)
1000 0.9 12110 (1,8) 12112 (1,8) 12047 (1,8) 12002 (1,8)
1 11030 (1,8) 11029 (1,8) 10936 (1,8) 10901 (1,8)
1.5 7814 (1,6) 7814 (1,6) 7720 (1,7) 7699 (1,7)
2 5887 (1,6) 5887 (1,6) 5776 (1,6) 5760 (1,6)
3 4029 (1,5) 4030 (1,5) 3914 (1,5) 3903 (1,5)
0.4 32480 (11,0) 32484 (11,0) 32488 (11,0) 32488 (11,0)
0.5 29920 (1,13) 29918 (1,13) 29836 (1,13) 29786 (1,13)
0.6 25490 (1,12) 25487 (1,12) 25403 (1,12) 25360 (1,12)
0.7 22170 (1,11) 22174 (1,11) 22099 (1,11) 22059 (1,11)
1 16120 (1,9) 16125 (1,9) 16069 (1,9) 16037 (1,9)
2000 1.5 10930 (1,8) 10934 (1,8) 10834 (1,8) 10817 (1,8)
2 8308 (1,7) 8308 (1,7) 8204 (1,7) 8192 (1,7)
3 5777 (1,6) 5777 (1,6) 5659 (1,6) 5652 (1,6)
4 4226 (1,5) 4226 (1,5) 4121 (1,5) 4114 (1,5)
6 2806 (1,4) 2806 (1,4) 2711 (1,4) 2706 (1,4)
10 1688 (1,3) 1688 (1,3) 1614 (1,3) 1611 (1,3)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.

# A
dh

c

I

=05, —5=5and ] =0
dh
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Table 58. Nondimensional buckling pressure % for isotropic ring-stiffened” cylinders with

simply supported edges and subjected to uniform hydrostatic pressure (v = 0.3 and e /h=-5)

Internal rings, e/h = -5
R LR Refs. 51 and 52 Present Study
Donnell Donnell Sanders* _Sanders

Live pressure Live pressure

0.5 644.9 (2,3)° 644.9 (2,3) 646.9 (2,3) 646.3 (2,3)

50 1 644.9 (4,3) 644.9 (4,3) 646.9 (4,3) 646.3 (4,3)
1.5 644.9 (6,3) 644.9 (6,3) 646.9 (6,3) 646.3 (6,3)

0.65 979.1 (3.,3) 979.1 (3,3) 983.4 (3,3) 982.7 (3,3)

B 0.8 982.3 (4,3) 982.3 (4,3) 985.8 (4,3) 985.3 (4,3)

0.5 1303 (3,4) 1303 (3,4) 1306 (3,4) 1305 (3,4)

1 1288 (5,4) 1288 (5,4) 1292 (5,4) 1291 (5,4)

100 1.5 1280 (8,4) 1280 (8,4) 1283 (8,4) 1282 (8,4)
2 1281 (11,4) 1281 (11,4) 1284 (11,4) 1283 (11,4)

150 0.8 1926 (5,5) 1926 (5,5) 1929 (5,5) 1928 (5,5)

0.5 3228 (4,6) 3228 (4,6) 3232 (4,6) 3231 (4,6)

1 3224 (9,6) 3224 (9,6) 3227 (9,6) 3226 (9,6)

250 1.5 3211 (13,6) 3211 (13,6) 3214 (13,6) 3214 (13,6)

2 3044 (1,4) 3044 (1,4) 2998 (1,4) 2974 (1,4)

3 2252 (1,3) 2252 (1,3) 2259 (1,3) 2227 (1,3)

475 0.65 6108 (8,9) 6108 (8,9) 6110 (8,9) 6110 (8,9)

0.5 6398 (6,9) 6398 (6,9) 6401 (6,9) 6400 (6,9)

1 6398 (12,9) 6398 (12,9) 6401 (12,9) 6400 (12,9)

500 1.5 5897 (1,5) 5897 (1,5) 5901 (1,5) 5867 (1,5)

2 4660 (1,5) 4660 (1,5) 4590 (1,5) 4572 (1,5)

3 3230 (1,4) 3230 (1,4) 3160 (1,4) 3144 (1,4)

550 0.8 7054 (10,9) 7054 (10,9) 7058 (10,9) 7057 (10,9)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

c

# A5 I 5 and 1 =0
dh °

dh
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Table 58.

Concluded
Internal rings, e/h = -5
R/ LR Refs. 51 and 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.6 9603 (9,11)° 9603 (9,11) 9606 (9,11) 9605 (9,11)
0.7 9607 (10,11) 9607 (10,11) 9610 (10,11) 9609 (10,11)
750 0.8 9603 (12,11) 9603 (12,11) 9606 (12,11) 9605 (12,11)
0.9 9600 (13,11) 9600 (13,11) 9603 (13,11) 9603 (13,11)
1 9603 (15,11) 9603 (15,11) 9606 (15,11) 9605 (15,11)
0.5 12860 (8,13) 12861 (8,13) 12864 (8,13) 12863 (8,13)
0.6 12810 (10,13) 12809 (10,13) 12812 (10,13) 12811 (10,13)
0.7 12810 (12,13) 12807 (12,13) 12809 (12,13) 12809 (12,13)
0.8 12820 (14,13) 12823 (14,13) 12826 (14,13) 12825 (14,13)
1000 0.9 12810 (15,13) 12809 (15,13) 12812 (15,13) 12811 (15,13)
1 12180 (1,8) 12176 (1,8) 12128 (1,8) 12106 (1,8)
1.5 8956 (1,7) 8956 (1,7) 8879 (1,7) 8863 (1,7)
2 6881 (1,6) 6881 (1,6) 6800 (1,6) 6786 (1,6)
3 4779 (1,5) 4779 (1,5) 4685 (1,5) 4675 (1,5)
0.4 25660 (10,18) 25655 (10,18) 25658 (10,18) 25658 (10,18)
0.5 25590 (12,18) 25592 (12,18) 25595 (12,18) 25594 (12,18)
0.6 25620 (14,18) 25618 (14,18) 25621 (14,18) 25620 (14,18)
0.7 24380 (1,11) 24380 (1,11) 24346 (1,11) 24320 (1,11)
1 18520 (1,9) 18512 (1,9) 18487 (1,9) 18461 (1,9)
5000 1.5 12920 (1,8) 12921 (1,8) 12849 (1,8) 12833 (1,8)
2 9957 (1,7) 9957 (1,7) 9876 (1,7) 9863 (1,7)
3 6912 (1,6) 6912 (1,6) 6810 (1,6) 6803 (1,6)
4 5179 (1,5) 5179 (1,5) 5086 (1,5) 5079 (1,5)
6 3500 (1,4) 3500 (1,4) 3413 (1,4) 3407 (1,4)
10 2150 (1,3) 2150 (1,3) 2080 (1,3) 2076 (1,3)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.

# A
dh

c

1

—=0.5,—5=5, and J,=0
dh
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Table 59. Nondimensional buckling pressure ? R

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

ery 3

for isotropic stringer-stiffened” cylinders with
simply supported edges and subjected to uniform hydrostatic pressure (v =0.3 and e /h==5)

External stringers, ¢ /h = +5

Rh LR Refs. 51 and 52 Present Study
Donnell Donnell Sanders* _Sanders
Live pressure Live pressure
50 0.5 1113 1113 (1,23)° 1112 (1,23) 1112 (1,23)
1 301.1 301.2 (1,12) 301.2 (1,12) 301.2 (1,12)
100 1.5 147.8 147.8 (1,9) 147.6 (1,9) 147.5 (1,9)
2 93.36 93.39(1,7) 93.28 (1,7) 93.17 (1,7)
2000 3 176.2 176.2 (1,11) 175.6 (1,11) 175.6 (1,11)
Internal stringers, e/h = -5
R/h LR Refs. 51 and 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
50 0.5 1086 1086 (1,22) 1087 (1,22) 1085 (1,22)
1 254.4 254.5(1,10) 255.1 (1,11) 254.8 (1,10)
100 1.5 111.2 111.2 (1,7) 111.5(1,7) 111.3 (1,7)
2 66.42 66.40 (1,6) 66.24 (1,6) 66.06 (1,6)
2000 3 158.9 158.9 (1,11) 158.2 (1,11) 158.2 (1,11)

* Nonlinear rotations about the normal are neglected.

c

1

s

*>=5,and J, =0
h

208




ory 3

Table 60. Effect of section properties on nondimensional buckling pressure % for isotropic

ring-stiffened cylinders with L/R = 0.5, simply supported edges, and subjected to uniform
hydrostatic pressure (v =0.3 and e, /h=+5)

External rings, e/h = +5
R/h AJ(d h) 1/(d. ') Ref 5 Present Study
Donnell Donnell Sanders* Sanders

Live pressure Live pressure

0.1 1 1382 (3,2)"° 1382 (3,2) 1385 (3,2) 1385 (3,2)

0.3 3 1510 (3,0) 1510 (3,0) 1513 (3,0) 1513 (3,0)

109 0.5 5 1633 (3,0) 1633 (3,0) 1636 (3,0) 1636 (3,0)

0.8 8 1817 (3,0) 1817 (3,0) 1821 (3,0) 1821 (3,0)

0.05 0.5 4903 (1,14) 4903 (1,14) 4895 (1,14) 4889 (1,14)

0.1 1 7642 (1,13) 7624 (1,13) 7606 (1,13) 7595 (1,13)

1000 0.3 3 14950 (1,11) 14947 (1,11) 14908 (1,11) 14866 (1,11)
0.5 5 16190 (10,0) 16194 (10,0) 16197 (10,0) 16197 (10,0)

0.8 8 17780 (11,0) 17783 (11,0) 17786 (11,0) 17786 (11,0)

0.05 0.5 6176 (1,16) 6176 (1,16) 6166 (1,16) 6161 (1,16)

0.1 1 9640 (1,14) 9640 (1,14) 9627 (1,14) 9616 (1,14)

1300 0.5 5 24340 (12,0) 24336 (12,0) 24339 (12,0) 24339 (12,0)
0.8 8 26600 (13,0) 26601 (13,0) 26604 (13,0) 26604 (13,0)

0.1 1 11340 (1,16) 11340 (1,16) 11318 (1,16) 11310 (1,16)

0.3 3 22390 (1,14) 22395 (1,14) 22337 (1,14) 22309 (1,14)

2000 0.5 5 29920 (1,13) 29918 (1,13) 29836 (1,13) 29786 (1,13)
0.8 8 35470 (12,17) 35468 (15,0) 35471 (15,0) 35471 (15,0)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
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Table 61. Effect of section properties on nondimensional buckling pressure

pR

cr.

3

for isotropic

ring-stiffened cylinders with L/R = 0.5, simply supported edges, and subjected to uniform
hydrostatic pressure (v=0.3 and e /h=-5)

Internal rings, e/h = -5
R/h AJ(d h) 1/(d. ) Ref. 52 Present Study
Donnell Donnell Sanders* Sanders

Live pressure Live pressure

0.1 1 1200 (2,5)° 1200 (2,5) 1205 (2,5) 1203 (2,5)

0.3 3 1273 (3,4) 1273 (3,4) 1276 (3,4) 1276 (3,4)

100 0.5 5 1303 (3,4) 1303 (3,4) 1306 (3,4) 1305 (3,4)

0.8 8 1348 (3,4) 1348 (3,4) 1350 (3,4) 1350 (3,4)

0.05 0.5 5033 (1,14) 5033 (1,14) 5027 (1,14) 5023 (1,14)

0.1 1 7805 (1,13) 7805 (1,13) 7794 (1,13) 7787 (1,13)

1000 0.3 3 12420 (8,13) 12425 (8,13) 12429 (8,13) 12428 (8,13)
0.5 5 12860 (8,13) 12861 (8,13) 12864 (8,13) 12863 (8,13)

0.8 8 13340 (9,12) 13339 (9,12) 13342 (9,12) 13341 (9,12)

0.05 0.5 6421 (1,16) 6421 (1,16) 6412 (1,16) 6409 (1,16)

0.1 1 10010 (1,14) 10013 (1,14) 10005 (1,14) 9997 (1,14)
1300 0.5 5 19250 (10,16) 19248 (10,16) 19250 (10,16) 19250 (10,16)
0.8 8 19990 (11,15) 19993 (11,15) 19996 (11,15) 19996 (11,15)

0.1 1 11950 (1,15) 11953 (1,15) 11946 (1,15) 11938 (1,15)

0.3 3 23490 (1,13) 23492 (1,13) 23485 (1,13) 23463 (1,13)
2000 0.5 5 25590 (12,18) 25592 (12,18) 25595 (12,18) 25594 (12,18)
0.8 8 26650 (12,17) 26650 (12,17) 26653 (12,17) 26652 (12,17)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
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Table 62. Effect of section properties on nondimensional buckling pressure

ory 3

pR

for isotropic

ring-stiffened cylinders with L/R = 1, simply supported edges, and subjected to uniform

hydrostatic pressure (v =0.3 and e /h=+15)

External rings, e/h = +5
R/h AJ(d h) 1/(d. ) Ref. 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure

0.1 1 689.0 (1,4)° 689.0 (1,4) 675.6 (1,4) 658.5(1,4)
50 0.5 5 825.4 (5,0) 825.4 (5,0) 827.9 (5,0) 827.9 (5,0)
0.8 8 891.8 (5,0) 891.8 (5,0) 894.5 (5,0) 894.5 (5,0)
0.1 1 1095 (1,5) 1095 (1,5) 1080 (1,5) 1065 (1,5)
100 0.5 5 1633 (6,0) 1633 (6,0) 1636 (6,0) 1636 (6,0)
0.8 8 1780 (7,0) 1780 (7,0) 1783 (7,0) 1783 (7,0)
0.05 0.5 1101 (1,7) 1101 (1,7) 1089 (1,7) 1084 (1,7)
0.1 1 1669 (1,6) 1669 (1,6) 1655 (1,6) 1642 (1,6)
200 0.5 5 3238 (9,0) 3238 (9,0) 3241 (9,0) 3241 (9,0)
0.8 8 3566 (9,0) 3566 (9,0) 3569 (9,0) 3569 (9,0)
0.05 0.5 1379 (1,7) 1379 (1,7) 1374 (1,7) 1369 (1,7)
0.1 1 2131 (1,7) 2131 (1,7) 2110 (1,7) 2100 (1,7)
300 0.5 5 4857 (11,0) 4857 (11,0) 4861 (11,0) 4861 (11,0)
0.8 8 5332 (12,0) 5332 (12,0) 5335 (12,0) 5335 (12,0)
0.05 0.5 1597 (1,8) 1597 (1,8) 1588 (1,8) 1583 (1,8)
0.1 1 2517 (1,7) 2517 (1,7) 2507 (1,7) 2496 (1,7)
400 0.5 5 6478 (13,0) 6478 (13,0) 6482 (13,0) 6454 (1,6)
0.8 8 7107 (13,0) 7107 (13,0) 7110 (13,0) 7110 (13,0)
0.1 1 2835 (1,8) 2835 (1,8) 2814 (1,8) 2806 (1,8)
0.3 3 5599 (1,7) 5599 (1,7) 5542 (1,7) 5513 (1,7)
200 0.5 5 7680 (1,6) 7680 (1,6) 7639 (1,7) 7590 (1,6)
0.8 8 9654 (1,6) 8867 (15,0) 8870 (15,0) 8870 (15,0)

° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively.

* Nonlinear rotations about the normal are neglected.
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Table 63. Effect of section properties on nondimensional buckling pressure P

ory 3

D

for isotropic

ring-stiffened cylinders with L/R = 1, simply supported edges, and subjected to external

hydrostatic pressure (v=0.3 and e /h=-5)

Internal rings, e/h = -5
R/h AJ(d h) 1/(d. h’) Ref. 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure

0.1 1 589.6 (3,4)° 589.6 (3,4) 591.9 (3,4) 590.4 (3,4)
50 0.5 5 644.9 (4,3) 644.9 (4,3) 646.9 (4,3) 646.3 (4,3)
0.8 8 675.1 (4,3) 675.1 (4,3) 676.5 (4,3) 675.9 (4,3)
0.1 1 1063 (1,5) 1063 (1,5) 1055 (1,5) 1047 (1,5)
100 0.5 5 1288 (5,4) 1288 (5,4) 1292 (5,4) 1291 (5,4)
0.8 8 1348 (6,4) 1348 (6,4) 1350 (6,4) 1350 (6,4)
0.05 0.5 1127 (1,7) 1127 (1,7) 1118 (1,7) 1114 (1,7)
0.1 1 1685 (1,6) 1685 (1,6) 1676 (1,6) 1668 (1,6)
200 0.5 5 2580 (8,6) 2580 (8,6) 2582 (8,6) 2581 (8,6)
0.8 8 2691 (8,5) 2691 (8,5) 2695 (8,5) 2694 (8,5)
0.05 0.5 1418 (1,7) 1418 (1,7) 1416 (1,7) 1411 (1,7)
0.1 1 2206 (1,7) 2206 (1,7) 2192 (1,7) 2185 (1,7)
300 0.5 5 3844 (9,7) 3844 (9,7) 3847 (9,7) 3846 (9,7)
0.8 8 4017 (10,7) 4017 (10,7) 4019 (10,7) 4019 (10,7)
0.05 0.5 1662 (1,8) 1662 (1,8) 1655 (1,8) 1651 (1,8)
0.1 1 2617 (1,7) 2617 (1,7) 2612 (1,7) 2603 (1,7)
400 0.5 5 5133 (11,8) 5123 (11,8) 5126 (11,8) 5125 (11,8)
0.8 8 5331 (11,8) 5331 (11,8) 5333 (11,8) 5333 (11,8)
0.1 1 2991 (1,8) 2991 (1,8) 2976 (1,8) 2969 (1,8)
0.3 3 5914 (1,7) 5914 (1,7) 5886 (1,7) 5869 (1,7)
200 0.5 5 6398 (12,9) 6398 (12,9) 6401 (12,9) 6400 (12,9)
0.8 8 6674 (12,9) 6674 (12,9) 6676 (12,9) 6675 (12,9)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected.
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Table 64. Effect of section properties on nondimensional buckling pressure % for isotropic

ring-stiffened cylinders with L/R = 2, simply supported edges, and subjected to uniform
hydrostatic pressure (v =0.3 and e /h=+5)

External rings, e/h = +5

3 Present Study
R/h A/(d h) 1/(d h’) Ref. 52
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.05 0.5 1380 (1,7)° 1380 (1,7) 1372 (1,7) 1370 (1,7)
0.1 1 2158 (1,7) 2158 (1,7) 2134 (1,7) 2130 (1,7)
1000 0.3 3 4274 (1,6) 4275 (1,6) 4218 (1,6) 4205 (1,6)
0.5 5 5887 (1,6) 5887 (1,6) 5776 (1,6) 5760 (1,6)
0.8 8 7682 (1,5) 7682 (1,5) 7636 (1,5) 7594 (1,5)

Internal rings, e/h = -5

3 Present Study
R/h A/(d h) 1/(d h’) Ref 52
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.05 0.5 1496 (1,7) 1496 (1,7) 1489 (1,7) 1487 (1,7)
0.1 1 2380 (1,7) 2380 (1,7) 2358 (1,7) 2355 (1,7)
1000 0.3 3 4959 (1,6) 4959 (1,6) 4915 (1,6) 4904 (1,6)
0.5 5 6881 (1,6) 6881 (1,6) 6800 (1,6) 6786 (1,6)
0.8 8 9227 (1,5) 9227 (1,5) 9168 (1,6) 9150 (1,6)

° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
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Table 65. Effect of ring eccentricity on nondimensional buckling pressure % for isotropic

ring-stiffened” cylinders with L/R = 0.5, simply supported edges, and subjected to uniform

hydrostatic pressure (v = 0.3).

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

Present Study
R/ e/n ggﬁnﬁ Donnell Sanders* Sanders
Live pressure Live pressure
0 1519 (3,4)° 1519 (3.4) 1521 (3,4) 1520 (3,4)
1 1594 (3,3) 1594 (3,3) 1597 (3,3) 1596 (3,3)
-1 1443 (3,5) 1443 (3,5) 1445 (3,5) 1444 (3,5)
2 1632 (3,0) 1632 (3,1) 1635 (3,1) 1635 (3,1)
100 -2 1384 (3,5) 1384 (3,5) 1386 (3,5) 1384 (3,5)
5 1633 (3,0) 1633 (3,0) 1636 (3,0) 1636 (3,0)
-5 1303 (3,4) 1303 (3,4) 1306 (3,4) 1305 (3,4)
8 1633 (3,0) 1633 (3,0) 1636 (3,0) 1636 (3,0)
-8 1305 (3,3) 1305 (3,3) 1309 (3,3) 1308 (3,3)
0 13170 (1,13) | 13165 (1,13) 13154 (1,13) 13138 (1,13)
0.5 13250 (1,13) | 13253 (1,13) 13240 (1,13) 13223 (1,13)
-0.5 13350 (1,13) | 13353 (1,13) 13342 (1,13) 13327 (1,13)
1 13620 (1,13) | 13617 (1,13) 13600 (1,13) 13582 (1,13)
-1 13820 (1,13) | 13816 (1,13) 13805 (1,13) 13790 (1,13)
1500 3 17830 (1,13) | 17828 (1,13) 17779 (1,13) 17751 (1,13)
-3 18340 (1,12) | 18343 (1,12) 18342 (1,12) 18320 (1,12)
5 24340 (12,0) | 24336 (12,0) 24339 (12,0) 24339 (12,0)
-5 19250 (10,16) | 19248 (10,16) | 19250(10,16) | 19250 (10,16)
8 24340 (12,0) | 24336 (12,0) 24339 (12,0) 24339 (12,0)
-8 19140 (11,13) | 19139 (11,13) | 19142 (11,13) | 19141 (11,13)

* Nonlinear rotations about the normal are neglected.

#

Al’

d

r

=

c

Ir
dh

=0.5,

3

=35, and J, =0

214




Table 66. Effect of ring eccentricity on nondimensional buckling pressure

ory 3

P DR for isotropic

ring-stiffened” cylinders with L/R = 1, simply supported edges, and subjected to uniform
hydrostatic pressure (v = 0.3).

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

Present Study
R/ e/n ggﬁnﬁ Donnell Sanders* Sanders
Live pressure Live pressure
1 806.8 (4,2)° 806.8 (4,2) 809.7 (4,3) 807.7 (4,3)
-1 716.0 (4,3) 716.0 (4,3) 718.9 (4,3) 717.6 (4,3)
50 5 825.4 (5,0) 825.4 (5,0) 827.9 (5,0) 827.9 (5,0)
-5 644.9 (4,3) 644.9 (4,3) 646.9 (4,3) 646.3 (4,3)
8 825.4 (5,0) 825.4 (5,0) 827.9 (5,0) 827.9 (5,0)
-8 654.3 (4,2) 654.3 (4,2) 658.4 (4,2) 658.0 (4,2)
1 1556 (1,4) 1556 (1,4) 1528 (1,5) 1508 (1,5)
-1 1434 (5,5) 1434 (5,5) 1437 (5,5) 1434 (5,5)
100 5 1633 (6,0) 1633 (6,0) 1636 (6,0) 1636 (6,0)
-5 1288 (5.,4) 1288 (5.,4) 1292 (5,4) 1291 (5.4)
8 1633 (6,0) 1633 (6,0) 1636 (6,0) 1636 (6,0)
-8 1305 (6,3) 1305 (6,3) 1309 (6,3) 1308 (6,3)
0 4347 (1,8) 4347 (1,8) 4319 (1,8) 4308 (1,8)
0.5 4367 (1,8) 4367 (1,8) 4337 (1,8) 4325 (1,8)
-0.5 4436 (1,8) 4436 (1,8) 4409 (1,8) 4398 (1,8)
1 4496 (1,8) 4496 (1,8) 4462 (1,8) 4449 (1,8)
-1 4633 (1,8) 4633 (1,8) 4605 (1,8) 4595 (1,8)
600 5 8335 (1,7) 8335 (1,7) 8242 (1,7) 8197 (1,7)
-5 7681 (13,10) 7681 (13,10) 7684 (13,10) 7683 (13,10)
6.5 9721 (16,0) 9721 (16,0) 9724 (16,0) 9724 (16,0)
-6.5 7643 (13.9) 7643 (13.9) 7646 (13.9) 7646 (13.9)
8 9721 (16,0) 9721 (16,0) 9724 (16,0) 9724 (16,0)
-8 7658 (13,8) 7658 (13,8) 7662 (13,8) 7661 (13,8)
8 26340 (1,9) 26339 (1,9) 26129 (1,9) 26071 (1,9)
2000 -8 25465 (24,15) | 25465 (24,15) 25468 (24,15) 25468 (24,15)

* Nonlinear rotations about the normal are neglected.
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Table 67. Effect of ring eccentricity on nondimensional buckling pressure

ory 3

% for isotropic

ring-stiffened” cylinders with L/R = 2, simply supported edges, and subjected to uniform
hydrostatic pressure (v = 0.3).

Present Study
R/ e/n ggrf;niﬁ Donnell Sanders* Sanders
Live pressure Live pressure
0 3166 (1,6) 3166 (1,6) 3131 (1,7) 3127 (1,7)
0.5 3149 (1,6) 3149 (1,6) 3133 (1,7) 3127 (1,6)
-0.5 3248 (1,6) 3248 (1,6) 3217 (1,7) 3212 (1,7)
1 3195 (1,6) 3195 (1,6) 3178 (1,6) 3170 (1,6)
1000 -1 3394 (1,6) 3394 (1,6) 3379 (1,6) 3371 (1,6)
3 4026 (1,6) 4026 (1,6) 3978 (1,6) 3967 (1,6)
-3 4622 (1,6) 4622 (1,6) 4585 (1,6) 4575 (1,6)
5 5887 (1,6) 5887 (1,6) 5776 (1,6) 5760 (1,6)
-5 6881 (1,6) 6881 (1,6) 6800 (1,6) 6786 (1,6)
6.5 7681 (1,5) 7681 (1,5) 7636 (1,5) 7594 (1,5)
-6.5 9183 (1,5) 9183 (1,5) 9124 (1,6) 9106 (1,6)
8 9416 (11,5) 9416 (1,5) 9288 (1,5) 9236 (1,5)
-8 11269 (1,5) 11263 (1,5) 11198 (1,5) 11153 (1,5)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.

#

Ar _
dh

=0.5,

c

1

r
3

=5, and J, =0

216



Table 68. Effect of ring eccentricity and section properties on nondimensional buckling pressure

oy 3

p R

to uniform hydrostatic pressure (v = 0.3)

for isotropic ring-stiffened” cylinders with L/R = 1, simply supported edges, and subjected

Present Study
Rh e/h | A/ ) | 1/, ) ggf{nﬁ Donnell Sanders* Sanders
Live pressure Live pressure
1 0.1 1 1641 (1,10) 1641 (1,10) 1634 (1,10) 1632 (1,10)
3 0.3 3 4603 (1,8) 4603 (1,8) 4576 (1,8) 4562 (1,8)
700 8 0.8 8 12420 (18,0) 12419 (18,0) 12423 (18,0) 12423 (18,0)
-1 0.1 1 1685 (1,10) 1685 (1,10) 1679 (1,10) 1677 (1,10)
-3 0.3 3 4935 (1,8) 4935 (1,8) 4919 (1,8) 4908 (1,8)
-8 0.8 8 9109 (15,9) 9109 (15,9) 9111 (15,9) 9111 (15,9)
1 0.1 1 1765 (1,10) 1765 (1,10) 1759 (1,10) 1757 (1,10)
3 0.3 3 5005 (1,8) 5005 (1,8) 4986 (1,8) 4971 (1,8)
800 8 0.8 8 14190 (19,0) 14187 (19,0) 14191 (19,0) 14191 (19,0)
-1 0.1 1 1815 (1,10) 1815 (1,10) 1809 (1,10) 1807 (1,10)
-3 0.3 3 5385 (1,8) 5385 (1,8) 5375 (1,8) 5363 (1,8)
-8 0.8 8 10420 (16,9) 10422 (16,9) 10425 (16,9) 10425 (16,9)
1 0.1 1 1896 (1,11) 1896 (1,11) 1888 (1,11) 1886 (1,11)
3 0.3 3 5338 (1,9) 5338 (1,9) 5301 (1,9) 5290 (1,9)
900 8 0.8 8 15960 (20,0) 15962 (20,0) 15965 (20,0) 15965 (20,0)
-1 0.1 1 1949 (1,11) 1949 (1,11) 1941 (1,11) 1939 (1,11)
-3 0.3 3 5783 (1,9) 5783 (1,9) 5757 (1,9) 5749 (1,9)
-8 0.8 8 11700 (17,10) 11699 (17,10) 11701 (17,10) 11701 (17,10)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
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Table 69. Effect of length-to-radius ratio on nondimensional buckling pressure

isotropic ring-stiffened” cylinders with L/R = 1, simply supported edges, and subjected to uniform

hydrostatic pressure (v = 0.3 and e, /h =+ 8)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

crpy 3

pR

for

External rings, e/h = +8
R/h L/R Rt 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
1.5 8103 (21,0)° 8103 (21,0) 8106 (21,0) 8106 (21,0)
1.6 8095 (23,0) 8095 (23,0) 7889 (1,5) 7817 (1,5)
500 1.7 7810 (1,5) 7810 (1,5) 7581 (1,5) 7518 (1,5)
1.8 7600 (1,5) 7599 (1,5) 7352 (1,5) 7296 (1,5)
22 5961 (1,4) 5961 (1,4) 5835 (1,4) 5769 (1,4)
24 5482 (1,4) 5482 (1,4) 5308 (1,4) 5255 (1,4)
1000 3 6487 (1,4) 6487 (1,4) 6401 (1,4) 6360 (1,4)
Internal rings, e /h = -8
R/h L/R Rt 52 Present Study
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
1.5 6388 (18,8) 6388 (18,8) 6390 (18,8) 6390 (18,8)
1.6 6391 (20,8) 6391 (20,8) 6393 (20,8) 6393 (20,8)
500 1.7 6387 (21,8) 6387 (21,8) 6389 (21,8) 6389 (21,8)
1.8 6385 (22,8) 6385 (22,8) 6388 (22,8) 6387 (22,8)
22 6385 (27,8) 6385 (27,8) 6388 (27,8) 6387 (27,8)
24 6386 (29,8) 6386 (29,8) 6325 (1,4) 6283 (1,4)
1000 3 8076 (1,4) 8076 (1,4) 8034 (1,4) 7993 (1,4)

* Nonlinear rotations about the normal are neglected.
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crpy 3

Table 70. Effect of length-to-radius ratio on nondimensional buckling pressure %

isotropic ring-stiffened” cylinders with L/R = 1, simply supported edges, and subjected to uniform

hydrostatic pressure (v =0.3 and e, /h ==+ 5).

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

for

External rings, e/h = +5
Present Study
R/ LR Ref. 52
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.6 32980 (1,11)° 32983 (1,11) 32893 (1,11) 32817 (1,11)
0.7 28900 (1,11) 28897 (1,11) 28751 (1,11) 28696 (1,11)
2000
0.9 22980 (1,9) 22984 (1,9) 22906 (1,9) 22851 (1,9)
2 10990 (1,6) 10991 (1,6) 10937 (1,6) 10907 (1,6)
Internal rings, e/h = -5
Present Study
R/ LR Ref. 52
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.6 26640 (15,17) 26639 (15,17) 26642 (15,17) 26641 (15,17)
0.7 26630 (17,17) 26634 (17,17) 26637 (17,17) 26636 (17,17)
2000
0.9 26080 (1,9) 26077 (1,9) 26053 (1,9) 26014 (1,9)
2 13330 (1,7) 13334 (1,7) 13203 (1,7) 13188 (1,7)

* Nonlinear rotations about the normal are neglected.
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Table 71. Effect of length-to-radius ratio on nondimensional buckling pressure P R

isotropic ring-stiffened” cylinders with L/R = 1, simply supported edges, and subjected to uniform

hydrostatic pressure (v=0.3 and e /h=+1).

oy 3

for

External rings, e/h = +1
Present Study
R/h LR Ref. 52
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.5 6915 (1,10)° 6915 (1,10) 6890 (1,10) 6869 (1,10)
500 0.6 --- 6025 (1,9) 6006 (1,9) 5985 (1,9)
0.7 5437 (1,8) 5437 (1,8) 5429 (1,8) 5407 (1,8)
2000 1 8697 (1,11) 8697 (1,11) 8660 (1,11) 8652 (1,11)
Internal rings, e/h = -1
Present Study
R/h LR Ref. 52
Donnell Donnell Sanders* Sanders
Live pressure Live pressure
0.5 6742 (1,9) 6742 (1,9) 6746 (1,9) 6725 (1,9)
500 0.6 5980 (1,9) 5980 (1,9) 5967 (1,9) 5951 (1,9)
0.7 5420 (1,8) 5420 (1,8) 5417 (1,8) 5399 (1,8)
2000 1 9129 (1,11) 9129 (1,11) 9096 (1,11) 9089 (1,11)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected.
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Table 72. Buckling pressure (psi) for isotropic’ cylinders with simply supported edges, subjected
to uniform hydrostatic pressure, and stiffened by rings and stringers

StiffenerT Ring Stringer Ref. 68, Present Study
rti tricit tricit Donnell
properties eccentricity, | eccentricity, Donnell Sanders® Sandors
e /h e /h Li .
s s ive pressure | Live pressure
no rings no stringers 102 101.8 (1,4) 98.2 (1,4) 97.9 (1,4)
A _
ah 0.1471
1.653 no stringers 326 326.1(1,3) | 312.8(1,3) 309.9 (1,3)
A, -1.653 no stringers 370 369.8 (1,3) | 358.7(1,3) 355.7(1,3)
ih 0.1471
no rings 1.653 106 106.5(1,4) | 103.2(1,4) | 102.9(1,4)
LI; =0.7819 no rings -1.653 103 103.0 (1,4) 99.4 (1,4) 99.1 (1,4)
e 1.653 1.653 346 3458 (1,3) | 334.9(1,3) 331.9(1,3)
PRI -1.653 -1.653 377 377.1(1,3) | 367.0(1,3) | 364.1(1,3)
J=0
1.653 -1.653 --- 335.0(1,3) | 322.7(1,3) 319.8(1,3)
J=0
! -1.653 1.653 --- 387.1(1,3) | 378.4(1,3) 3753 (1,3)
:ﬂ 008 no rings 2.817 115 115.0 (1,4) | 112.3(1,4) | 112.0(1,4)
121 _ 6330
s no rings -2.817 103 103.1 (1,4) 99.5 (1,4) 99.3 (1,4)
I=0
J=0

"E=30x10° psi, v=0.30,h=0.1 in., R/h =9.78761, L/R =4.5391, and d/R = d/R = 0.3360
* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected
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Table 73. Buckling pressure (psi) for isotropic’ cylinders with simply supported edges, subjected
to uniform hydrostatic pressure, and stiffened by rings and stringers

StiffenerT Ring Stringer Ref. 68, Present Study
rti tricit tricit Donnell
properties eccentricity, | eccentricity, Donnell Sanders® Sandors
e /h e /h . .
s s Live pressure | Live pressure
no rings | no stringers 99 99.2 (1,4) 95.7 (1,4) 95.4 (1,4)
A _
ah 0.2948
2.817 no stringers 1167 1167.4 (1,3) | 1047.8 (1,3) | 1037.1(1,3)
AT —
an 02948 -2.817 | no stringers 1299 1297.9 (1,3) | 1206.3 (1,3) | 1197.4(1,3)
1216339
» =6 no rings 2.817 112 1122 (1,4) | 109.6 (1,4) | 109.3 (1,4)
no rings -2.817 101 100.5 (1,4) 97.1 (1,4) 96.8 (1,4)
121 _ 6330
dh 2.817 2.817 1221 1221.0 (1,3) | 1107.1(1,3) | 1096.3 (1,3)
-2.817 -2.817 1306 1305.6 (1,3) | 1215.2(1,3) | 1206.5(1,3)
J=0
J=0 2.817 -2.817 --- 1182.9(1,3) | 1064.5(1,3) | 1053.9(1,3)
-2.817 2.817 --- 1335.5(1,3) | 1249.4 (1,3) | 1240.6 (1,3)

"E=30x10° psi, v=0.30,h=0.1 in., R/h =9.79912, L/R = 4.5384, and d/R = d/R = 0.3350
° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
* Nonlinear rotations about the normal are neglected
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Table 74. Buckling pressure (psi) for isotropic’ cylinders with simply supported edges, subjected

to hydrostatic pressure, and stiffened by internal or external blade” stiffeners

Length, in. Ring . Stringe.r Ref. 69 Present Study
ecczntirrlflty, ecczntirrlflty, Donnell Donnell Sanders* _Sanders
v ¥ Live pressure | Live pressure
0.165 0.165 291 290 (1,5)° 286 (1,5) 284 (1,5)
-0.165 0.165 251 250 (1,5) 250 (1,5) 249 (1,5)
0.165 -0.165 221 220 (1,5) 214 (1,5) 211 (1,5)
-0.165 -0.165 221 220 (1,5) 219 (1,5) 218 (1,5)
12.0 0.165 no stringers 207 156 (16,0) | 156 (16,0) 156 (16,0)
-0.165 no stringers 215 141 (13,6) 141 (13,6) 141 (13,6)
no rings 0.165 11.1 11.0 (1,14) | 11.0(1,14) 11.0 (1,14)
no rings -0.165 8.0 8.0 (1,10) 8.0 (1,10) 7.9 (1,10)
no rings no stringers 3.7 3.7 (1,10) 3.7 (1,10) 3.7 (1,10)
0.165 0.165 147 145 (1,4) 139 (1,4) 138 (1,4)
-0.165 0.165 151 150 (1,4) 147 (1,4) 146 (1,4)
0.165 -0.165 130 129 (1,4) 122 (1,4) 121 (1,4)
-0.165 -0.165 141 140 (1,4) 136 (1,4) 136 (1,4)
24.0 0.165 no stringers 121 120 (1,4) 113 (1,4) 112 (1,4)
-0.165 no stringers 139 138 (1,4) 134 (1,4) 133 (1,4)
no rings 0.165 3.7 3.6 (1,9) 3.6 (1,9) 3.6 (1,9)
no rings -0.165 2.7 2.6 (1,7) 2.6 (1,7) 2.6 (1,7)
no rings no stringers 1.9 1.8 (1,7) 1.8 (1,7) 1.8 (1,7)

TE=105x10° psi, v=0.30,h=0.028 in.,, R/h =955, and d,=d, = 1.0 in.

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected
" Blade thickness = 0.096 in., blade height = 0.302 in.
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Table 74. Concluded

Length, in. Ring ' Stringe}r Ref. 69 Present Study
ecczntirlllc':lty, ecczntirlllc':lty, Donnell Donnell ‘Sanders* ~Sanders
¥ ¥ Live pressure | Live pressure
0.165 0.165 96 96 (1,3) 93 (1,3) 92 (1,3)
-0.165 0.165 104 104 (1,3) 102 (1,3) 101 (1,3)
0.165 -0.165 86 86 (1,3) 81 (1,3) 80 (1,3)
-0.165 -0.165 96 96 (1,3) 93 (1,3) 93 (1,3)
36.0 0.165 no stringers 75 74 (1,3) 69 (1,3) 68 (1,3)
-0.165 no stringers 90 90 (1,3) 87 (1,3) 86 (1,3)
no rings 0.165 2.1 2.1(1,7) 2.0 (1,7) 2.0 (1,7)
no rings -0.165 1.6 1.6 (1,6) 1.5(1,6) 1.5 (1,6)
no rings no stringers 1.2 1.2 (1,6) 1.2 (1,6) 1.2 (1,6)
0.165 0.165 75 75 (1,3) 69 (1,3) 68 (1,3)
-0.165 0.165 83 83 (1,3) 79 (1,3) 78 (1,3)
0.165 -0.165 72 71(1,3) 65 (1,3) 64 (1,3)
-0.165 -0.165 81 80 (1,3) 75 (1,3) 75 (1,3)
48.0 0.165 no stringers 67 67 (1,3) 60 (1,3) 59 (1,3)
-0.165 no stringers 78 78 (1,3) 73 (1,3) 72 (1,3)
no rings 0.165 1.4 1.4 (1,6) 1.4 (1,6) 1.4 (1,6)
no rings -0.165 1.2 1.2 (1,6) 1.1 (1,6) 1.1 (1,6)
no rings | no stringers 0.9 0.9 (1,5) 0.9 (1,5) 0.9 (1,5)

"E=10.5x10° psi, v=0.30,h=0.028 in., R/h =955, and d,=d, = 1.0 in.
* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected
* Blade thickness = 0.096 in., blade height = 0.302 in.
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Table 75. Buckling pressure %(1 - Vz) x 10" for isotropic’ cylinders with simply supported
edges, subjected to uniform hydrostatic pressure, and stiffened by external blade-shaped” rings

External rings, e/h =+ 6.2633
L/R Number of Ref. 70 Present Study
rings, N Sanders Donnell Sanders* Sanders
Live pressure | Live pressure
3.0 9 51.7673(3)* 60.1467 (1,3)" | 55.8764 (1,3) | 54.7460 (1,3)
4.5 14 444317 (3) 45.6492 (1,2) | 47.9593 (1,3) | 47.4479 (1,3)
6.0 19 25.8902 (2) 30.4328 (1,2) | 27.9813(1,2) | 27.1199 (1,2)
7.5 24 19.9256 (2) 26.1285(1,2) | 21.5441(1,2) | 21.0904 (1,2)
9.0 29 17.8466 (2) 247113 (1,2) | 19.2910(1,2) | 18.9991 (1,2)
10.5 34 17.0418 (2) 242098 (1,2) | 18.4030(1,2) | 18.1942(1,2)
Internal rings, e/h = - 6.2633
L/R Number of Ref. 70 Present Study
rings Sanders Donnell Sanders* Sanders
Live pressure | Live pressure
3.0 9 65.0081 (3) 65.3831(1,3) | 62.4452(1,3) | 61.5725(1,3)
4.5 14 54.2450 (2) 50.8856 (1,2) | 53.2112(1,3) | 52.8178(1,3)
6.0 19 33.2485(2) 347730 (1,2) | 32.9186(1,2) | 32.0360 (1,2)
7.5 24 26.2896 (2) 29.3944 (1,2) | 25.4086(1,2) | 24.9420(1,2)
9.0 29 23.4553 (2) 27.1795(1,2) | 22.3524(1,2) | 22.0576 (1,2)
10.5 34 22.1130 (2) 26.1162 (1,2) | 20.8996 (1,2) | 20.6930 (1,2)

* Number in parentheses indicate the number of circumferential waves, n
® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
¢ The equations given in Ref. 70 appear to be a variant of Sanders’ equations

* Nonlinear rotations about the normal are neglected

C

I

v A r=1.01152, and J,=0
dh

=~ =0.16384
d,h ’

T

3
T

"E=30x10°psi, v=0.30, R/h = 100, (N +1)d/R = L/R
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Table 76. Critical loading parameter P, for isotropic’ cylinders with simply supported edges,
subjected to uniform axial compression and pressure, and stiffened by internal blade-shaped rings

and stringers

Cylinder Applied Applied Ref. 71 Present Study
configuration axilil /lpad, pressure, Fligge* Donnell Sanders® Sanders

S/ pst Live pressure | Live pressure

700.0 0. 1.300 (15,9)" | 1.307 (15,9) | 1.304 (15,9) | 1.303(15,9)

1 940.0 -2.0 1.003 (15,9) | 1.008 (15,8) | 1.006 (15,9) | 1.005 (15,9)
212.0 0.4 4.167 (14,9) | 4.183(15,9) | 4.178 (15,9) | 4.173 (14,9)
700.0 0. 1.255 (12,10) | 1.266 (12,10) | 1.263 (12,10) | 1.261 (12,10)
2 940.0 -2.0 1.001 (12,10) | 1.012 (12,10) | 1.008 (12,10) | 1.006 (12,10)
212.0 0.4 3.861 (1,5 | 3.912(11,10) | 3.903 (11,10) | 3.870(1,5)

* Variant of Flugge’s™ equations based on the equations of Hedgepeth and Hall®
"E=10.0 x 10° psi, v=10.333, R=60.0 in., L = 165.0 in.

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

* Nonlinear rotations about the normal are neglected

Table 77. Cylinder wall and stiffener properties used in Table 76

Wall and stiffener Cylinder
properties, in. configuration
1 2
Wall thickness, h 0.0221 0.0229
Stringer thickness, t, 0.0298 0.0513
Stringer height, h, 0.347 0.351
Stringer spacing, d, 0.849 0.986
Stringer eccentricity, e, -0.1846 -0.1870
Ring thickness, t, 0.0092 0.0523
Ring height, h, 1.93 0.906
Ring spacing, d, 6.65 8.13
Ring eccentricity, e, -0.9761 - 0.4645
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D
with simply supported edges and subjected to uniform shear (v = 0.30)

for isotropic ring-stiffened” cylinders

Table 78. Nondimensional buckling coefficients

External rings, e/h = +1 Internal rings, e/h = -1
L/R R/h Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
Donnell Donnell differ- Donnell Donnell differ-

ence ence

0.4 100 1490(7)" 1652 (1,7,1,59)b 10.9 1226 (7) 1325 (1,7,1.52) 8.1
100 1336 (7) 1470 (1,7,1.56) 10.0 1093 (7) 1166 (1,7,1.53) 6.7

250 2905 (10) 3185 (1,11,1.48) 9.6 2361 (10) 2494 (1,11,1.53) 5.6

0.5 500 5475 (13) 6004 (1,15,1.42) 9.7 4519 (14) 4676 (1,15,1.52) 3.5
1000 10320 (17) 11605 (1,20,1.29) 12.5 8810 (19) 9044 (1,20,1.47) 2.7

2000 19140 (22) 22783 (1,28,1.23) 19.0 17590 (23) 17769 (1,29,1.48) 0.4

100 1114 (6) 1226 (1,7,1.46) 10.1 914.8 (6) 957.7 (1,7,1.53) 4.7

250 2583 (9) 2901 (1,10,1.29) 12.3 2203 (10) 2261 (1,10,1.47) 2.6

1.0 500 4786 (11) 5696 (1,14,1.23) 19.0 4412 (11) 4447 (1,14,1.45) 0.8
1000 8695 (13) 11271 (1,19,1.09) 29.6 8441 (14) 8807 (1,20,1.45) 43

2000 15500 (16) 22402 (1,26,.99) 44.5 15690 (17) 17542 (1,29,1.48) 11.8

100 1050 (6) 1171 (1,6,1.19) 11.5 896.1 (6) 918.1 (1,6,1.44) 2.5

250 2370 (7) 2843 (1,10,1.24) 20.0 2188 (8) 2217 (1,10,1.46) 1.3

1.5 500 4268 (9) 5631 (1,13,1.00) 31.9 4182 (10) 4402 (1,14,1.44) 53
1000 7587 (11) 11192 (1,18,.93) 47.5 7738 (11) 8763 (1,20,1.45) 13.2
2000 13310 (13) 22234 (1,18,.41) 67.0 13920 (14) 17499 (1,28,1.44) 25.7

100 982.7 (5) 1147 (1,6,1.13) 16.7 893.0 (5) 901.0 (1,6,1.41) 0.9

250 2182 (7) 2822 (1,9,.95) 29.3 2110 (7) 2202 (1,10,1.45) 4.4
2.0 500 3874 (8) 5600 (1,13,.99) 44.6 3931 (8) 4386 (1,14,1.44) 11.6
1000 6817 (10) 11137 (1,13,.43) 63.4 7088 (10) 8747 (1,20,1.45) 23.4

2000 11840 (12) 22027 (1,15,.24) 86.0 12550 (12) 17484 (1,28,1.44) 39.3

100 888.5 (4) 1129 (1,6,1.09) 26.7 864.0 (5) 888.6 (1,6,1.38) 2.8
250 1914 (6) 2798 (1,9,.93) 46.2 1935 (6) 2191 (1,10,1.45) 13.2
3.0 500 3337.(7) 5558 (1,9,.41) 66.6 3479 (7) 4375 (1,14,1.44) 25.8
1000 5764 (8) 10993 (1,10,.25) 90.7 6133 (8) 8736 (1,20,1.45) 42.4
2000 9941 (10) 21765 (1,12,.18) 118.9 10700 (10) 17472 (1,28,1.43) 63.3

* Numbers in parentheses indicate the number of circumferential waves, n
® (m,n, 7) indicate the number of axial half-waves, circumferential waves, and skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected.

# Ar
d;h

=0.5, =2 and J,=0
dh

227



cr 2
Xy

N, R
Table 79. Nondimensional buckling coefficients ) for isotropic ring-stiffened” cylinders

with simply supported edges and subjected to uniform shear (v = 0.30)

External rings, e /h = +5 Internal rings, e/h = -5
L/R R/h Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
Donnell Donnell differ- Donnell Donnell differ-
ence ence
0.35 100 3047 (5)" 3369 (1,5,2,87)b 10.6 1710 (5) 1855 (1,5,2.19) 8.5
0.4 100 2858 (5) 3149 (1,5,2.90) 10.2 1562 (5) 1687 (1,5,2.25) 8.0
100 2656 (5) 2893 (1,5,2.93) 8.9 1400 (5) 1492 (1,5,2.32) 6.6
250 6233 (7) 6561 (1,8,2.93) 5.3 3100 (8) 3226 (1,8,2.41) 4.1
0.5 500 12420 (10) 12621 (1,11,2.99) 1.6 5912 (11) 6088 (1,11,2.47) 3.0
1000 24190 (13) 24715 (1,15,3.07) 22 11550 (15) 11837 (1,15,2.51) 2.5
2000 45130 (17) 48948 (1,21,3.10) 8.5 23000 (21) 23323 (1,22,2.50) 1.4
100 2477 (5) 2552 (1,5,2.95) 3.0 1199 (5) 1237 (1,5,2.45) 32
250 6058 (7) 6198 (1,7,3.26) 2.3 2921 (8) 2974 (1,8,2.47) 1.8
1.0 500 11330 (8) 12261 (1,10,3.23) 8.2 5913 (10) 5831 (1,11,2.50) -1.4
1000 20510 (10) 24364 (1,15,3.07) 18.8 12460 (14) 11573 (1,15,2.52) -7.1
2000 36330 (13) 48595 (1,21,3.10) 33.8 30120 (18) 23066 (1,22,2.50) -23.4
100 2451 (4) 2489 (1,5,2.96) 1.6 1163 (5) 1190 (1,5,2.47) 2.3
250 5563 (6) 6130 (1,7,3.26) 10.2 2934 (7) 2927 (1,8,2.48) -0.2
1.5 500 10050 (7) 12194 (1,10,3.23) 21.3 6339 (10) 5783 (1,11,2.50) -8.8
1000 17780 (9) 24299 (1,15,3.07) 36.7 15760 (12) 11524 (1,15,2.53) -26.9
2000 31080 (11) 48530 (1,21,3.10) 56.1 32050 (12) 23018 (1,22,2.50) -28.2
100 2317 (4) 2467 (1,5,2.96) 6.5 1150 (5) 1173 (1,5,2.48) 2.0
250 5128 (5) 6106 (1,7,3.26) 19.1 3114 (7) 2911 (1,8,2.49) -6.5
2.0 500 9152 (6) 12170 (1,10,3.23) 33.0 7867 (8) 5766 (1,11,2.50) -26.7
1000 15910 (8) 24276 (1,15,3.07) 52.6 16180 (9) 11507 (1,15,2.53) -28.9
2000 27670 (10) 48465 (1,10,.24) 75.2 30220 (10) 23002 (1,22,2.50) -23.9
100 2125 (3) 2451 (1,5,2.96) 153 1336 (4) 1162 (11,5,2.49) -13.0
250 4524 (4) 6090 (1,7,3.26) 34.6 3740 (6) 2899 (1,8,2.49) -22.5
3.0 500 7847 (5) 12153 (1,10,3.23) 54.9 8014 (6) 5755 (1,11,2.50) -28.2
1000 13530 (7) 24139 (1,7,.24) 78.4 14880 (7) 11495 (1,15,2.53) -22.7
2000 23090 (8) 47000 (1,8,.16) 103.6 26740 (8) 22990 (1,22,2.50) -14.0

* Numbers in parentheses indicate the number of circumferential waves, n
" (m,n, T) indicate the number of axial half-waves, circumferential waves, and skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected

A g5 I -
ih O'S’d,h3 2,and J.=0
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with simply supported edges and subjected to uniform shear (v = 0.30)

Table 80. Nondimensional buckling coefficients for isotropic ring-stiffened” cylinders

External rings, e/h = +1 Internal rings, e/h = -1
L/R R/h Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
Donnell Donnell differ- Donnell Donnell differ-
ence ence
0.4 100 1863 (6)* 2045 (1,6,2.06)" 9.8 1595 (6) 1729 (1,6,1.96) 8.4
100 1699 (6) 1843 (1,6,2.07) 8.5 1444 (6) 1543 (1,6,1.98) 6.9
250 3835(9) 4066 (1,9,2.09) 6.0 3217 (9) 3361 (1,9,2.03) 4.5
0.5 500 7458 (12) 7761 (1,13,2.06) 4.1 6236 (12) 6386 (1,13,2.03) 2.4
1000 15070 (17) 15141 (1,18,2.05) 0.5 12350 (17) 12425 (1,18,2.03) 0.6
2000 28800 (20) 29915 (1,25,2.04) 3.9 25310 (23) 24520 (1,25,2.03) -3.1
100 1522 (5) 1575 (1,6,2.05) 3.5 1268 (6) 1299 (1,6,2.02) 2.4
250 3720 (8) 3785 (1,9,2.05) 1.7 3096 (9) 3106 (1,9,2.03) 0.3
1.0 500 7199 (10) 7485 (1,13,2.03) 4.0 6357 (12) 6136 (1,13,2.03) -3.5
1000 13510 (12) 14858 (1,18,2.03) 10.0 12940 (13) 12171 (1,18,2.03) -5.9
2000 24670 (15) 29626 (1,25,2.03) 20.1 24450 (15) 24261 (1,25,2.03) -0.8
100 1490 (5) 1526 (1,6,2.04) 2.4 1254 (6) 1254 (1,6,2.02) 0.0
250 3571.(7) 3733 (1,9,2.04) 4.5 3256 (8) 3059 (1,9,2.03) -6.1
1.5 500 6674 (8) 7433 (1,13,2.03) 11.4 6430 (9) 6090 (1,13,2.03) -5.3
1000 12100 (10) 14806 (1,18,2.03) 22.4 12090 (10) 12124 (1,18,2.03) 0.3
2000 21530 (12) 29573 (1,25,2.03) 37.4 21980 (12) 24212 (1,25,2.03) 10.2
100 1478 (5) 1508 (1,6,2.03) 2.0 1263 (5) 1238 (1,6,2.03) -2.0
250 3378 (6) 3715 (1,9,2.03) 10.0 3246 (6) 3043 (1,9,2.03) -6.3
2.0 500 6171 (7) 7415 (1,13,2.03) 20.2 6131 (8) 6074 (1,13,2.03) -0.9
1000 11010 (9) 14787 (1,18,2.03) 343 11180 (9) 12107 (1,18,2.03) 8.3
2000 19370 (11) 29554 (1,25,2,03) 52.6 19990 (11) 24196 (1,25,2.03) 21.0
100 1368 (4) 1496 (1,6,2.03) 9.4 1301 (4) 1227 (1,6,2.03) -5.7
250 3025 (5) 3701 (1,9,2.03) 223 3022 (5) 3031 (1,9,2.03) 0.3
3.0 500 5382 (6) 7403 (1,13,2.03) 37.6 5495 (6) 6063 (1,13,2.03) 10.3
1000 9445 (7) 14774 (1,18,2.03) 56.4 9791 (7) 12095 (1,18,2.03) 235
2000 16390 (9) 29541 (1,25,2.02) 80.2 17140 (9) 24,184 (1,25,2.03) 41.1

* Numbers in parentheses indicate the number of circumferential waves, n
® (m,n, 7) indicate the number of axial half-waves, circumferential waves, and skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected

# Ar
d;h

=0.5, =5 and J,=0
dh
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with simply supported edges and subjected to uniform shear (v = 0.30)

for isotropic ring-stiffened” cylinders

Table 81. Nondimensional buckling coefficients

External rings, e /h = +5 Internal rings, e/h = -5
L/R R/h Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
Donnell Donnell differ- Donnell Donnell differ-
ence ence
0.35 100 3196 (5)" 3509 (1,5,2,96)b 9.8 1887 (5) 2036 (1,5,2.34) 7.9
0.4 100 3010(5) 3288 (1,5,2.99) 9.2 1737 (5) 1863 (1,5,2.40) 7.3
100 2808 (5) 3030 (1,5,3.04) 7.9 1568 (5) 1663 (1,5,2.48) 6.1
250 6522 (7) 6806 (1,7,3.34) 4.4 3441 (7) 3615 (1,7,2.69) 5.1
0.5 500 12890 (10) 13123 (1,10,3.34) 1.8 6614 (10) 6830 (1,10,2.72) 33
1000 26680 (13) 25759 (1,14,3.37) -3.5 13010 (14) 13256 (1,15,2.68) 1.9
2000 50670 (16) 51033 (1,20,3.35) 0.7 25880 (20) 26117 (1,21,2.70) 0.9
100 2613 (4) 2686 (1,4,3.66) 2.8 1361 (5) 1399 (1,5,2.62) 2.8
250 6682 (7) 6440 (1,7,3.37) -3.6 3245 (7) 3328 (1,7,2.75) 2.6
1.0 500 12670 (8) 12758 (1,10,3.35) 0.7 6469 (10) 6545 (1,10,2.75) 1.2
1000 23290 (10) 25392 (1,14,3.38) 9.0 14180 (14) 12983 (1,15,2.70) -8.4
2000 41890 (13) 50669 (1,20,3.35) 21.0 33200 (18) 25843 (1,21,2.71) -22.2
100 2601 (4) 2613 (1,4,3.68) 0.5 1321 (5) 1350 (1,5,2.65) 22
250 6286 (6) 6372 (1,7,3.38) 1.4 3264 (7) 3275 (1,7,2.76) 0.3
1.5 500 11450 (7) 12691 (1,10,3.35) 10.8 7280 (10) 6493 (1,10,2.75) -10.8
1000 20540 (9) 25325 (1,14,3.38) 233 16280 (13) 12933 (1,15,2.70) -20.6
2000 36180 (11) 50602 (1,20,3.35) 39.9 36630 (12) 25792 (1,21,2.71) -29.6
100 2605 (4) 2588 (1,4,3.68) -0.7 1347 (5) 1333 (1,5,2.66) -1.0
250 5823 (5) 6348 (1,7,3.38) 9.0 3545 (7) 3256 (1,7,2.76) -8.2
2.0 500 10470 (6) 12667 (1,10,3.35) 21.0 9304 (8) 6474 (1,10,2.75) -30.4
1000 18510 (8) 25301 (1,14,3.38) 36.7 18370 (10) 12915 (1,15,2.70) -29.7
2000 32190 (9) 50578 (1,20,3.35) 57.1 34550 (10) 25774 (1,21,2.71) -25.4
100 2390 (3) 2570 (1,4,3.69) 7.5 1423 (4) 1320 (1,5,2.66) -7.2
250 5166 (4) 6331 (1,7,3.38) 22.6 4098 (6) 3243 (1,7,2.77) -20.9
3.0 500 9051 (5) 12650 (1,10,3.35) 39.8 9158 (6) 6461 (1,10,2.76) -29.4
1000 15780 (6) 25284 (1,14,3.38) 60.2 17040 (7) 12903 (1,15,2.70) -24.3
2000 27130 (8) 50561 (1,20,3.35) 86.4 30610 (8) 25761 (1,21,2.71) -15.8

* Numbers in parentheses indicate the number of circumferential waves, n
" (m,n, T) indicate the number of axial half-waves, circumferential waves, and skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected

# Ar
dh

=0.5, =5 and J,=0
dh
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Table 82. Nondimensional buckling coefficients

cr

N

xyR

for isotropic ring-stiffened” cylinders

with simply supported edges and subjected to uniform shear (v = 0.30, R/h = 1000)

External rings Internal rings

L/R e /h Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
r Donnell Donnell differ- Donnell Donnell differ-

ence ence

1 13510 (12)° 14858 (1,18,2.03)° 10.0 12940 (13) 12171 (1,18,2.03) -5.9

1.0 3 17330 (11) 19914 (1,16,2.60) 14.9 13650 (14) 11998 (1,16,2.34) -12.1

5 23290 (10) 25392 (1,14,3.38) 9.0 14180 (14) 12983 (1,15,2.70) -8.4

8 34750 (9) 32731 (1,11,4.64) -5.8 16820 (12) 15043 (1,13,3.25) -10.6

1 9445 (7) 14774 (1,18,2.03) 56.4 9791 (7) 12095 (1,18,2.03) 23.5

3.0 3 11730 (7) 19818 (1,16,2.59) 69.0 12650 (7) 11920 (1,16,2.34) -5.8
5 15780 (6) 25284 (1,14,3.38) 60.2 17040 (7) 12903 (1,15,2.70) -24.3

8 23630 (6) 32596 (1,11,4.65) 37.9 25050 (6) 14951 (1,13,3.26) -40.3

* Numbers in parentheses indicate t
® (m,n, 7) indicate the number of axial half-waves, circumferential waves, and skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected

#

Table 83. Nondimensional buckling coefficients

Ar
d;h

=0.5
’drhS

I

=5, and J, =0

cr 2
N, R
D

he number of circumferential waves, n

for isotropic ring-stiffened” cylinders

with simply supported edges and subjected to uniform shear (v = 0.30, R/h = 1000)

External rings, € /h = +5

Internal rings, €, /h = -5

L/R | A/(d h) Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
! Donnell Donnell differ- Donnell Donnell differ-
ence ence
0.1 15890 (12)* 15220 (1,16,2.54)° -4.2 13090 (15) 12287 (1,16,2.40) -5.1
1.0 0.5 23290 (10) 25392 (1,14,3.38) 9.0 14180 (14) 12983 (1,15,2.70) -8.4
1.0 28250 (10) 35287 (1,13,3.95) 24.9 14550 (13) 13236 (1,14,2.86) -9.0
1.5 31030 (9) 40978 (1,9,.50) 32.1 14750 (13) 13394 (1,14,2.92) -9.2
0.1 11280 (7) 15136 (1,16,2.54) 342 11710 (7) 12209 (1,16,2.40) 4.3
3.0 0.5 15780 (6) 25284 (1,14,3.38) 60.2 17040 (7) 12903 (1,15,2.70) -24.3
1.0 18360 (6) 31999 (1,6,.22) 74.3 20110 (7) 13151 (1,14,2.87) -34.6
1.5 19810 (6) 34747 (1,6,.23) 75.4 21740 (7) 13310 (1,14,2.93) -38.8

* Number in parentl

heses indicate the number of circumferential waves, n

" (m,n, T) indicate the number of axial half-waves, circumferential waves, and skewedness parameter, respectively
* Nonlinear rotations about the normal are neglected

#

I
dn’

=5and J,=0
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Table 84. Nondimensional buckling coefficients X]y)R

cr

N

with simply supported edges and subjected to uniform shear (v = 0.30, R/h = 1000)

for isotropic ring-stiffened” cylinders

External rings, €, /h = +5 Internal rings, €, /h = -5
LR | 1/(d h) Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
Donnell Donnell differ- Donnell Donnell differ-
ence ence
1 19400 (11)* 23961 (1,15,3.02)° 23.5 11850 (15) 11073 (1,16,2.42) -6.6
2 20510 (10) 24364 (1,15,3.07) 18.8 12460 (14) 11573 (1,15,2.52) 7.1
1.0 3 21520 (10) 24752 (1,14,3.30) 15.0 13030 (14) 12054 (1,15,2.59) -1.5
5 23290 (10) 25392 (1,14,3.38) 9.0 14180 (14) 12983 (1,15,2.70) -8.4
8 26020 (10) 26311 (1,13,3.68) 1.1 15640 (13) 14156 (1,14,2.91) 9.5
10 27620 (10) 26809 (1,13,3.73) 2.9 16560 (13) 14883 (1,14,2.99) -10.1
1 12670 (7) 22979 (1,7,.22) 81.4 14090 (7) 11000 (1,16,2.42) -21.9
2 13530 (7) 24139 (1,7,.24) 78.4 14880 (7) 11495 (1,152.53) | -22.7
3.0 3 14360 (7) 24644 (1,14,3.30) 71.6 15640 (7) 11975 (1,15,2.59) -23.4
5 15780 (6) 25284 (1,14,3.38) 60.2 17040 (7) 12903 (1,15,2.70) -24.3
8 17860 (6) 26197 (1,13,3.68) 46.7 19140 (7) 14069 (1,14,2.91) -26.5
10 19150 (6) 26694 (1,13,3.73) 39.5 20400 (6) 14794 (1,14,2.99) -27.5

* Numbers in parentheses indicate the number of circumferential waves, n
*Numb th dicate th ber of ferential ,
" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively

* Nonlinear rotations about the normal are neglected

A, _
d,h

0.5 and J,=0
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Table 85. Nondimensional buckling coefficients NXBR for isotropic stringer-stiffened” cylinders

with simply supported edges and subjected to uniform shear (v = 0.30)

External stringers, e/h = +5 Internal stringers, e/h = -5
L/R R/h Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
Donnell Donnell differ- Donnell Donnell differ-
ence ence
0.5 100 6556 (22)" 7360 (1,22,.16)" 12.3 6215 (20) 7035 (1,21,.16) 13.2
0.7 100 3102 (14) 3846 (1,16,.16) 24.0 3435 (16) 3528 (1,15,.15) 2.7
100 1782 (12) 1981 (1,12,.15) 11.2 1470 (10) 1687 (1,10,.15) 14.8
Ho 1000 3255 (19) 3798 (1,20,.13) 16.7 2049 (17) 3001 (1,17,.12) 46.5
1.5 100 898.4 (9) 990.8 (1,9,.15) 10.3 650.3 (7) 770.3 (1,7,.15) 18.5
100 346.8 (6) 403.5 (1,6,.13) 16.3 222.8 (5) 316.7 (1,6,.13) 42.1
0 1000 1204 (12) 2242 (1,14,.09) 86.2 872.8 (12) 2141 (1,13,.08) 1453

* Numbers in parentheses indicate the number of circumferential waves, n

® Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

* Nonlinear rotations about the normal are neglected

AL Lo _
dsh—O.S,E—S, and JS_O
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Table 86. Nondimensional buckling coefficients N‘]Y)R for isotropic ring-and-stringer-stiffened’

cylinders with simply supported edges and subjected to uniform shear (v = 0.30)

External stringers, e/h = +5 Internal stringers, e/h = -5
External rings, e/h = +5 Internal rings, e/h = -5
L/R R/h
Refs. 57 and 58 Present Study Percent Refs. 57 and 58 Present Study Percent
Donnell Donnell differ- Donnell Donnell differ-
ence ence
100 5980 (4)° 9266 (1,5,.60)" 54.9 8072 (4) 6489 (1,4,.56) -19.6
1.0
1000 23170 (9) 36731 (1,10,.49) 58.5 32060 (9) 26289 (1,10,.57) -18.0
100 2352 (3) 3790 (1,3,.47) 61.1 3280 (3) 2675 (1,3,.55) -18.4
3.0
1000 17550 (7) 28299 (1,7,.27) 61.2 19230 (6) 22841 (1,9,.52) 18.8
External stringers, e/h = +5 Internal stringers, e/h = -5
Internal rings, e/h = -5 External rings, e/h = +5
100 6446(4) 7062 (1,4,.60) 9.6 6281 (4) 7143 (1,4,.54) 13.7
1.0
1000 25180 (10) 28402 (1,10,.59) 12.8 26990 (10) 32262 (1,9,.42) 19.5
100 2578 (3) 2948 (1,3,.57) 14.4 2756 (3) 3262 (1,3,.45) 18.4
3.0
1000 16940 (7) 23198 (1,9,.52) 36.9 19600 (7) 27430 (1,7,.27) 39.9

* Numbers in parentheses indicate the number of circumferential waves, n

® Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

* Nonlinear rotations about the normal are neglected.

A A, Ig 17
=0.5—;=—"=5and J,=J,=0
h > dph’ dh’ s

s r

s —

o
o

=

o

Table 87. Nondimensional buckling loads N. R, (Rz _ 1) for specially orthotropic’ cylinders
EhR, R,

with simply supported edges and subjected to axial compression (L/R, =5)

R/h Ref. 73¢ Ref. 72 Present study
R,/R/ Timoshenko

Donnell Sanders* Sanders

1.01 100.5 | 0.7971(20,9)° | 0.7895(20,9) | 0.8024(20,9) | 0.7970(20,9) | 0.7945 (20.,9)
1.02 50.5 0.7957 (13,6) | 0.7786 (13,6) | 0.8063 (14,6) | 0.7956 (13,6) | 0.7897 (13,6)
1.04 25.5 0.8049 (8,4) 0.6811 (1,2) 0.8270 (9,4) 0.8044 (8,4) 0.7038 (1,2)
1.05 20.5 0.7904 (9,4) 0.6735(1,2) 0.8168 (9,4) 0.7899 (9,4) 0.6949 (1,2)

* R, = outer radius, R, = inner radius
® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
¢ Nonshallow shell equations given in reference 17 (pp. 157-159), which neglect rotations about the normal

* Nonlinear rotations about the normal are neglected
"E, =14 GPa, E, = 57 Gpa, G, =5.7 GPa, and v, = 0.277
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Table 88. Nondimensional buckling loads N27L for antisymmetric cross-ply cylinders® with

D,

simply supported edges and subjected to axial compression.

Length, in.| Lay up’ Ref. 74, Ref. 73, Present study
Donnell Donnell Donnell Sanders* Sanders
(90/0) 0.3605 (1,10)° 0.35636 35775 (1,10) | .35770 (1,10) | .35761 (1,10)
1.00 (90/0), 0.8745 (1,9) 0.87041 .87293 (1,9) .87278 (1,9) .87188 (1,9)
(90/0), 0.9694 (1,9) 0.96829 (1,9) | 0.96809 (1,9) | 0.96685 (1,9)
(90/0)., 1.045 (1,9) 1.0408 1.0449 (1,9) 1.0446 (1,9) 1.0427 (1,9)
(90/0) 0.90101 96149 (1,8) .95858 (1,8) .95689 (1,8)
3.16 (90/0), 1.5857 1.6604 (1,7) 1.6527 (1,7) 1.6467 (1,7)
(90/0)., 1.7982 1.8747 (1,7) 1.8636 (1,7) 1.8549 (1,7)
(90/0) 8.7406 9.4671 (3,8) 9.4340 (3,8) 9.4171 (3.8)
10.00 (90/0), 13.310 14.356 (2,6) 14.217 (2,6) 14.135 (2,6)
(90/0).. 14.567 15.614 (2,6) 15.421 (2,6) 15.316 (2,6)
(90/0) 86.153 92.683 (8,8) 92.191 (8,8) 92.017 (8,8)
31.63 (90/0), 132.84 143.41 (6,6) 141.85 (6,6) 141.03 (6,6)
(90/0).. 145.37 155.92 (6,6) 153.78 (6,6) 152.73 (6,6)

° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

*R=10.0in.,h=0.101in

! E, =30x 10°psi, E,=0.75 x 10° psi, G,,=0.375x 10° psi, v,,=0.25

* Nonlinear rotations about the normal are neglected

235




Table 89. Nondimensional buckling loads N.L for unsymmetric cross-ply cylinders® with simply

Eh’

supported edges and subjected to axial compression

Lay up' Ref. 74, Present study
Donnell Donnell Sanders* Sanders

(0/90/0) | 32.359 (1,10)° | 32.359(1,10) | 32.356(1,10) | 32.308 (1,10)
(0/90/0,) | 30.967 (1,10) | 30.967 (1,10) | 30.965 (1,10) | 30.940 (1,10)
(0/90/0,) | 28.426 (1,10) | 28.426(1,10) | 28.425(1,10) 28.411 (1,9)
(0/90/0,) 28.030 (1,8) 28.031 (1,8) 28.030 (1,8) 28.021 (1,8)
(0/90/0,) | 29.557 (1,6) 29.557 (1,6) 29.557 (1,6) 29.552 (1,6)
(0/90/0,) | 31.389 (1,1) 31.389(1,0) 31.389 (1,0) 31.389 (1,0)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

¢ R=10.0in.,h=0.10in.,and L = 1. in.
! E, =30x 10°psi, E,=0.75 x 10° psi, G,,=0.375x 10° psi, v, =0.25
* Nonlinear rotations about the normal are neglected

Table 90. Nondimensional buckling loads N.L for unsymmetric cross-ply cylinders: with simply

Eh’

supported edges and subjected to axial compression

Lay up' Ref. 73, Ref. 76, Present study
Donnell Donnell
Donnell Sanders* Sanders

(0) 1482.0 1481.75 (3,7)° 1482.0 (3,7) 1466.4 (3,7) 1458.8 (3,7)
(0/90/0) 1859.8 1853.96 (3,6) 1859.9 (3,6) 1833.0 (3,6) 1818.4 (3,6)
(0,/90/0) 1987.2 1984.18 (4,7) 1987.2 (4,7) 1958.2 (4,7) 1943.6 (4,7)
(0,/90/0) 2061.8 2050.42 (4,7) 2061.8 (4,7) 2031.3 (4,7) 2016.9 (4,7)
(0,/90/0) 1957.4 1950.19 (4,7) 1957.4 (4,7) 1932.8 (4,7) 1917.5 (3,6)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
¢ R=10.0in.,h=0.12 in., and L = 34.64 in.

t E, =30x 10°psi, E,=0.75 x 10° psi, G,,=0.375x 10°psi, v, =0.25
* Nonlinear rotations about the normal are neglected
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Table 91. Nondimensional buckling loads N.L for cross-ply cylinders with simply supported

Eh’

edges and subjected to axial compression (L/R =1, R/ h = 10)

Lay up' Ref. 77, Present study
Donnell
Donnell Sanders* Sanders
(0/90) 18.17 16.86 (1,3) 15.17 (1,3) 14.38 (1,3)
(0/90/0) 41.86 40.57 (1,3) 39.96 (1,3) 38.91 (1,3)
(0/90), 33.95 31.66 (1,2) 30.15(1,2) 28.39 (1,2)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

" E, =30 10° psi, E, = 0.75 x 10° psi, G, =0.375x 10° psi, v,, = 0.25

* Nonlinear rotations about the normal are neglected

Table 92. Nondimensional buckling loads

Eh’

cryp 2
N.L  for cross-

edges and subjected to axial compression (L/R =2, R/ h =40)

ply cylinders with simply supported

Lay up' Ref. 78, Present study
Donnell
Donnell Sanders* Sanders
(0/90) 186.63 (6) 186.63 (4,6) 182.39 (4,6) 180.05 (4,6)
(0/90/0) 205.07 (6) 205.07 (2,6) 200.53 (2,6) 198.52 (2,6)

" Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

! E, =30x 10°psi, E,=0.75 x 10° psi, G,,=0.375x 10° psi, v, =0.25
* Nonlinear rotations about the normal are neglected
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Nsz for antisymmetric [90/0]" cross-ply cylinders

A,h

Table 93. Nondimensional buckling loads

with simply supported edges and subjected to axial compression

Length, in. | Radius, in. Ref. 79, Present study
Ponnell Donnell Sanders* Sanders
5.0 10.0 1.964 (1,7)° 1.964 (1,7) 1.952 (1,7) 1.946 (1,7)
2.5 5.0 0.966 (1,6) 0.966 (1,6) 0.957 (1,6) 0.954 (1,6)
1.0 2.0 0.484 (1,4) 0.484 (1,4) 0.480 (1,4) 0.478 (1,4)
0.5 1.0 0.357(1,3) 0.357(1,3) 0.355(1,3) 0.353 (1,3)
10.0 10.0 10.317 (3,6) 7.786 (3,8) 7.759 (3.8) 7.745 (3,8)
5.0 5.0 4.468 (2,5) 3.864 (2,6) 3.827(2,6) 3.816 (2,6)
2.0 2.0 1.595 (1,3) 1.595 (1,3) 1.565 (1,3) 1.538 (1,3)
1.0 1.0 0.821 (1,3) 0.821 (1,3) 0.785 (1,3) 0.778 (1,3)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

" E, =30 10°psi, E, = 0.75 x 10° psi, G, =0.375x 10° psi, v,,= 0.25, and h = 0.10 in.

* Nonlinear rotations about the normal are neglected

Table 94. Buckling loads N (Ib/in) for unidirectional laminated cylinders with simply
supported edges and subjected to axial compression.

Fiber | Radius,R | L/R Ref. 80, Present study
dzgiz’s* (in.) Donnell Donnell Sanders* Sanders
0 4.0 2 231 (11) 231.6 (4,11) 230.6 (4,11) 230.1 (4,11)
0 4.0 5 229 (10) 229.8 (9,10) 228.7(9,10) 228.2 (9,10)
0 4.0 10 229 (10) 229.7 (17,10) 228.6 (17,10) 228.0 (17,10)
90 4.0 1 229 (10) 229.8 (6,10) 228.7 (6,10) 228.2 (6,10)
90 4.0 2 229 (10) 229.8 (12,10) 228.7 (12,10) 228.2 (12,10)
0 7.5 2 123 (14) 122.3 (5,14) 122.0 (5,14) 121.9 (5,14)
0 7.5 5 123 (14) 122.3 (12,14) 122.0 (12,14) 121.8 (12,14)
90 7.5 1 122 (14) 122.3 (8,14) 122.0 (8,14) 121.8 (8,14)
90 7.5 2 123 (14) 122.3 (16,14) 122.0 (16,14) 121.8 (16,14)

* Number in parentheses, (n) indicate the number of circumferential waves, n

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
! E, =30x 10°psi, E,=2.7 X 10° psi, G,,=0.65x 10°psi, v,,=0.21, and h=0.0212 in.

* Nonlinear rotations about the normal are neglected

238



Table 95. Buckling loads (N/mm) for unsymmetrically laminated cylinders” with simply
supported edges, and subjected to axial compression

Lay up' Ref. 81, Ref. 82, Ref. 82, Ref. 83, Present study
Donnell Donnell | Sanders® | Refined
theory Donnell Sanders* Sanders
(0,/£19/£37/£45/£51) | 114.5 (1,7) 114.6 108.2 114.8 (1,7) | 112.3 (1,7) | 110.15 (1,7)
(£60/0,/168/+£52/+£37) 174.6 183.8 (16,6) | 180.0 (1,6) | 175.7 (1,6)
(¥60/0,/768/F52/%37) 184.0 173.2 183.8 (16,6) | 180.0 (1,6) | 175.7 (1,6)
(F37/752/768/0,/760) 143.9 139.4 143.7 (17,0) | 143.7 (17,0) | 141.5(1,6)
(F38/768/90,/8/753) 163.6 153.4 163.3 (1,6) | 159.1 (1,6) | 155.2 (1,6)
(£30/90,/+£22/+38/+53) 174.6 183.8 (4,11) | 180.0 (1,6) | 175.6 (1,6)
(730/90,/722/738/F53) 184.0 174.4 183.8 (4,11) | 180.0 (1,6) | 175.6 (1,6)
(F51/745/%37/719/0,) | 62.54 (13,0) |  62.39 62.39 62.52 | 62.72(13,0) | 62.72 (13,0) | 62.72 (13,0)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
t E, =123,550 MPa, E, = 8,708 MPa, G, =5,695 MPa, v,,=0.32
* Nonlinear rotations about the normal are neglected
* L =510 mm, R = 250 mm, and h = 1.25 mm

@B _.B,,D, D

16 265 162

included in the analysis; A,, A,,, B,,, B,,, D
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Table 96 Buckling loads N, (Ibs/in.) for (0/-6/+0) and (90/-6/+0) three-ply glass-epoxy

cylinders” with simply supported edges and subjected to axial compression

(0/-6/+6)" cylinders

Fiber angle,
deg

Ref. 84,
Donnell

Present study

Donnell

Sanders*

Sanders

0
10
20
30
40
50
60
70
80
90

492.52 (6,11,.000)°
499.17 (6,11,-.085)
516.45 (7,12,-.006)
534.73 (6,12,.083)
542.00 (6,12,.122)
536.68 (6,12,.091)
521.19 (7,12,.102)
502.47 (7,12,.048)
487.52 (6,11,-.001)
482.96 (6,11,.000)

491.60 (6,11,.000)
500.69 (6,11,-.008)
520.08 (7,12,.007)
540.96 (6,12,.028)
551.71(6,12,.023)
546.98 (6,12,-.002)
528.83 (5,11,-.049)
507.37 (7,12,-.031)
488.39 (6,11,-.033)
480.82 (6,11,.000)

489.72 (6,11,.000)
498.80 (6,11,-.008)
518.31(7,12,.006)
538.55 (6,12,.027)
549.03 (6,12,.022)
544.01 (6,12,-.003)
525.28 (5,11,-.048)
504.75 (7,12,-.031)
485.50 (6,11,-.033)
477.91 (6,11,.000)

488.70 (6,11,.000)
497.74 (6,11,-.008)
517.25 (6,12,.017)
537.27 (6,12,.027)
547.52 (6,12,.022)
541.82 (5,11,-.021)
523.02 (5,11,-.048)
502.66 (5,11,-.062)
483.78 (6,11,-.033)
472.22 (6,11,.000)

(90/-6/+0)" cylinders

Fiber angle,
deg

Ref. 84,
Donnell

Present study

Donnell

Sanders*

Sanders

0
10
20
30
40
50
60
70
80
90

481.69 (8,11,.000)"
485.96 (8,11,-.189)
500.81 (8,11,-314)
522.24 (10,12,-.007)
536.89 (10,12,.161)
535.69 (9,11,.470)
526.38 (9,11,.404)
511.98 (10,12,.164)
498.11 (9,11,.137)
492.58 (9,11,.000)

481.00 (8,11,.000)
485.34 (1,11,-1.212)
501.87 (1,11,-1.263)
52535 (1,12,1.341)
528.09(1,12,1.437)
526.25 (1,12,1.504)
522.16 (1,12,1.536)
517.21 (1,12,1.529)
500.43 (10,12,.003)
491.63 (9,11,.000)

479.80 (8,11,.000)
484.24 (1,11,-1.209)
500.73 (1,11,-1.261)
524.72 (1,12,1.338)
527.52 (1,12,1.435)
525.65 (1,12,1.502)
521.47 (1,12,1.534)
51633 (1,12,1.526)
498.68 (10,12,.003)
489.82 (9,11,.000)

479.23 (8,11,.000)
483.77 (1,11,-1.208)
500.26 (1,11,-1.260)
524.44 (1,12,1.337)
527.26 (1,12,1.434)
52539 (1,12,1.501)
521.17 (1,12,1.533)
515.97 (1,12,1.525)
497.87 (10,12,.003)
488.83 (9,11,.000)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
t E,=7.5x10°psi, E,=3.5x 10° psi, G,,=1.25x 10°psi, v, = 0.25
* Nonlinear rotations about the normal are neglected
" L=125in,R=6.01in., and h=0.036 in.
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Table 97. Buckling loads N (Ibs/in.) for (0/-6/+0) and (90/-6/+8) three-ply boron-epoxy

cylinders” with simply supported edges, and subjected to axial compression

(0/-6/+6)" cylinders

Fiber angle,
deg

Ref. 84,
Donnell

Present study

Donnell

Sanders*

Sanders

0
10
20
30
40
50
60
70
80
90

834.31 (4,10,.000)"
914.84 (4,11,-.132)
1113.9 (5,12,-.037)
1277.4 (5,13,.159)
1307.6 (5,13,.100)
1219.8 (6,13,.035)
1081.4 (5,12,-.014)
951.76 (6,12,-216)
843.10 (7,11,-.118)
780.51 (8,11,.000)

830.00 (4,10,.000)
933.84 (4,11,-.045)
1168.5 (1,11,-.708)
1417.3 (4,12,.015)
1472.6 (2,9,-.048)
1365.5 (3,10,-.105)
1176.1 (4,11,-232)
981.52 (4,11,-.380)
852.34 (7,11,-.198)
774.15 (8,11,.000)

826.44 (4,10,.000)
929.59 (4,11,-.045)
1164.9 (1,11,-.707)
1409.6 (4,12,.013)
1453.9 (2,9,-.047)
1349.6 (2,9,-.086)
1166.6 (4,11,-229)
973.96 (4,11,-375)
846.86 (7,11,-.196)
769.17 (8,11,.000)

824.44 (4,10,.000)
927.56 (4,11,-.045)
1163.2 (1,11,-.706)
1404.8 (4,12,.013)
1439.6 (2,9,-.047)
1336.0 (2,9,-.085)
1160.3 (4,11,-227)
969.50 (4,11,-374)
843.65 (7,11,-.196)
766.49 (8,11,.000)

(90/-6/+0)" cylinders

Fiber angle,
deg

Ref. 84,
Donnell

Present study

Donnell

Sanders*

Sanders

0
10
20
30
40
50
60
70
80
90

781.86 (7,11,.000)
785.03 (6,10,-.465)
855.40 (7,11,-.552)
1001.8 (8,11,-.650)
1216.6 (13,13,-.039)
1302.8 (15,13,.199)
1248.8 (14,13,.297)
1096.7 (14,12,.180)
920.42 (13,11,.059)
833.95 (11,10,.000)

776.07 (7,11,.000)
809.88 (1,10,-.919)
939.86 (5,11,-.799)
1147.4 (1,15,1.058)
1183.0 (1,15,1.250)
1187.3 (1,15,1.467)
1150.7 (1,14,1.737)
1078.4 (1,13,1.927)
935.98 (12,11,-.057)
829.98 (11,10,.000)

77422 (7,11,.000)
807.34 (1,10,-.917)
937.78 (5,11,-.799)
1146.8 (1,15,1.057)
1182.5 (1,15,1.249)
1186.8 (1,15,1.466)
1150.1 (1,14,1.736)
1077.3 (1,13,1.924)
932.04 (12,11,-.058)
825.93 (11,10,.000)

773.46 (7,11,.000)
806.08 (1,10,-.917)
937.02 (5,11,-.799)
1146.5 (1,15,1.056)
1182.3 (1,15,1.249)
1186.5 (1,15,1.465)
1149.7 (1,14,1.735)
1076.7 (1,13,1.923)

930.05 (12,11,-.058)
823.80 (11,10,.000)

°® Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
f E, =40 x 10°psi, E,=4.5 x 10° psi, G,,=1.5x 10°psi, v,,=0.25
* Nonlinear rotations about the normal are neglected
" L=125in,R=6.0in., and h=0.036 in.
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Table 98. Buckling loads N7 (Ibs/in.) for (+45/-45/0/90)." quasi-isotropic cylinders” with simply
supported edges and subjected to axial compression

Ref. 86,
Donnell

Present study

Sanders

788.62 (1,7,.006)

Sanders*

802.81 (1,7,.006)

Donnell

821.18 (1,7,.006)

819.21 (1,7,.011)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively

t E, =18.5111x 10°psi, E, = 1.64 x 10° psi, G,,=0.8706 x 10° psi, v, = 0.300235
* Nonlinear rotations about the normal are neglected

#

L=14.0in.,R=28.01in., and h=0.04 in.

Table 99. Buckling stress o (kgf/mm?) for laminated-composite’ cylinders” with simply

supported edges and subjected to axial compression

Laminate Ref. 87, Present study
Donnell
Donnell Sanders* Sanders
[(0/90),], 16.0,n#0 15.43 (11,7,0)° 15.29 (11,7,0) 15.20 (11,7,0)
0,/90, 109, n#0 10.86 (17,9,0) 10.75 (17,9,0) 10.68 (17,9,0)
(£20) 182,n=0 18.20 (19,0,0) 18.02 (1.,4,.00 17.00 (1,4,.00
4
+20,/-20, 182,n=0 12.90 (10,8,.76) 12.84 (10,8,.76) 12.82 (10,8,.76)
- 18.20 (19,0,0) 18.02 (1,4,0) 17.00 (1,4,0)
(x45) 15.8,n=0 15.76 (28,0,0) 15.69 (1,3,.00 14.07 (1,3,.00
4
+45,/-45, 15.8,n=0 13.17 (1,3,.02) 11.78 (1,3,.02) 10.58 (1,3,.02)
- 15.76 (28,0,0) 15.69 (1,3,.00) 14.07 (1,3,.00)
(£70) 18.2,n=0 18.99 (3.4,.02) 17.56 (2,3,.01) 14.61 (1,2,.00)
4
+70,/-70, 182,n=0 14.11 (1,11,1.06) 13.78 (3,4,.08) 12.66 (1,3,.04)
19.30 (3.4,0) 17.73 (2,3,0) 14.61 (1,2,0)
[(£70)),] 18.2,n=0 19.30 (3.4,.00) 17.73 (2,3,.00) 14.61 (1,2,.00)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
f E, =13, 940 kgf/mm’, E, = 833 kgf/mm’, G ,=484 kgf/mm’, v, = 0.316, ply thickness = 0.125 mm
* Nonlinear rotations about the normal are neglected
* L =600 mm, R =100 mm, and h=1mm

242




Table 100. Buckling stress o, (kgf/mm?) for laminated-composite’ cylinders with simply
supported edges and subjected to axial compression

Laminate Ref. 87, Present study
Donnell Donnell Sanders* Sanders

(+20,/-20,) 9.11,n=0 6.44 (7,11,.79) 6.43 (7,11,.79) 6.43 (7,11,.79)
--- 9.11 (13,0,0) 9.11 (13,0,0) 9.11 (13,0,0)

(#45), 7.88,n=0 7.88 (20,0,0) 7.88 (20,0,0) 7.88 (20,0,0)
(+45,/-45)) 7.88,n=0 7.10 (1,5,.03) 6.82(1,5,.02) 6.55(1,5,.02)
--- 7.88 (20,0,0) 7.88 (20,0,0) 7.88 (20,0,0)
(£70), 9.10,n=0 8.84 (1,4,.02) 8.22 (1,4,.02) 7.75 (1,4,.02)

--- 9.53 (1,4,0) 8.83 (1,4,0) 8.31(1,4,0)

° Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

f E, =13, 940 kgf/mm’, E, = 833 kgf/mm’, G, =484 kgf/mm’, v, = 0.316, ply thickness = 0.125 mm

* Nonlinear rotations about the normal are neglected
* L =300 mm, R =100 mm, and h=0.5 mm
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Table 101. Buckling load N; (kN/m) for laminated-composite cylinders with simply supported

edges and subjected to axial compression

Material Laminate Ref. 88, Present study
Type' Donnell Donnell Sanders* Sanders

(£33/90,/0,/£52) - 132.8 (2,9,.03) 130.5 (1,6,.01) 127.6 (1,6,.01)
133.4 (1,6,0) 133.4 (2,9,0) 130.9 (1,6,0) 127.9 (1,6,0)

! (+£59/0,/90, /+30) 126.2 (1,11,1.17) | 125.8 (1,11,1.17) | 125.6 (1,11,1.17)
129.9 (13,4,0) 130.0 (11,8,0) 129.9 (10,9,0) 129.8 (10,9,0)
(£33/90,/0,/£53) --- 103.8 (3,10,.05) | 101.8 (1,6,.01) 99.57(1,6,.01)
104.1(13,0,0) | 103.9(13,0,0) 102.0 (1,6,0) 99.78 (1,6,0)

2 (+£59/0,/90, /+28) 99.81 (1,11,1.23) | 99.53 (1,11,1.22) | 99.42 (1,11,1.22)
101.7 (13,3,0) 101.7 (13,3,0) 101.7 (11,8,0) 101.6 (11,8,0)
(£30/£78/£3/£55) --- 58.42 (3,10,.02) | 57.53(1,6,.00) 56.23 (1,6,.00)
3 58.54 (3,10,0) | 58.48 (3,10,0) 57.53 (1,6,0) 56.23 (1,6,0)
(£29/+75/0, /+28) 57.43(2,9,.01) | 56.73(2,9,01) | 56.22(1,7,.01)
58.52 (3,10,0) 57.46 (2,9,0) 56.77 (2,9,0) 56.23 (1,9,0)

® Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively

t Type 1: E, =207 GPa, E,=5.17 GPa, G,,=2.69 GPa, v ,=0.25
Type 2: E, = 146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v ,=0.29
Type 3: E, = 51.5 GPa, E, = 24.0 GPa, G,,=8.58 GPa, v,,=0.25

* Nonlinear rotations about the normal are neglected

* L=143.6 mm, R = 82.5 mm, and h = 0.5 mm
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Table 102. Buckling load N, (kN/m) for laminated-composite cylinders” with simply supported

edges and subjected to axial compression

Material Laminate and Ref. 88, Present study
Type' length, mm Donnell Donnell Sanders* Sanders

(£33/+88/£19/£51) - 134.2(1,10,.04)° | 133.09 (1,10,.04) | 132.4(1,10,.04)

L=454 134.6 134.7 (1,10,0) 133.6 (1,10,0) 132.8 (1,10,0)
(£33/90,/0,/£52) --- 132.8 (2,9,.03) 130.5 (1,6,.01) 127.6 (1,6,.01)

! L=143.6 1334 133.4(2,9,0) 130.9 (1,6,0) 127.9 (1,6,0)
(£33/90,/0,/£61) --- 129.9 (2,6,.01) 126.2 (2,6,.01) 122.0 (1,4,.01)

L=321.1 1304 130.5 (2,6,0) 126.8 (2,6,0) 122.1 (1,4,0)
(£32/+84/+15/+53) --- 103.6 (1,10,.05) | 102.8(1,10,.05) | 102.2(1,10,.05)

L=454 104.7 104.1 (1,10,0) 103.3 (1,10,0) 102.7 (1,10,0)
(£33/+£88/0,/£53) --- 103.8 (3,10,.05) | 101.7 (1,6,.01) 99.52 (1,6,.01)

2 L=143.6 104.1 104.2 (1,6,0) 102.0 (1,6,0) 99.78 (1,6,0)
(£33/90,/0,/£63) --- 101.6 (2,6,.01) 98.74 (2,6,.01) 94.84 (1,4,.00)

L=321.1 102.0 102.0 (2,6,0) 99.10 (2,6,0) 94.84 (1,4,0)
(£33/+86/£19/£51) --- 58.49 (4,1,.08) | 58.23(1,10,.01) | 57.90(1,10,.01)

L=454 58.62 58.49 (4,9,0) 58.25(1,10.0) 57.92 (1,10,0)
(£33/+£86/0,/£59) --- 58.74 (3,10,.02) | 57.47(1,6,.00) 56.17 (1,6,.00)

3 L=143.6 58.57 58.79 (3,10,0) 57.47 (1,6,0) 56.17 (1,6,0)
(£32/90,/0,/+68) --- 58.16 (2,6,.00) 56.50 (2,6,.00) 54.04 (1,4,.00)

L=321.1 58.14 58.16 (2,6,0) 56.50 (2,6,0) 54.04 (1,4,0)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively
t Type 1: E, =207 GPa, E,=5.17 GPa, G,,=2.69 GPa, v ,=0.25

Type 2: E, = 146 GPa, E, = 10.8 GPa, G,=5.78 GPa, v,=0.29
Type 3: E, = 51.5 GPa, E, =24.0 GPa, G,,=8.58 GPa, v,,=0.25

* Nonlinear rotations about the normal are neglected

"R=825 mm, h=0.5 mm
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Table 103. Buckling load N (kN/m) for (0,/+60,) laminated-composite’ cylinders” with simply

supported edges and subjected to axial compression

Stacking sequence | Ref. 88, Present study
index, m Donnell Donnell Sanders* Sanders

10 --- 102.4 (4,11,.01)" | 101.6(3,10,.01) | 99.84(1,6,.00)
102.4 102.4 (4,11,0) 101.7 (4,11,0) 99.84 (1,6,0)

20 --- 103.7 (4,11,.01) | 102.8 (1,6,.00) 100.4 (1,6,.00)
103.7 103.7 (4,11,0) 102.8 (1,6,0) 100.4 (1,6,0)

40 --- 104.3 (4,11,.00) | 103.0 (1,6,.00) 100.7 (1,6,.00)
104.3 104.3 (4,11,0) 103.0 (1,6,0) 100.7 (1,6,0)

80 --- 104.6 (3,10,.00) | 103.2 (1,6,.00) 100.8 (1,6,.00)
104.6 104.6 (3,10,0) 103.2 (1,6,0) 100.8 (1,6,0)

160 --- 104.7 (3,10,.00) | 103.2 (1,6,.00) 100.9 (1,6,.00)
104.7 104.7 (3,10,0) 103.2 (1,6,0) 100.9 (1,6,0)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

f Type 2: E, = 146 GPa, E, = 10.8 GPa, G,=5.78 GPa, v, =0.29

* Nonlinear rotations about the normal are neglected
# L=143.6 mm, R =82.5 mm, and h = 0.5 mm
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Table 104. Buckling-load ratio §

edges and subjected to axial compression

cr

*

for laminated-composite cylinders” with simply supported

Laminate’ Ref. 89, Present study
Donnell Donnell Sanders* Sanders
(0,/4£39.5) - 0.58 (4,13,-.06)" | 0.58(4,13,-.06) | 0.58 (4,13,-.06)
0.59 0.59 (4,13,0) 0.58 (4,13,0) 0.58 (4,13,0)
(£30/+37) --- 0.64 (1,7,.02) 0.62 (1,7,.02) 0.61 (1,7,.02)
0.65 0.65 (1,7,0) 0.64 (1,7,0) 0.62 (1,7,0)
(+45/+50.5) - 0.55(1,6,.02) 0.53 (1,6,.02) 0.52 (1,6,.02)
0.59 0.59 (1,6,0) 0.56 (1,6,0) 0.55 (1,6,0)
(£60/+64.5) - 0.55(1,5,.03) 0.53 (1,5,.03) 0.51(1,5,.03)
0.58 0.58 (1,5,0) 0.56 (1,5,0) 0.53 (1,5,0)
(90,/+50.5) - 0.48 (1,14,-1.49) | 0.48 (1,14,-1.48) | 0.48 (1,14,-1.48)
0.58 0.58 (12,12,0) 0.58 (12,12,0) 0.58 (12,12,0)
(£71.5/0,) --- 0.46 (1,13,.63) 0.46 (1,13,.63) 0.46 (1,13,.63)
0.63 0.63 (12,10,0) 0.63 (12,10,0) 0.63 (12,10,0)
(£21/£30) - 0.69 (1,8,.02) 0.68 (1,8,.02) 0.67 (1,8,.01)
0.70 0.70 (1,8,0) 0.69 (1,8,0) 0.68 (1,8,0)
(£13/£45) --- 0.65(1,7,.02) 0.64 (1,7,.02) 0.63 (1,7,.02)
0.67 0.67 (1,7,0) 0.66 (1,7,0) 0.64 (1,7,0)
(£77.5/+60) --- 0.62 (1,12,-2.34) | 0.62 (1,12,-2.33) | 0.62 (1,12,-2.33)
0.68 0.68 (19,7,0) 0.68 (18,8,0) 0.68 (18,8,0)
(£19.5/90,) --- 0.50 (8,13,.66) 0.50 (8,13,.66) 0.50 (8,13,.66)
0.63 0.63 (2,9,0) 0.62 (1,7,0) 0.61 (1,7,0)

® Numbers in parentheses, (m,n, 1), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

! E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, v,,=0.29
* Nonlinear rotations about the normal are neglected

fL=1436 mm, R =82.5 mm, h=0.5 mm, and N* = 104.7 kN/m
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Table 105. Buckling-load ratio g

cr

*

edges and subjected to axial compression

for laminated-composite cylinders” with simply supported

Laminate' Ref. 89, Present study
Donnell
Donnell Sanders* Sanders
(0,/+47.5/0,) 0.55 (2,11,.06)° 0.55(2,11,.06) 0.55(2,11,.06)
0.57 0.57 (2,11,0) 0.57 (2,11,0) 0.56 (2,11,0)
(90, /+43.5/90,) --- 0.50 (1,11,2.93) 0.50 (1,12,2.62) 0.50 (1,12,2.62)
0.57 0.57 (18,11,0) 0.57 (18,11,0) 0.57 (18,11,0)
(0,/£32.5/90,) - 0.54 (5,13,.10) 0.54 (5,13,.10) 0.53 (5,13,.10)
0.55 0.55 (5,13,0) 0.54 (5,13,0) 0.54 (5,13,0)
(90,/+58/0,) - 0.54 (11,13,.07) 0.54 (11,13,.07) 0.54 (11,13,.07)
0.55 0.55(11,13,0) 0.55(11,13,0) 0.55(11,13,0)
(0,/90, /+40.5) --- 0.52 (5,12,-.08) 0.52 (5,12,-.07) 0.52 (5,12,-.07)
0.52 0.52 (4,11,0) 0.52 (4,11,0) 0.52 (4,11,0))
(90,/0, /+49) - 0.47 (1,12,-1.35) 0.47 (1,12,-1.35) 0.47 (1,12,-1.35)
0.52 0.52 (9,12,0) 0.52 (9,12,0) 0.52 (9,12,0)
(£49.5/90,/0,) --- 0.73 (1,7,.02) 0.71 (1,7,.02) 0.70 (1,7,.02)
0.74 0.74 (14,0,0) 0.73 (1,7,0) 0.71 (1,7,0)
(£30/0,/90,) --- 0.74 (1,7,.01) 0.72 (1,7,.01) 0.71 (1,7,.01)
0.74 0.74 (1,7,0) 0.72 (1,7,0) 0.71 (1,7,0)
(£71/0,/£71) --- 0.63 (1,8,-3.71) 0.63 (1,8,-3.71) 0.63 (1,8,-3.71)
0.64 0.64 (19,2,0) 0.64 (19,2,0) 0.64 (19,2,0)
(£36.5/90,/+36.5) - 0.76 (1,7,.01) 0.74 (1,7,.01) 0.73 (1,7,.01)
0.77 0.77 (1,7,0) 0.75 (1,7,0) 0.73 (1,7,0)
(0,/£50/+38) - 0.67 (2,10,.04) 0.67 (2,10,.04) 0.66 (2,10,.04)
0.68 0.68 (3,11,0) 0.68 (2,10,0) 0.67 (2,10,0)
(90,/+40/£52) --- 0.67 (1,13,-1.61) 0.67 (1,13,-1.61) 0.67 (1,13,-1.61)
0.68 0.68 (14,11,0) 0.68 (14,11,0) 0.68 (14,11,0)
(£29/0,/+49) - 0.78 (1,7,.02) 0.77 (1,7,.02) 0.75 (1,7,.02)
0.79 0.79 (1,7,0) 0.77 (1,7,0) 0.76 (1,7,0)
(£47/90,/+29) --- 0.81 (1,6,.01) 0.79 (1,6,.01) 0.77 (1,6,.01)
0.81 0.81 (14,0,0) 0.79 (1,6,0) 0.77 (1,6,0)

°* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E,= 10.8 GPa, G,,=5.78 GPa, v,,= 0.29
"L=1436 mm, R =82.5 mm, h= 0.5 mm, and N* = 104.7 kN/m

* Nonlinear rotations about the normal are neglected
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Table 106. Buckling-load ratio g

cr

*

edges and subjected to axial compression

for laminated-composite cylinders” with simply supported

Laminate' Ref. 89, Present study
Donnell
Donnell Sanders* Sanders
0,/90, /+52/0, 0.54 (4,12,.02)° 0.54 (4,12,.02) 0.54 (4,12,.02)
0.54 0.54 (4,12,0) 0.54 (4,12,0) 0.54 (4,12,0)
0, /+58.5/90,/0, --- 0.62 (2,10,.06) 0.61 (2,10,.06) 0.61 (2,10,.06)
0.63 0.63 (2,10,0) 0.62 (2,10,0) 0.62 (1,7,0)
90,/0,/+£37/90, --- 0.54 (11,12,.07) 0.54 (11,12,.07) 0.54 (11,12,.07)
0.54 0.54 (11,12,0) 0.54 (11,12,0) 0.54 (11,12,0)
90,/+32.5/0,/90, - 0.56 (1,11,2.24) 0.56 (1,11,2.24) 0.56 (1,11,2.24)
0.62 0.62 (15,9,0) 0.62 (14,10,0) 0.62 (14,10,0)
0,/+54/+54/0, - 0.63 (1,8,.03) 0.62 (1,8,.03) 0.61(1,8,.03)
0.65 0.65 (2,10,0) 0.64 (1,8,0) 0.63 (1,8,0)
90,/+31/431/90, --- 0.57 (1,10,2.77) 0.57 (1,11,2.45) 0.57 (1,11,2.45)
0.65 0.65 (16,9,0) 0.65 (16,9,0) 0.65 (16,9,0)
+67/0,/£67 --- 0.71 (1,7,-3.47) 0.71 (1,7,-3.47) 0.71 (1,7,-3.47)
0.72 0.72 (15,4,0) 0.72 (14,6,0) 0.72 (15,4,0)
+29/90,/+29 --- 0.77 (1,7,.01) 0.75(1,7,.01) 0.73 (1,7,.01)
0.77 0.77 (1,7,0) 0.75 (1,7,0) 0.73 (1,7,0)
+48/0,/90,/+48 - 0.90 (1,6,.01) 0.88 (1,6,.01) 0.86 (1,6,.01)
0.91 0.91 (1,6,0) 0.89 (1,6,0) 0.86 (1,6,0)
+36.5/90,/0,/+36.5 - 0.91 (1,7,.01) 0.89 (1,7,.01) 0.88 (1,7,.01)
0.91 0.91 (1,7,0) 0.89 (1,7,0) 0.88 (1,7,0)
90, /+42/90, /0, 0.72 (1,12,1.11) 0.72 (1,12,1.11) 0.72 (1,12,1.11)
0.76 0.76 (10,12,0) 0.76 (9,12,0) 0.76 (9,12,0)
0,/+47/+6/90, --- 0.75 (4,12,.09) 0.75 (4,12,.09) 0.74 (4,12,.09)
0.76 0.76 (5,12,0) 0.76 (4,12,0) 0.75 (4,12,0)
+59/0,/90,/+28 0.95(1,11,1.23) 0.95(1,11,1.22) 0.95(1,11,1.22)
0.97 0.97 (13,3,0) 0.97 (11,8,0) 0.97 (11,8,0)
+33/90,/0,/+£52 - 0.96 (1,9,2.04) 0.96 (1,9,2.04) 0.95(1,6,.01)
0.99 0.99 (13,0,0) 0.98 (1,6,0) 0.95 (1,6,0)

® Numbers in parentheses, (m,n, ), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

! E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" L=1436 mm, R =82.5 mm, h=0.5 mm, and N* = 104.7 kKN/m
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Table 107. Buckling-load ratio

cr

X

N*

for laminated-composite cylinders with simply supported

edges and subjected to axial compression

Laminate Ref. 89, Present study
Donnell
Donnell Sanders* Sanders
0,/90, /+43.5//+43.5/90, /0, - 0.75 (5,12,.03)° 0.75 (5,12,.03) 0.74 (4,11,.03)
0.75 0.75 (5,12,0) 0.75 (5,12,0) 0.75 (4,11,0)
90,/0, /+46.5//+46.5/0,/90, --- 0.74 (1,12,1.47) 0.74 (1,12,1.47) 0.74 (1,12,1.47)
0.75 0.75 (9,12,0) 0.75 (9,12,0) 0.75 (9,12,0)
0,/+56.5/90,/+56.5/0, --- 0.70 (2,9,.03) 0.69 (2,9,.03) 0.68 (2,9,.03)
0.70 0.70 (2,9,0) 0.69 (2,9,0) 0.69 (2,9,0)
90,/+35/0,/+35/90, - 0.67 (1,10,2.12) 0.67 (1,10,2.12) 0.67 (1,10,2.12)
0.70 0.70 (12,10,0) 0.70 (12,10,0) 0.70 (12,10,0)
0,/90, /+46.5/90, /+46.5/0, - 0.69 (4,11,.02) 0.68 (4,11,.02) 0.68 (4,11,.02)
0.69 0.69 (4,11,0) 0.68 (4,11,0) 0.68 (4,11,0)
0,/90, /+43.5/0,/90, /+43.5 --- 0.72 (5,11,.02) 0.71 (5,11,.02) 0.71 (5,11,.02)
0.72 0.72 (5,11,0) 0.71 (5,11,0) 0.71 (5,11,0)
+50.5/0,/90,/0,/+50.5 --- 0.93 (3,10,.04) 0.92 (3,10,.04) 0.91 (1,6,.01)
0.93 0.93 (3,10,0) 0.92 (3,10,0) 0.91 (1,6,0)
+39/90,/0,/90,/+39 0.91 (1,9,2.00) 0.90 (1,9,2.00) 0.90 (1,9,1.99)
0.92 0.92 (9,10,0) 0.92 (9,10,0) 0.92 (9,10,0)
+46/0,/90, /0,/90,/+46 - 0.94 (5,11,.06) 0.93 (5,11,.06) 0.92 (1,6,.01)
0.94 0.94 (5,11,0) 0.94 (5,11,0) 0.92 (1,6,0)
+43.5/90,/0,/90,/0,/+43.5 - 0.92 (1,10,1.50) 0.92 (1,10,1.49) 0.92 (1,10,1.49)
0.94 0.94 (9,10,0) 0.94 (7,11,0) 0.94 (7,11,0)
+49/0,/90,/90,/0,/+55 --- 0.93 (4,10,.05) 0.92 (1,6,.01) 0.90 (1,6,.01)
0.93 0.93 (4,10,0) 0.92 (1,6,0) 0.90 (1,6,0)
+47/0,/90,/0,/90,/+£39 --- 0.94 (5,11,.05) 0.93 (3,10,.04) 0.93 (1,6,.01)
0.94 0.94 (5,11,0) 0.94 (3,10,0) 0.93 (1,6,0)
+59/0, /426/+59/90,/+26 0.98 (3,10,.03) 0.96 (1,6,.01) 0.94 (1,6,.01)
0.98 0.98 (1,6,0) 0.96 (1,6,0) 0.94 (1,6,0)
+29/90,/+£64/+29/0,/+64 - 0.95 (1,10,1.74) 0.95 (1,11,1.49) 0.94 (1,11,1.49)
0.98 0.98 (10,10,0) 0.98 (10,10,0) 0.98 (10,10,0)

® Numbers in parentheses, (m,n, ), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

! E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" L=1436 mm, R =82.5 mm, h=0.5 mm, and N* = 104.7 kKN/m
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Table 108. Buckling-load’ ratio

cr

X

N*

for laminated-composite cylinders with simply supported

edges and subjected to axial compression (L/R = 1)

R/h” N*, Laminate’ Ref. 89, Present study
N/m Donnell Donnell Sanders* Sanders
50 13,8423 +22/+40 --- 0.84 (1,6,.05)" 0.82(1,7,.05) 0.80 (1,6,.04)
0.85 0.85(3,0,0) 0.83 (1,6,0) 0.81 (1,6,0)
100 3,451.26 +23/£37 --- 0.77 (1,8,.03) 0.76 (1,8,.03) 0.75 (1,8,.03)
0.78 0.78 (1,8,0) 0.77 (1,8,0) 0.75 (1,8,0)
150 1,533.41 +22/+34 --- 0.75 (1,9,.02) 0.74 (1,9,.02) 0.73 (1,9,.02)
0.75 0.75 (1,9,0) 0.74 (1,9,0) 0.74 (1,9,0)
200 862.722 +22/+33 --- 0.73 (1,10,.02) 0.72 (1,10,.02) 0.71 (1,10,.02)
0.73 0.73 (1,10,0) 0.73 (1,10,0) 0.72 (1,10,0)
500 138.055 +19/+£27 --- 0.69 (1,14,.01) 0.69 (1,14,.01) 0.68 (1,14,.01)
0.69 0.69 (1,14,0) 0.69 (1,14,0) 0.69 (1,14,0)
1000 34.5017 +13/£30 --- 0.67 (1,16,.01) 0.67 (1,16,.01) 0.67 (1,16,.01)
0.69 0.68 (1,16,0) 0.68 (1,16,0) 0.67 (1,16,0)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v,,= 0.29

* Nonlinear rotations about the normal are neglected

* R =1000.0 mm
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Table 109. Buckling-load’ ratio

cr

X

N*

for laminated-composite cylinders with simply supported

edges and subjected to axial compression (L/R = 3)

R/h” N*, Laminate’ Ref. 89, Present study
N/m Donnell Donnell Sanders* Sanders
50 13,8423 +17/+27 --- 0.68 (1,5,1.31)° | 0.68(1,5,1.30) 0.66 (1,4,.01)
0.72 0.72 (7,0,0) 0.69 (1,4,0) 0.66 (1,4,0)
100 3,451.26 +16/£25 --- 0.65 (1,8,1.04) 0.64 (1,8,1.04) 0.64 (1,8,1.04)
0.69 0.69 (1,5,0) 0.67 (1,5,0) 0.65 (1,5,0)
150 1,533.41 +13/£35 --- 0.67 (1,6,.01) 0.65 (1,6,.01) 0.63 (1,6,.01)
0.68 0.68 (1,6,0) 0.66 (1,6,0) 0.64 (1,6,0)
200 862.722 +14/£31 --- 0.68 (1,6,.01) 0.67 (1,6,.01) 0.65 (1,6,.01)
0.69 0.69 (1,6,0) 0.67 (1,6,0) 0.65 (1,6,0)
500 138.055 +12/£33 --- 0.67 (1,8,.01) 0.66 (1,8,.01) 0.65 (1,8,.01)
0.68 0.68 (4,15,0) 0.67 (1,8,0) 0.66 (1,8,0)
1000 34.5017 +13/£30 --- 0.67 (2,14,.01) 0.67 (2,14,.01) 0.67 (2,14,.01)
0.68 0.68 (3,16,0) 0.67 (1,10,0) 0.67 (1,10,0)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v,,= 0.29

* Nonlinear rotations about the normal are neglected

* R =1000.0 mm
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Table 110. Buckling-load’ ratio

cr

X

N*

for laminated-composite cylinders with simply supported

edges and subjected to axial compression (L/R = 1)

R/h” N*, Laminate’ Ref. 89, Present study
N/m Donnell Donnell Sanders* Sanders
50 13,842.3 | +40/90,/+36 - 0.97 (1,6,.03) 0.94 (1,6,.03) 0.92 (1,6,.03)
0.97 0.97 (1,6,0) 0.94 (1,6,0) 0.92 (1,6,0)
100 3,451.26 | +£42/90,/+27 --- 0.90 (1,7,.02) 0.89 (1,7,.02) 0.87 (1,7,.02)
0.90 0.90 (1,7,0) 0.89 (1,7,0) 0.87 (1,7,0)
150 1,533.41 | +45/90,/+34 --- 0.86 (1,8,.02) 0.85(1,8,.02) 0.84 (1,8,.02)
0.86 0.86 (1,8,0) 0.85(1,8,0) 0.84 (1,8,0)
200 862.722 | £45/90,/+35 --- 0.85(1,9,.02) 0.83 (1,9,.02) 0.82(1,9,.02)
0.85 0.85(1,9,0) 0.84 (1,9,0) 0.83 (1,9,0)
500 138.055 | +49/90,/+37 --- 0.79 (1,11,.01) 0.78 (1,11,.01) 0.78 (1,11,.01)
0.80 0.80 (1,11,0) 0.79 (1,11,0) 0.78 (1,11,0)
1000 34.5017 | £50/90,/+34 --- 0.77 (1,13,.01) 0.76 (1,13,.01) 0.76 (1,13,.01)
0.77 0.77 (20,0,0) 0.77 (1,13,0) 0.76 (1,13,0)

°* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v,,= 0.29

* Nonlinear rotations about the normal are neglected

* R =1000.0 mm
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Table 111. Buckling-load’ ratio

cr

edges and subjected to axial compression (L/R = 3)

IIIII’X" for laminated-composite cylinders with simply supported

R/h” N*, Laminate’ Ref. 89, Present study
N/m Donnell Donnell Sanders* Sanders
50 13,842.3 | +45/90,/+38 - 0.86 (1,4,.02)° 0.78 (1,4,.02) 0.74 (1,4,.02)
0.87 0.87 (1,4,0) 0.79 (1,4,0) 0.75 (1,4,0)
100 3,451.26 | +46/90,/+25 --- 0.80 (1,5,.01) 0.76 (1,5,.01) 0.73 (1,5,.01)
0.81 0.81 (1,4,0) 0.77 (1,5,0) 0.74 (1,4,0)
150 1,533.41 | +49/90,/+40 --- 0.78 (1,5,.01) 0.74 (1,5,.01) 0.71 (1,5,.01)
0.79 0.79 (1,5,0) 0.75 (1,5,0) 0.72 (1,5,0)
200 862.722 | £51/90,/+35 --- 0.75(1,5,.01) 0.72 (1,5,.01) 0.70 (1,5,.01)
0.76 0.76 (1,5,0) 0.73 (1,5,0) 0.70 (1,5,0)
500 138.055 | £50/90,/+31 --- 0.76 (1,7,.01) 0.74 (1,7,.01) 0.73 (1,6,.00)
0.76 0.76 (1,6,0) 0.75 (1,6,0) 0.73 (1,6,0)
1000 34.5017 | £51/90,/+34 --- 0.75 (1,8,.00) 0.74 (1,8,.00) 0.73 (1,8,.00)
0.75 0.75 (1,8,0) 0.74 (1,8,0) 0.73 (1,8,0)

°* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v,,= 0.29

* Nonlinear rotations about the normal are neglected

* R =1000.0 mm
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Table 112. Buckling-load’ ratio II:II

x for laminated-composite cylinders with simply supported

edges and subjected to axial compression (L/R = 1)

R/’ N*, Laminate’ Ref. 89, Present study
N/m Donnell Donnell Sanders* Sanders

50 13,842.3 | +32/90,/0,/+53 --- 0.99 (2,6,.17)° 0.97 (2,6,.17) 0.97 (1,6,.06)
1.00 1.00 (2,6,0) 0.99 (1,6,0) 0.97 (1,6,0)

100 3,451.26 | +33/90,/0,/+55 --- 0.99 (1,7,.03) 0.97 (1,7,.03) 0.96 (1,7,.03)
0.99 0.99 (1,7,0) 0.97 (1,7,0) 0.96 (1,7,0)

150 1,533.41 | +33/90,/0,/+58 --- 0.97 (1,8,2.37) 0.97 (1,8,2.37) 0.96 (1,8,.02)
0.99 0.99 (1,8,0) 0.98 (1,8,0) 0.96 (1,8,0)

200 862.722 | £33/90,/0,/+54 --- 0.97 (1,10,2.03) | 0.97(1,10,2.03) | 0.97 (1,10,2.02)
0.99 1.00 (8,4,0) 0.98 (1,9,0) 0.97 (1,9,0)

500 138.055 +33/90,/0,/+62 --- 0.94 (1,14,2.63) | 0.94(1,14,2.63) | 0.94 (1,14,2.63)
0.98 0.98 (1,11,0) 0.97 (1,11,0) 0.96 (1,11,0)

1000 34.5017 | £32/90,/0,/£56 --- 0.95(1,23,1.97) | 0.95(1,23,1.97) | 0.95(1,23,1.96)
0.97 0.98 (1,13,0) 0.97 (1,13,0) 0.96 (1,13,0)

°* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
" E, =146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v,,= 0.29
* Nonlinear rotations about the normal are neglected
* R=1000.0 mm
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Table 113. Buckling-load’ ratio II:II

*

for laminated-composite cylinders with simply supported

edges and subjected to axial compression (L/R = 3)

R/’ N*, Laminate’ Ref. 89, Present study
N/m Donnell Donnell Sanders* Sanders

50 13,842.3 | +33/90,/0,/+53 - 0.96 (1,5,2.03) 0.95(2,5,.03) 0.90 (1,4,.01)
0.99 0.99 (2,5,0) 0.95 (2,5,0) 0.91(1,4,0)

100 3,451.26 | +33/90,/0,/+58 --- 0.94 (1,7,2.17) 0.94 (1,7,2.16) 0.91 (1,4,.01)
0.99 0.99 (18,0,0) 0.96 (2,6,0) 0.91 (1,4,0)

150 1,533.41 | +32/90,/0,/+62 --- 0.93 (1,8,2.44) 0.93 (1,8,2.44) 0.91 (1,5,.01)
0.99 0.99 (5,9,0) 0.95 (1,5,0) 0.91 (1,5,0)

200 862.722 | +£33/90,/0,/+55 --- 0.95(1,10,2.08) 0.95(1,5,.01) 0.91 (1,5,.01)
0.98 0.98 (2,7,0) 0.95 (1,5,0) 0.91 (1,5,0)

500 138.055 +31/90,/0,/+61 --- 0.93 (1,16,2.07) | 0.93 (1,16,2.07) | 0.93 (1,16,2.07)
0.97 0.97 (2,9,0) 0.96 (2,9,0) 0.95(2,9,0)

1000 34.5017 | £33/90,/0,/+58 --- 0.94 (1,21,2.36) | 0.94(1,21,2.36) 0.94 (1,8,.00)
0.98 0.97 (1,8,0) 0.95 (1,8,0) 0.94 (1,8,0)

°* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
" E, =146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v,,= 0.29
* Nonlinear rotations about the normal are neglected

* R =1000.0 mm
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Table 114. Buckling-load’ ratio

edges and subjected to axial compression (L/R =1, R/h = 150)

cr

X

N*

for laminated-composite cylinders” with simply supported

E/E, N*, Laminate' Ref. 89, Present study
N/m Ponnell Donnell Sanders* Sanders
2 2723.48 +26/+34 --- 0.98 (1,8,.01) 0.97 (1,8,.01) 0.96 (1,8,.01)
0.98 0.98 (1,8,0) 0.97 (1,8,0) 0.96 (1,8,0)
5 1876.75 +42/+38 --- 0.71 (6,0,0) 0.71 (6,0,0) 0.71 (6,0,0)
0.91 0.71 (6,0,0) 0.71 (6,0,0) 0.71 (6,0,0)
10 1598.78 +22/+34 --- 0.79 (1,9,.02) 0.78 (1,9,.02) 0.77 (1,9,.02)
0.79 0.80 (5,0,0) 0.79 (1,9,0) 0.78 (1,9,0)
15 1506.46 +21/£33 --- 0.73 (1,9,.02) 0.72 (1,9,.02) 0.71 (1,9,.02)
0.73 0.73 (1,9,0) 0.73 (1,9,0) 0.72 (1,9,0)
20 1460.34 +22/+£34 --- 0.68 (1,9,.02) 0.67 (1,9,.02) 0.67 (1,9,.02)
0.69 0.69 (1,9,0) 0.68 (1,9,0) 0.67 (1,9,0)
50 1377.39 +23/£33 - 0.53 (1,10,.02) 0.52(1,10,.02) 0.51(1,10,.02)
0.54 0.54 (1,10,0) 0.53 (1,10,0) 0.52 (1,10,0)
100 1349.76 +18/90, --- 0.21(5,12,1.09) | 0.21(5,12,1.09) | 0.21 (5,12,1.09)
0.50 0.50 (1,9,0) 0.49 (1,9,0) 0.49 (1,9,0)
10,000 1322.40 +18/90, --- 0.13(6,12,1.31) | 0.13(6,12,1.31) | 0.13(6,12,1.31)
0.47 0.47 (1,9,0) 0.46 (1,9,0) 0.46 (1,9,0)

°® Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E,/G,, =
* Nonlinear rotations about the normal are neglected

* R =1000.0 mm

2,v,=0.29
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Table 115. Buckling-load’ ratio
edges and subjected to axial compression (L/R =1, R/h = 150)

cr

IIIII’X" for laminated-composite cylinders” with simply supported

E/E, N*, Laminate' Ref. 89, Present study
N/m Ponnell Donnell Sanders* Sanders

2 2723.48 +61/90,/+41 --- 0.99 (1,8,.01) 0.98 (1,8,.01) 0.96 (1,8,.01)
0.99 0.99 (2,10,0) 0.98 (1,8,0) 0.97 (1,8,0)

5 1876.75 +49/90,/+41 --- 0.92 (1,8,.02) 0.90 (1,8,.02) 0.89(1,8,.02)
0.92 0.92 (1,8,0) 0.90 (1,8,0) 0.89 (1,8,0)

10 1598.78 +46/90,/£36 --- 0.87(1,8,.02) 0.86 (1,8,.02) 0.85(1,8,.02)
0.88 0.88 (8,0,0) 0.86 (1,8,0) 0.85(1,8,0)

15 1506.46 +44/90,/+31 --- 0.85(1,8,.02) 0.84 (1,8,.02) 0.83 (1,8,.02)
0.86 0.86 (1,8,0) 0.85(1,8,0) 0.83 (1,8,0)

20 1460.34 +44/90,/+33 --- 0.84 (1,8,.02) 0.83 (1,8,.02) 0.82(1,8,.02)
0.85 0.85(1,8,0) 0.83 (1,8,0) 0.82 (1,8,0)

50 1377.39 +43/90,/+31 --- 0.83 (1,8,.02) 0.81(1,8,.02) 0.80(1,8,.02)
0.83 0.83 (1,8,0) 0.82 (1,8,0) 0.81 (1,8,0)

100 1349.76 +42/90,/+27 --- 0.82(1,8,.02) 0.81(1,8,.02) 0.80(1,8,.02)
0.82 0.82 (1,8,0) 0.81 (1,8,0) 0.80 (1,8,0)

10,000 1322.40 +42/90,/+27 --- 0.81(1,9,.03) 0.80(1,9,.02) 0.79 (1,9,.02)
0.81 0.82 (1,8,0) 0.81 (1,8,0) 0.80 (1,8,0)

b
Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively
" E, =146 GPa, E,/G,,=2, v, =0.29
* Nonlinear rotations about the normal are neglected
* R=1000.0 mm
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Table 116. Buckling-load’ ratio II:II

*

for laminated-composite cylinders” with simply supported

edges and subjected to axial compression (L/R =1, R/h = 150)

E/E, N*, Laminate' Ref. 89, Present study
N/m Ponnell Donnell Sanders* Sanders
2 2723.48 | +33/90,/0,/+56 -—- 1.00 (1,8,.01)° 0.98 (1,8,.01) 0.97 (1,8,.01)
1.00 1.00 (1,8,0) 0.98 (1,8,0) 0.97 (1,8,0)
5 1876.75 | +33/90,/0,/+57 --- 0.99 (1,8,.02) 0.98 (1,8,.02) 0.97 (1,8,.01)
0.99 1.00 (1,8,0) 0.98 (1,8,0) 0.97(1,8,0)
10 1598.78 | +33/90,/0,/+58 --- 0.98 (1,8,2.37) 0.97 (1,8,.02) 0.96 (1,8,.02)
0.99 0.99 (1,8,0) 0.98 (1,8,0) 0.97 (1,8,0)
15 1506.46 | +33/90,/0,/+58 --- 0.97 (1,8,2.37) 0.96 (1,8,2.37) 0.96 (1,8,.03)
0.99 0.99 (1,8,0) 0.97 (1,8,0) 0.96 (1,8,0)
20 1460.34 | +33/90,/0,/+58 --- 0.96 (1,8,2.37) 0.96 (1,8,2.37) 0.96 (1,8,2.36)
0.99 0.99 (1,8,0) 0.97 (1,8,0) 0.96 (1,8,0)
50 1377.39 | £33/90,/0,/+58 --- 0.95 (1,8,2.37) 0.95 (1,8,2.36) 0.95 (1,8,2.36)
0.99 0.99 (1,8,0) 0.97 (1,8,0) 0.96 (1,8,0)
100 1349.76 | +33/90,/0,/£58 --- 0.94 (1,8,2.37) 0.94 (1,8,2.36) 0.94 (1,8,2.36)
0.99 0.99 (1,8,0) 0.97 (1,8,0) 0.96 (1,8,0)
10,000 1322.40 | +33/90,/0,/+58 --- 0.94 (1,8,2.37) 0.94 (1,8,2.36) 0.94 (1,8,2.36)
0.98 0.99 (1,8,0) 0.97 (1,8,0) 0.96 (1,8,0)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
" E, =146 GPa, E,/G,=2, v, =0.29
* Nonlinear rotations about the normal are neglected
* R =1000.0 mm
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Table 117. Buckling load (kN) for laminated-composite cylinders” with simply supported edges
and subjected to axial compression

Stacking sequenceT Ref. 90 | Ref. 90 Present study
Ponnell e{zgli;t Donnell Sanders* Sanders

(90/-45/0/45) 158 156.317 | 160.5 (1,8,-2.02)° | 160.2 (1,8,-2.02) | 160.1 (1,8,-2.02)
(90/-45/0/45), 172 169.239 | 179.2 (1,7,-2.18) | 178.5(1,7,-2.17) | 178.3 (1,7,-2.17)
(90/-45,/0), 138 130.388 | 144.9 (1,6,-3.67) | 144.9 (1,6,-3.67) | 144.9 (1,6,-3.67)

(90,/0), 28.7 28.729 28.68 (9,11,0) 28.61 (9,11,0) 28.59 (9,11,0)

(90/-45/45,/0/-45,/45), 158 156.049 | 158.1(10,0,0) 158.1 (10,0,0) 158.1 (10,0,0)
(90/-45/0/+45/90/45/0), 196 194.374 | 201.9 (1,8,-1.24) | 201.1 (1,8,-1.23) | 200.7 (1,8,-1.23)
(90/-45/0/45/90/0/-45/45), 190 186.415 | 193.1 (1,8,-1.36) | 192.1 (1,8,-1.35) | 191.7 (1,8,-1.35)
(90/-45/0/+45/0/-45/90),. 170 175.600 | 175.5(1,8,-2.24) | 175.4 (1,8,-2.23) | 175.4 (1,8,-2.23)
(90/-45/0/45/0,/90/-45).,, 154 160.071 | 156.5(1,9,-1.67) | 156.3 (1,9,-1.67) | 156.2 (1,9,-1.66)

® Numbers in parentheses, (m,n, 1), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
! E, =161 GPa, E,=11.5 GPa, G,,=7.169 GPa, v, =0.349
* Nonlinear rotations about the normal are neglected
* L =150 mm, R = 80 mm, and h=0.125 mm

260




Table 118. Nondimensional buckling pressures P ZRL
T

for antisymmetric cross-ply cylinders”

11

with simply supported edges and subjected to external pressure

Length, | Lay up' Ref. 73, Present study
in. Donnell Donnell Sanders* Sanders Sanders,
live pressure
(90/0) 0.73758 | 0.75092 (1,32)" | 0.75003 (1,32) 0.74731 (1,32) 0.74671 (1,31)
1.00 (90/0), 1.7685 1.7819 (1,31) 1.7816 (1,31) 1.7808 (1,31) 1.7790 (1,31)
(90/0),, 2.1121 2.1255(1,31) 2.1277 (1,31) 2.1271 (1,31) 2.1251 (1,31)
(90/0) 0.89741 0.92873 (1,12) | 0.93268 (1,12) 0.93256 (1,12) 0.92794 (1,12)
3.16 (90/0), 1.9656 2.0029 (1,11) 2.0160 (1,11) 2.0142 (1,11) 1.9998 (1,11)
(90/0),, 2.3164 2.3531(1,11) 2.3702 (1,11) 2.3661 (1,11) 2.3482 (1,11)
(90/0) 2.6910 2.8614 (1,7) 2.8886 (1,8) 2.8874 (1,8) 2.8558 (1,8)
10.00 (90/0), 5.1606 5.4406 (1,6) 5.5494 (1,7) 5.5437 (1,7) 5.4261 (1,6)
(90/0),, 5.8367 6.1029 (1,6) 6.2393 (1,6) 6.2248 (1,6) 6.0619 (1,6)
(90/0) 10.788 11.257 (1,5) 11.509 (1,5) 11.502 (1,5) 11.106 (1,5)
31.63 (90/0), 20.930 21.875(1,4) 23.014 (1,4) 22.975 (1,4) 21.642 (1,4)
(90/0),, 23.750 24.580 (1,4) 25.718 (1,4) 25.672 (1,4) 24.129 (1,4)

° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
t E, =30x 10°psi, E,=0.75 X 10° psi, G,,=0.375x 10° psi, v, =0.25
* Nonlinear rotations about the normal are neglected
" R=10.0in.and h=0.10in.
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cr- 2
Table 119. Nondimensional buckling pressures P RI; for unsymmetric cross-ply cylinders” with

2

simply supported edges and subjected to external pressure

Lay up’ Ref. 73, Ref. 76, Present study
Donnell Donnell
Donnell Sanders* Sanders Sanders,
live pressure
(0) 55.90 55.81 (1,6) 55.90 (1,6) 56.95 (1,6) 56.93 (1,6) 55.39 (1,6)
(0/90/0) 99.39 99.32 (1,5) 99.39 (1,5) 102.51 (1,5) 102.44 (1,5) 98.44 (1,5)
(0,/90/0) 100.98 97.57 (1,5) 100.98 (1,6) 102.17 (1,6) 102.13 (1,6) 98.70 (1,6)
(0,,/90/0) 108.00 105.30 (1,5) 108.00 (1,5) 111.22 (1,6) 111.18 (1,6) 106.77 (1,5)
(0,,/90/0) 99.72 96.61 (1,5) 99.72 (1,6) 100.92 (1,6) 100.89 (1,6) 97.67 (1,6)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

! E, =30x 10°psi, E,=0.75 x 10° psi, G,,=0.375x 10° psi, v, = 0.25
* Nonlinear rotations about the normal are neglected

* L=34.64in,R=10.0in. and h=0.12 in.
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Table 120. Buckling load p°R (kN/m) for laminated-composite cylinders” with simply supported

edges and subjected to external pressure

Material Laminate and Ref. 88, Present study
TypeT length, mm Donnell Donnell Sanders*, Sanders,

live pressure live pressure
+72/+37/0,/90, - 48.23 (1,11,.05)" | 48.21 (1,11,.05) | 48.13 (1,11,.05)

L=454 48.58 48.60 (1,11,0) 48.58 (1,11,0) 48.40 (1,11,0)
90,/+26/+19/+83 - 16.33 (1,6,.00) 16.19 (1,7,.01) 16.17 (1,7,.01)

! L=143.6 16.32 16.33 (1,6,0) 16.20 (1,7,0) 16.18 (1,7,0)
90,/£7/+27/+82 --- 7.972 (1,5,.01) 7.752 (1,5,.01) 7.745 (1,5,.01)

L=321.1 7.977 7.977 (1,5,0) 7.756 (1,5,0) 7.749 (1,5,0)
+72/+37/0,/90, -—- 36.39 (1,11,.04) | 36.38(1,11,.04) | 36.32(1,11,.04)

L=454 36.62 36.60 (1,11,0) 36.59 (1,11,0) 36.53 (1,11,0)
90,/+13/+27/90, --- 12.13 (1,7,.00) 11.99 (1,7,.00) 11.98 (1,7,.00)

2 L=143.6 12.13 12.13 (1,7,0) 11.99 (1,7,0) 11.98 (1,7,0)
90,/0,/+28/90, - 5.851 (1,5,.00) 5.692 (1,5,.00) 5.687 (1,5,.00)

L=321.1 5.851 5.851 (1,5,0) 5.692 (1,5,0) 5.687 (1,5,0)
+86/+47/0,/90, - 17.42 (1,12,.01) | 17.39(1,12,.01) | 17.37(1,12,.01)

L=454 17.41 17.42 (1,12,0) 17.40 (1,12,0) 17.38 (1,12,0)

90,/0,/0,/90, --- 5.293 (1,7,.00) 5.252 (1,7,.00) 5.247 (1,7,.00)

3 L=143.6 5.292 5.293 (1,7,0) 5.252 (1,7,0) 5.247 (1,7,0)
90,/0,/0,/90, --- 2.406 (1,5,.00) 2.352(1,5,.00) 2.350 (1,5,.00)

L=321.1 2.401 2.406 (1,5,0) 2.352(1,5,0) 2.350 (1,5,0)
90,/90,/0,/90, --- 2.406 (1,5,.00) 2.348 (1,5,.00) 2.345 (1,5,.00)

L=321.1 2.401 2.406 (1,5,0) 2.348 (1,5,0) 2.345 (1,5,0)

® Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively
t Type 1: E, =207 GPa, E,=5.17 GPa, G,=2.69 GPa, v ,=0.25

Type 2: E, = 146 GPa, E, = 10.8 GPa, G,,=5.78 GPa, v ,=0.29
Type 3: E, =51.5 GPa, E, = 24.0 GPa, G, =8.58 GPa, v ,=0.25

* Nonlinear rotations about the normal are neglected

" R=825mmand h=05mm
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Table 121. Critical external pressure (Pa x 10°) for infinitely long laminated-composite cylinders’

with simply supported edges (L/R = 100, R/h =15)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

Lay up' Ref. 91, Present study
Sanders® Donnell Sanders* Sanders Sanders,

live pressure

(0,), 1847 1847 (1,2)° 1847 (1,2) 1847 (1,2) 1385 (1,2)
(0,/90), 2537 2538 (1,2) 2538 (1,2) 2538 (1,2) 1904 (1,2)
(0/90/0), 6687 6686 (1,2) 6686 (1,2) 6685 (1,2) 5013 (1,2)
(0/90,), 7377 7377 (1,2) 7377 (1,2) 7376 (1,2) 5532(1,2)
(90/0,), 14982 14981 (1,2) 14981 (1,2) 14980 (1,2) 11229 (1,2)
(90/0/90), 15671 15672 (1,2) 15672 (1,2) 15670 (2,2) 11750 (1,2)
(90,/0), 19822 19820 (1,2) 19820 (1,2) 19816 (2,2) 14859 (1,2)
(90,), 20512 20511 (1,2) 20511 (1,2) 20493 (5,2) 15379 (1,2)
(0,/90,), 4185 4180 (1,2) 4180 (1,2) 4179 (1,2) 3135 (1,2)
(0/90/0/90), 7680 7679 (1,2) 7679 (1,2) 7679 (1,2) 5759 (1,2)
(0/90,/0), 9432 9429 (1,2) 9429 (1,2) 9428 (1,2) 7070 (1,2)
(90/0,/90) 12934 12929 (1,2) 12929 (1,2) 12927 (1,2) 9693 (1,2)
(90/0/90/0), 14679 14679 (1,2) 14679 (1,2) 14677 (1,2) 11005 (1,2)
(90,/0,), 18181 18178 (1,2) 18178 (1,2) 18175 (2,2) 13627 (1,2)

" E,=206.844 x 10° Pa, E, = 18.6159 x 10° Pa, G, =4.48162 x 10° Pa, v,,=0.21

* Nonlinear rotations about the normal are neglected

#

R=19.05 cm
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Table 122. Critical external pressure (Pa x 10°) for infinitely long laminated-composite cylinders

with simply supported edges (L/R = 100, R/h =10)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively

Lay up' Ref. 91, Present study
Sanders® Donnell Sanders* Sanders Sanders,

live pressure

(0,), 6274 6232 (1,2) 6233 (1,2) 6232 (1,2) 4671 (1,2)
(0,/90), 8618 8565 (1,2) 8566 (1,2) 8565 (1,2) 6423 (1,2)
(0/90/0), 22614 22564 (1,2) 22564 (1,2) 22562 (1,2) 16913 (1,2)
(0/90,), 24959 24897 (1,2) 24897 (1,2) 24894 (1,2) 18666 (1,2)
(90/0,), 50607 50561 (1,2) 50561 (1,2) 50551 (2,2) 37865 (1,2)
(90/0/90), 52952 52894 (1,2) 52894 (1,2) 52877 (3,2) 39637 (1,2)
(90,/0), 66948 66892 (1,2) 66892 (1,2) 66859 (3,2) 50114 (1,2)
(90,), 69223 69225 (1,2) 69225 (1,2) 69083 (7,2) 51878 (1,2)
(0,/90,), 14134 14106 (1,2) 14107 (1,2) 14105 (1,2) 10578 (1,2)
(0/90/0/90), 25924 25918 (1,2) 25918 (1,2) 25915 (1,2) 19429 (1,2)
(0/90,/0), 31853 31823 (1,2) 31824 (1,2) 31820 (1,2) 23853 (1,2)
(90/0,/90), 43644 43634 (1,2) 43635 (1,2) 43626 (2,2) 32697 (1,2)
(90/0/90/0), 49573 49540 (1,2) 49540 (1,2) 49529 (2,2) 37117 (1,2)
(90,/0,), 61363 61351 (1,2) 61351 (1,2) 61332 (3,2) 45954 (1,2)

! E, =206.844 x 10° Pa, E, = 18.6159 x 10’ Pa, G, =4.48162 x 10’ Pa, v,,=0.21

* Nonlinear rotations about the normal are neglected

#

R =19.05 cm
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Table 123. Critical external pressure (Pa x 10°) for infinitely long laminated-composite cylinders’

with simply supported edges (L/R = 100, R/h =15)

Lay up’ Ref. 91, Present study
Sanders® Donnell Sanders* Sanders Sanders,

live pressure

(45,/-45), 6226 6149 (1,2,01 | 6203 (1,2,01) | 6202(1,2,01) | 4642(1,2,01)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(45/-45.), 6226 6234 (1,2,.00) 6234 (1,2,.00) 6234 (1,2,.00) 4674 (1,2,.00)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(-45/45/-45), 6226 6232 (1,2,-.01) 6234 (1,2,.00) 6234 (1,2,.00) 4674 (1,2,.00)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(-45/45), 6226 6149 (1,2.-.01) | 6203 (1,2,-01) | 6202 (1,2,-01) | 4642 (1,2,-.01)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(-45,/45,), 6226 6188 (1,2,-.01) 6234 (1,2,.00) 6234 (1,2,.00) 4674 (1,2,.00)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(45,/-45,), 6226 6188 (1,2,.01) 6234 (1,2,.00) 6234 (1,2,.00) 4674 (1,2,.00)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(45/-45/45/-45), 6226 6234 (1,2,.00) 6234 (1,2,.00) 6234 (1,2,.00) 4674 (1,2,.00)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(45/-45,/45), 6226 6234 (1,2,.00) 6234 (1,2,.00) 6234 (1,2,.00) 4674 (1,2,.00)
6234 (1,2,0) 6234 (1,2,0) 6234 (1,2,0) 4674 (1,2,0)

(30,/-60), 3144 3149 (1,2,.00) 3150 (1,2,.00) 3150 (1,2,.00) 2362 (1,2,.00)
3149 (1,2,0) 3150 (1,2,0) 3150 (1,2,0) 2362 (1,2,0)

(60,/-30), 11790 11518 (1,2,.02) | 11620 (1,2,.01) | 11619 (1,2,.01) 8673 (1,2,.02)
11790 (1,2,0) 11791 (1,2,0) 11790 (1,2,0) 8839 (1,2,0)
(30,/-60,), 3964 3970 (1,2,0) 3971 (1,2,0) 3971 (1,2,0) 2978 (1,2,0)
3970 (1,2,0) 3971 (1,2,0) 3971 (1,2,0) 2978 (1,2,0)

(60./-30,), 10960 10802 (1,2,.02) | 10851(1,2,.01) | 10850(1,2,.01) | 8118(1,2,.01)
10970 (1,2,0) 10970 (1,2,0) 10969 (1,2,0) 8223(1,2,0)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively

" E,=206.844 x 10° Pa, E, = 18.6159 X 10° Pa, G, =4.48162 X 10° Pa, v, = 0.21

* Nonlinear rotations about the normal are neglected

#

R=19.05cm
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Table 124. Critical external pressure (Pa x 10°), for infinitely long laminated-composite cylinders”

with simply supported edges (L/R = 100, R/h = 10)

Lay up’ Ref. 91, Present study
Sanders® Donnell Sanders* Sanders Sanders,

live pressure

(45,/-45), 21029 20427 (1,2,.02)° | 20649 (1,2,.01) | 20647 (1,2,.01) | 15448 (1,2,.01)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(45/-45.), 21029 20918 (1,2,.01) | 21000 (1,2,.01) | 20997 (1,2,.01) | 15763 (1,2,.01)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(-45/45/-45), 21029 20873 (1,2,-.01) | 20953 (1,2,-.01) | 20950 (1,2,-.01) | 15675 (1,2,-.01)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(-45 /45), 21029 | 20427 (1,2,-.02) | 20649 (1,2,-.01) | 20647 (1,2,-.01) | 15448 (1,2,-.01)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(-45,/45,), 21029 20682 (1,2,-.02) | 20785 (1,2,-.01) | 20783 (1,2,-.01) | 15576 (1,2,-.01)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(45,/-45,), 21029 20682 (1,2,.02) | 20785 (1,2,.01) | 20783 (1,2,.01) | 15576 (1,2,.01)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(45/-45/45/-45), 21029 20949 (1,2,.01) | 21041 (1,2,.00) | 21039 (1,2,.01) | 15767 (1,2,.00)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(45/-45,/45), 21029 21038 (1,2,.01) | 21041 (1,2,.00) | 21039 (1,2,.00) | 15767 (1,2,.00)
21038 (1,2,0) 21041 (1,2,0) 21039 (1,2,0) 15767 (1,2,0)

(30,/-60), 10617 10529 (1,2,.01) | 10598 (1,2,.01) | 10597 (1,2,.01) 7952 (1,2,.01)
10629 (1,2,0) 10632 (1,2,0) 10630 (1,2,0) 7970 (1,2,0)

(60,/-30), 39782 37856 (1,2,.05) | 38457(1,2,.03) | 38448(1,2,.03) | 28591 (1,2,.03)
39792 (1,2,0) 39795 (1,2,0) 39790 (1,2,0) 29814 (1,2,0)

(30,/-60,), 13444 13381 (1,2,.01) | 13402 (1,2,.00) | 13401 (1,2,.00) | 10047 (1,2,.00)
13400 (1,2,0) 13402 (1,2,0) 13401 (1,2,0) 10047 (1,2,0)

(60./-30,), 37025 35809 (1,2,.03) | 36183 (1,2,.02) | 36177(1,2,.02) | 27003 (1,2,.02)

37022 (1,2,0)

37024 (1,2,0)

37020 (1,2,0)

27734 (1,2,0)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

t E, =206.844 x 10° Pa, E, = 18.6159 x 10° Pa, G, =4.48162 x 10’ Pa, v,,=0.21
* Nonlinear rotations about the normal are neglected

#

R=19.05cm
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Table 125. Buckling-pressure ratio

cr
q ext

q ext

supported edges and subjected to uniform external pressure (L/R = 0.5)

e for laminated-composite cylinders” with simply

Laminate’ | Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
68/54 --- -0.369312 0.88(1,11,-.10)° | 0.88 (1,11,-.11) | 0.88 (1,11,-.11) | 0.88 (1,11,-.11)
0.90 0. 0.90 (1,12,0) 0.91 (1,12,0) 0.90 (1,12,0) 0.90 (1,12,0)
67.5/2.6/90 --- -0.144161 0.90 (1,12,.20) | 0.91 (1,12,.20) | 0.91 (1,12,.20) | 0.90 (1,12,.20)
0.98 0. 0.98 (1,11,0) 0.99 (1,12,0) 0.99 (1,12,0) 0.98 (1,11,0)
75/41.3/0/90 --- -0.162608 1.00 (1,12,.04) | 1.01(1,12,.04) | 1.00(1,12,.04) | 1.00 (1,12,.04)
1.00 0. 1.00 (1,12,0) 1.01 (1,12,0) 1.01 (1,12,0) 1.00 (1,12,0)

* Numbers in parentheses, (m,n, 1), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E,= 10.8 GPa, G, = 5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" R=82.5mm, h=0.5mm, and q_* = 488.4 kPa

' see equation (151)

Table 126. Buckling-pressure ratio L for laminated-composite cylinders” with simply

q ext

supported edges and subjected to uniform external pressure (L/R = 1)

Laminate'

Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
77/52 --- -0.260874 | 0.69 (1,8,-.18)° | 0.69 (1,8,-.18) | 0.69 (1,8,-.18) | 0.68 (1,8,-.18)
0.83 0. 0.83 (1,8,0) 0.84 (1,8,0) 0.84 (1,8,0) 0.83 (1,8,0)
76.6/15.8/90 --- -0.090461 0.97 (1,8,-.01) | 0.98(1,8,-.01) | 0.97 (1,8,-.01) | 0.96 (1,8,-.01)
0.96 0. 0.97 (1,8,0) 0.98 (1,8,0) 0.98 (1,8,0) 0.96 (1,8,0)
83.9/34.6/0/90 --- -0.085732 1.00 (1,8,-.04) | 1.01 (1,8,-.04) | 1.00 (1,8,-.04) | 0.99 (1,8,-.04)
1.00 0. 1.01 (1,8,0) 1.02 (1,9,0) 1.02 (1,9,0) 1.00 (1,8,0)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

f E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" R=82.5mm,h=0.5mm, and q_* = 245.2 kPa

! see equation (151)
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Table 127. Buckling-pressure ratio

q.

*

supported edges and subjected to uniform external pressure (L/R = 1.74)

« for laminated-composite cylinders” with simply
qext

Laminate' | Ref. 92, Present study
Flllll\%eg ¢ Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
0/90 --- 0.
0.36 0. 0.36 (1,8,0)° 0.36 (1,8,0) 0.36 (1,8,0) 0.36 (1,8,0)
90/51.8 --- -0.103595 0.50 (1,6,-.13) | 0.51 (1,6,-.13) | 0.51 (1,6,-.13) | 0.50 (1,6,-.13)
0.81 0. 0.82 (1,6,0) 0.83 (1,7,0) 0.83 (1,7,0) 0.81 (1,6,0)
45/37.8 - -0.372064 0.46 (1,7,-.03) | 0.47 (1,7,-.04) | 0.47 (1,7,-.04) | 0.46 (1,7,-.03)
0.48 0. 0.48 (1,7,0) 0.49 (1,8,0) 0.49 (1,8,0) 0.48 (1,7,0)
71.1/0 - -0.276606 0.40 (1,8,.02) | 0.41(1,8,.02) | 0.41(1,8,.02) | 0.40(1,8,.02)
0.40 0. 0.40 (1,8,0) 0.41 (1,8,0) 0.41 (1,8,0) 0.40 (1,8,0)
90, - 0.
0.72 0. 0.72 (1,5,0) 0.75 (1,5,0) 0.74 (1,5,0) 0.72 (1,5,0)
87.3/45 --- -0.103380 0.50 (1,6,-.13) | 0.51 (1,6,-.13) | 0.50 (1,6,-.13) | 0.49 (1,6,-.13)
0.75 0. 0.76 (1,7,0) 0.77 (1,7,0) 0.77 (1,7,0) 0.75 (1,7,0)
90/18/90 --- 0.000911 0.88 (1,6,-.08) | 0.90 (1,6,-.08) | 0.89 (1,6,-.08) | 0.87 (1,6,-.08)
0.97 0. 0.97 (1,6,0) 0.99 (1,6,0) 0.99 (1,6,0) 0.97 (1,6,0)
90,/60.3 --- -0.087745 0.59 (1,6,-.12) | 0.60 (1,6,-.12) | 0.60 (1,6,-.12) | 0.58 (1,6,-.12)
0.77 0. 0.78 (1,6,0) 0.79 (1,6,0) 0.78 (1,6,0) 0.77 (1,6,0)
90, - 0.
0.72 0. 0.72 (1,5,0) 0.75 (1,5,0) 0.74 (1,5,0) 0.72 (1,5,0)
78.3/90/78.3 --- -0.118371 0.73 (1,5,-.01) | 0.75(1,6,.01) | 0.75(1,6,.01) | 0.72 (1,5,-.01)
0.73 0. 0.73 (1,5,0) 0.75 (1,6,0) 0.75 (1,6,0) 0.72 (1,5,0)
76.2/0/76.2 --- -0.209942 0.97 (1,6,-.01) | 0.99(1,7,.01) | 0.98(1,7,.01) | 0.97 (1,7,.01)
0.97 0. 0.97 (1,6,0) 0.99 (1,7,0) 0.98 (1,7,0) 0.97 (1,6,0)
90/45/90 --- -0.042463 0.79 (1,6,-.05) | 0.80 (1,6,-.05) | 0.80 (1,6,-.05) | 0.78 (1,6,-.05)
0.84 0. 0.85 (1,6,0) 0.86 (1,6,0) 0.86 (1,6,0) 0.84 (1,6,0)

® Numbers in parentheses, (m,n, 1), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

! E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" R=825mm, h=0.5mm, and q_* = 146.2 kPa

' see equation (151)
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Table 127. Concluded

Laminate' Ref. 92 Present study
Flllllgeg © Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
90/18.9,/90 --- -0.001421 0.86 (1,6,-.10)" | 0.87 (1,6,-.10) | 0.87 (1,6,-.10) | 0.85 (1,6,-.10)
0.99 0. 1.01 (1,7,0) 1.01 (1,7,0) 1.01 (1,7,0) 0.99 (1,7,0)
90/25.2/0/90 --- -0.017508 0.97 (1,6,-.06) | 0.99 (1,7,-.04) | 0.99 (1,7,-.04) | 0.96 (1,6,-.06)
0.99 0. 1.00 (1,7,0) 1.01 (1,7,0) 1.01 (1,7,0) 0.99 (1,7,0)
90/0/32.4/90 --- -0.036330 0.94 (1,6,-.07) | 0.95(1,6,-.07) | 0.95(1,6,-.07) | 0.93 (1,6,-.07)
0.99 0. 1.00 (1,7,0) 1.01 (1,7,0) 1.01 (1,7,0) 0.99 (1,7,0)
82.1/0,/82.1 --- -0.115657 0.96 (1,6,.00) | 0.97(1,7,.01) | 0.97(1,7,.01) | 0.96 (1,7,.01)
0.96 0. 0.96 (1,6,0) 0.97 (1,7,0) 0.97 (1,7,0) 0.96 (1,6,0)
81/0/90/81 --- -0.090776 0.88(1,6,.01) | 0.89(1,6,.01) | 0.89(1,6,.01) | 0.87(1,6,.01)
0.87 0. 0.88 (1,6,0) 0.89 (1,6,0) 0.89 (1,6,0) 0.87 (1,6,0)
76.5/90/0/76.5 --- -0.133711 0.90 (1,6,-.01) | 0.92(1,6,-.01) | 0.92 (1,6,-.01) | 0.90 (1,6,-.01)
0.90 0. 0.90 (1,6,0) 0.92 (1,6,0) 0.92 (1,6,0) 0.90 (1,6,0)

°* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
f E, =146 GPa, E,=10.8 GPa, G, =5.78 GPa, v ,=0.29
* Nonlinear rotations about the normal are neglected

" R=825 mm, h=0.5 mm, and q

¥ see equation (151)

ext

* =146.2 kPa
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Table 128. Buckling-pressure ratio

cr
q ext

*

q ext

supported edges and subjected to uniform external pressure (L/R = 3)

for laminated-composite cylinders” with simply

Laminate'

Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
90/65 --- -0.142353 0.60 (1,5,-.09)" | 0.61 (1,5,-.09) | 0.61 (1,5,-.09) | 0.59 (1,5,-.09)
0.83 0. 0.84 (1,4,0) 0.86 (1,5,0) 0.86 (1,5,0) 0.83 (1,5,0)
90/12/90 --- 0.001661 0.97 (1,5,-.04) | 0.98(1,5,-.04) | 0.98 (1,5,-.04) | 0.95(1,5,-.04)
0.99 0. 1.01 (1,5,0) 1.03 (1,5,0) 1.03 (1,5,0) 0.99 (1,5,0)
90/0/25.3/90 --- -0.017721 0.97 (1,5,-.04) | 0.99 (1,5,-.04) | 0.99 (1,5,-.04) | 0.95(1,5,-.04)
1.00 0. 1.02 (1,5,0) 1.05 (1,5,0) 1.04 (1,5,0) 1.00 (1,5,0)

* Numbers in parentheses, (m,n, 1), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E,= 10.8 GPa, G, = 5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" R=82.5mm, h=0.5mm, and q_* =84.51 kPa

' see equation (151)

Table 129. Buckling-pressure ratio L for laminated-composite cylinders” with simply

le[
supported edges and subjected to uniform external pressure (L/R = 5)
Laminate’ Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
90/68 --- -0.137763 | 0.64 (1,4,-.06)" | 0.65(1,4,-.05) | 0.65(1,4,-.05) | 0.61 (1,4,-.05)
0.83 0. 0.84 (1,3,0) 0.89 (1,4,0) 0.89 (1,4,0) 0.83 (1,4,0)
90/5/90 --- 0.000967 1.02 (1,4,-.01) | 1.05(1,4,-.01) | 1.05(1,4,-.01) | 0.98(1,4,-.01)
0.99 0. 1.03 (1,4,0) 1.06 (1,4,0) 1.06 (1,4,0) 0.99 (1,4,0)
90/0/20.2/90 --- -0.008699 0.99 (1,4,-.02) | 1.02 (1,4,-.02) | 1.02(1,4,-.02) | 0.96 (1,4,-.02)
1.00 0. 1.03 (1,4,0) 1.07 (1,4,0) 1.07 (1,4,0) 1.00 (1,4,0)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

f E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" R=82.5mm,h=0.5mm, and q_*=51.31 kPa

! see equation (151)
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Table 130. Buckling-pressure ratio

*

q ext

supported edges and subjected to uniform external pressure (L/R = 10)

e for laminated-composite cylinders” with simply

Laminate’ | Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
90/77 --- -0.096018 | 0.77 (1,2,-.01)" | 0.85(1,3,-.02) | 0.85(1,3,-.02) | 0.75(1,3.-.02)
0.88 0. 0.84 (1,2,0) 0.98 (1,3,0) 0.98 (1,3,0) 0.87 (1,2,0)
90/0/90 --- 0.
1.00 0. 1.08 (1,3,0) 1.12 (1,3,0) 1.12 (1,3,0) 1.00 (1,3,0)
90/0/13.1/90 --- -0.001822 1.04 (1,3,-.01) | 1.09(1,3,-.01) | 1.09(1,3,-.01) | 0.97 (1,3,-.01)
1.00 0. 1.06 (1,3,0) 1.12 (1,3,0) 1.12 (1,3,0) 0.99 (1,3,0)

o

skewedness parameter, respectively

—

E, = 146 GPa, E, = 10.8 GPa, G, =5.78 GPa, v, = 0.29

* Nonlinear rotations about the normal are neglected

H*

-

R=82.5mm,h=0.5mm, and g _*=25.79 kPa
see equation (151)

272

Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and




Table 131. Critical hydrostatic pressure p,, (psi) for cross-ply laminated-composite cylinders”
with simply supported edges

Laminate’ Ref. 93, Present study
Donnell Donnell Sanders* Sanders
Live Pressure Live Pressure

(90,/0), 427.2 416.0 (1,2)° 418.7(1,2) 408.4 (1,2)
(90,/0), 407.6 399.5(1,2) 426.8 (1,3) 418.4 (1,2)
(90,/0), 394.0 376.5 (1,3) 346.7 (1,3) 345.3 (1,3)
(90/0), 276.4 265.0 (1,3) 248.7 (1,3) 247.8 (1,3)
(90,/0,/90,), 568.9 550.1 (1,2) 512.2 (1,2) 499.2 (1,2)
(90,/0,/90,), 600.0 581.6 (1,2) 556.3 (1,2) 543.1 (1,2)
(90,/0,/90,), 622.4 604.7 (1,2) 591.2 (1,2) 577.9 (1,2)
(90/0,/90), 639.5 623.6 (1,2) 633.8(1,2) 620.9 (1,2)
(90,/0,/90,), 644.4 2y 623.6 (1,2) 633.8 (1,2) 620.9 (1,2)
(90,/0,/90,), 633.1(2) 615.8(1,2) 616.6 (1,2) 603.6 (1,2)
(90,/0,/90,), 631.0 (2) 611.6 (1,2) 609.6 (1,2) 596.5 (1,2)
(90, /0,/90,), 629.8 (2) 607.3 (1,2) 630.9 (1,2) 618.5(1,2)
(90,/0,/90,), 628.3 (2) 609.8 (1,2) 637.2(1,2) 625.1(1,2)
(90,/0,/90/0/90,), 627.7 (2) 608.8 (1,2) 623.3 (1,2) 610.7 (1,2)
(90,/0/90/0,/90,), 627.4 (2) 607.5 (1,2) 6209 (1,2) 608.3 (1,2)
(90,/0/90/0,/90,), 623.1 (2) 606.2 (1,2) 608.5 (1,2) 595.7 (1,2)
(90,/0,/90,), 622.0 (2) 601.6 (1,2) 635.0 (1,3) 627.4(1,2)
(90,/0,/90/0/90,), 621.8 (2) 603.7 (1,2) 604.3 (1,2) 591.4 (1,2)

* Number in parentheses, (n), indicates the number of circumferential waves

° Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
f E, =19.0 x 10° psi, E, = 1.5 x 10° psi, G,,=1.0 x 10° psi, v,, = 0.28

* Nonlinear rotations about the normal are neglected

" h=0.12in, L/R = 6.050, and R/h = 25
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Table 132. Critical hydrostatic pressure p,, (psi) for cross-ply laminated-composite cylinders”
with simply supported edges

Laminate Ref. 93 Present study
Donnell Donnell Sanders* Sanders
Live Pressure Live Pressure
(0,/90,/0,), 138.4 (3) 161.5 (1,3) 156.1 (1,3) 155.6 (1,3)
(0,/90/0/90/0,), 137.5(3) 135.5 (1,3) 131.6 (1,3) 131.1(1,3)
(0,/90./0,), 137.3 (3) 133.6 (1,3) 129.4 (1,3) 128.9 (1,3)
(0,/90/0,), 136.3 (3) 160.4 (1,3) 155.4 (1,3) 154.9 (1,3)
(0,/90,/0,), 130.1 (3) 140.8 (1,3) 135.2 (1,3) 134.6 (1,3)
(0,/90/0,), 129.4 (3) 143.2 (1,3) 138.1 (1,3) 137.6 (1,3)
(0,/90,/0,), 123.5(3) 141.8 (1,3) 137.9 (1,3) 137.4 (1,3)
(0,/90/0,), 120.1 (3) 143.0 (1,3) 139.4 (1,3) 138.9 (1,3)
(0,/90,/0,), 118.5(3) 129.4 (1,3) 125.5 (1,3) 125.0 (1,3)
(0,/90,/0,), 115.3 (3) 129.9 (1,3) 126.8 (1,3) 126.3 (1,3)

* Number in parentheses, (n), indicates the number of circumferential waves

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
! E, =19.0 x 10° psi, E, = 1.5 x 10° psi, G,,= 1.0 x 10° psi, v,, = 0.28

* Nonlinear rotations about the normal are neglected

" h=0.12 in.,, L/R = 6.050, and R/h = 25
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Table 133. Critical hydrostatic pressure p_ (psi) for cross-ply" composite cylinders” with simply

supported edges
Laminate’ Ref. 93 Ref. 93 Present study
Ellz;ir?lietrelts Donnell Donnell Sanders Sanders
Live Pressure

(90,), 167.20 141.6 143.7 (1,2)° 157.7 (1,2) 124.8 (1,2)
(90,,/0,), 160.22 150.1 1512 (1,2) 171.3 (1,3) 154.1 (1,3)
(90,/0,), 133.82 135.0 137.6 (1,3) 139.5(1,3) 125.6 (1,3)
(90,/0,), 113.50 110.6 112.6 (1,3) 1153 (1,3) 104.0 (1,3)
(90,/0,), 89.22 81.22 82.48 (1,3) 86.31 (1,3) 78.09 (1,3)
(90,/0,), 82.00 71.76 72.77 (1,3) 77.33 (1,3) 70.14 (1,3)
(90,/0,), 82.44 71.73 72.71 (1,3) 77.55(1,3) 70.38 (1,3)
(90,/0,,), 83.50 72.47 73.44 (1,3) 78.54 (1,3) 71.25(1,3)

0,), 45.61 42.54 4323 (1,4) 43.87 (1,4) 41.21(1,4)
(0,/90,,), 154.6 139.9 141.0(1,2) 167.2 (1,3) 146.2 (1,2)
(0,/90,), 127.45 130.6 133.1(1,3) 1343 (1,3) 119.6 (1,3)
(0,/90,), 107.23 105.7 107.6 (1,3) 109.4 (1,3) 97.28 (1,3)
(0,/90,), 84.67 76.27 77.50 (1,3) 80.62 (1,3) 71.42(1,3)
(0,/90,), 80.33 68.03 68.99 (1,3) 73.28 (1,3) 64.73 (1,3)
(0,/90,), 82.32 68.97 69.90 (1,3) 74.73 (1,3) 65.96 (1,3)
(0,,/90,), 84.80 70.84 71.76 (1,3) 77.12 (1,3) 68.06 (1,3)

* Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
" E,=19.0x 10°psi, E, = 1.5 X 10°psi, G,,= 1.0 X 10° psi, v, = 0.28
" h=0.12 in., L/R = 6.555, and R/h = 38
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Table 134 Critical hydrostatic pressure p,, (psi) for [90,/+0 /0, ], laminated-composite’ cylinders”
with simply supported edges

Fiber angle, Ref. 93, Ref. 93, Present study
0, deg Finite Donnell
Elements Donnell Sanders Sanders
Live Pressure
90 739.6 622.4 604.7 (1,2) 733.1(1,2) 577.9 (1,2)
75 776.9 630.2 612.8 (1,2) 748.5 (1,2)¢ 590.8 (1,2)
60 835.7 642.2 625.8 (1,2) 775.4 (1,2)¢ 612.9 (1,2)
45 821.3 653.0 637.3 (1,2) 801.4 (1,2)¢ 633.5(1,2)
30 810.7 659.4 644.1 (1,2) 818.8 (1,2)“ 646.3 (1,2)
15 802.7 650.5 634.9 (1,2) 807.7 (1,2)¢ 635.7 (1,2)
0 775.0 639.5 623.6 (1,2) 790.4 (1,2) 620.9 (1,2)

® Numbers in parentheses, (m,n), indicate the number of axial half-waves and circumferential waves, respectively
f E, =19.0x 10° psi, E, = 1.5 x 10° psi, G,,= 1.0 x 10° psi, v, = 0.28

* h=0.12in., L/R = 6.050, and R/h = 25
@ same result obtained using the approximate Rayleigh-Ritz solution including anisotropies
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Table 135. Buckling-pressure ratio

cr
qex[

e for laminated-composite cylinders with simply supported

qext
edges and subjected to uniform hydrostatic pressure (L/R = 0.5)
Laminate | Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
66/51 -0.533536 | 0.84 (1,10,-25) | 0.84 (1,10,-25) | 0.84 (1,10,-225) | 0.84 (1,10,-.25)
0.90 0. 0.90 (1,11,0) | 0.90(1,11,0) | 0.90(1,11,0) | 0.90 (1,11,0)
64.3/5.1/72.7 | - 0351578 | 0.97(1,12,.05) | 0.98 (1,12,.05) | 0.97 (1,12,.05) | 0.97 (1,12,.05)
0.98 0. 0.98 (1,11,0) | 0.98(1,12,0) | 0.98(1,11,0) | 0.97 (1,11,0)
73.3/39.7/0/90 | --- 0241021 | 1.00(1,12,.03) | 1.01(1,12,.03) | 1.00(1,12,.03) | 1.00(1,12,.03)
1.00 0. 1.00 (1,11,0) | 1.01(1,12,0) | 1.01(1,12,0) | 1.00(1,11,0)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E,= 10.8 GPa, G, =5.78 GPa, v, = 0.29

#

* Nonlinear rotations about the normal are neglected

R=82.5mm, h=0.5mm, and q*=429.1 kPa
¥ see equation (152)

Table 136. Buckling-pressure ratio

q;« for laminated-composite cylinders with simply supported

q ext

edges and subjected to uniform hydrostatic pressure (L/R = 1)

Laminate Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure | shear, L} Live Pressure
77/50 --- -0.455216 0.62 (1,8,-.23) | 0.62(1,8,-.23) | 0.62(1,8,-23) | 0.62(1,8,-.22)
0.83 0. 0.83 (1,8,0) 0.83 (1,8,0) 0.83 (1,8,0) 0.82 (1,8,0)
76.6/15.8/90 --- -0.197815 0.96 (1,8,-.03) | 0.97 (1,8,-.03) | 0.96 (1,8,-.03) | 0.95(1,8,-.03)
0.96 0. 0.96 (1,8,0) 0.97 (1,8,0) 0.97 (1,8,0) 0.96 (1,8,0)
81.4/33.7/0/90 --- -0.179704 0.99 (1,8,-.04) | 1.00(1,8,-.04) | 1.00 (1,8,-.04) | 0.98 (1,8,-.04)
1.00 0. 1.00 (1,8,0) 1.01 (1,8,0) 1.01 (1,8,0) 1.00 (1,8,0)

" Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
! E, =146 GPa, E,=10.8 GPa, G, =5.78 GPa, v,=0.29
* Nonlinear rotations about the normal are neglected

# R=82.5mm, h=0.5mm, and q

¥ see equation (152)

ext

*=1228.9 kPa
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Table 137. Buckling-pressure ratio

q.

*

supported edges and subjected to uniform hydrostatic pressure (L/R = 1.74)

« for laminated-composite cylinders” with simply
qext

Laminate' | Ref. 92, Present study
Flllll\%eg ¢ Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
0/90 --- 0.
0.36 0. 0.37 (1,8,0)° 0.37 (1,8,0) 0.37 (1,8,0) 0.36 (1,8,0)
90/50.7 --- -0.356041 0.46 (1,6,-.14) | 0.47 (1,6,-.14) | 0.47 (1,6,-.14) | 0.46 (1,6,-.14)
0.81 0. 0.81 (1,6,0) 0.82 (1,7,0) 0.82 (1,7,0) 0.81 (1,6,0)
45/37.2 - -0.587877 0.46 (1,7,-.04) | 0.46 (1,7,-.04) | 0.46 (1,7,-.04) | 0.45(1,7,-.04)
0.48 0. 0.49 (1,7,0) 0.49 (1,8,0) 0.49 (1,8,0) 0.48 (1,7,0)
71.1/0 - -0.277316 0.41(1,8,.02) | 0.41(1,8,.02) | 0.41(1,8,.02) | 0.41 (1,8,.02)
0.41 0. 0.41 (1,8,0) 0.41 (1,8,0) 0.41 (1,8,0) 0.41 (1,8,0)
90, - 0.
0.70 0. 0.71 (1,5,0) 0.72 (1,5,0) 0.72 (1,5,0) 0.70 (1,5,0)
87.3/45 --- -0.365204 0.46 (1,6,-.14) | 0.47 (1,6,-.14) | 0.47 (1,6,-.14) | 0.46 (1,6,-.14)
0.76 0. 0.77 (1,7,0) 0.77 (1,7,0) 0.77 (1,7,0) 0.76 (1,7,0)
90/18/90 --- -0.121069 0.86 (1,6,-.09) | 0.87 (1,6,-.09) | 0.87 (1,6,-.09) | 0.85 (1,6,-.09)
0.96 0. 0.97 (1,6,0) 0.98 (1,6,0) 0.98 (1,6,0) 0.96 (1,6,0)
90,/60.3 --- -0.233385 0.57 (1,6,-.13) | 0.57 (1,6,-.13) | 0.57 (1,6,-.13) | 0.56 (1,6,-.13)
0.76 0. 0.77 (1,6,0) 0.78 (1,6,0) 0.78 (1,6,0) 0.76 (1,6,0)
90, - 0.
0.70 0. 0.71 (1,5,0) 0.72 (1,5,0) 0.72 (1,5,0) 0.70 (1,5,0)
78.3/90/78.3 --- -0.137759 0.71 (1,5,-.01) | 0.73 (1,5,-.01) | 0.72 (1,5,-.01) | 0.70 (1,5,-.01)
0.71 0. 0.71 (1,5,0) 0.73 (1,5,0) 0.72 (1,5,0) 0.70 (1,5,0)
74.8/0/74.8 --- -0.232609 0.97 (1,6,-.01) | 0.98(1,7,.01) | 0.98(1,7,.01) | 0.96 (1,6,-.01)
0.96 0. 0.97 (1,6,0) 0.98 (1,7,0) 0.98 (1,7,0) 0.96 (1,6,0)
90/45/90 --- -0.277721 0.77 (1,6,-.06) | 0.77 (1,6,-.06) | 0.77 (1,6,-.06) | 0.75 (1,6,-.06)
0.84 0. 0.85 (1,6,0) 0.86 (1,6,0) 0.85 (1,6,0) 0.83 (1,6,0)

® Numbers in parentheses, (m,n, 1), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

! E, =146 GPa, E,=10.8 GPa, G,,=5.78 GPa, v,,=0.29

* Nonlinear rotations about the normal are neglected

" R=82.5mm, h=0.5mm, and q_* = 140.6 kPa

' see equation (152)
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Table 137. Concluded

Laminate’ Ref. 92, Present study
Flllllgeg © Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
90/18.9,/90 --- -0.139724 | 0.82(1,6,-.11)" | 0.84 (1,6,-.11) | 0.83 (1,6,-.11) | 0.81 (1,6,-.11)
1.00 0. 1.01 (1,7,0) 1.02 (1,7,0) 1.02 (1,7,0) 1.00 (1,7,0)
90/25.2/0/90 --- -0.093677 0.95 (1,6,-.06) | 0.97 (1,6,-.06) | 0.97 (1,6,-.06) | 0.95 (1,6,-.06)
1.00 0. 1.01 (1,7,0) 1.02 (1,7,0) 1.01 (1,7,0) 1.00 (1,7,0)
90/0/32.4/90 --- -0.119703 0.92 (1,6,-.08) | 0.93(1,6,-.08) | 0.93 (1,6,-.08) | 0.91 (1,6,-.08)
1.00 0. 1.01 (1,6,0) 1.02 (1,7,0) 1.02 (1,7,0) 1.00 (1,7,0)
80.5/0,/80.5 --- -0.138623 0.96 (1,6,.00) | 0.97(1,7,.01) | 0.97(1,7,.01) | 0.96 (1,7,.01)
0.96 0. 0.96 (1,6,0) 0.98 (1,7,0) 0.97 (1,7,0) 0.96 (1,6,0)
81/0/90/81 --- -0.092047 0.87(1,6,.02) | 0.88(1,6,.01) | 0.88(1,6,.01) | 0.86(1,6,.01)
0.87 0. 0.87 (1,6,0) 0.89 (1,6,0) 0.88 (1,6,0) 0.86 (1,6,0)
76.5/90/0/76.5 --- -0.137759 0.90 (1,6,-.01) | 0.91(1,6,-.01) | 0.91(1,6,-.01) | 0.89(1,6,-.01)
0.89 0. 0.90 (1,6,0) 0.91 (1,6,0) 0.91 (1,6,0) 0.89 (1,6,0)

°* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
f E, =146 GPa, E,=10.8 GPa, G, =5.78 GPa, v ,=0.29
* Nonlinear rotations about the normal are neglected

" R=825 mm, h=0.5 mm, and q

¥ see equation (152)

ext

* =140.6 kPa
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Table 138. Buckling-pressure ratio

cr
q ext

*

q ext

supported edges and subjected to uniform hydrostatic pressure (L/R = 3)

for laminated-composite cylinders” with simply

Laminate'

Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
90/64 --- -0.276649 0.58 (1,5,-.09) | 0.58(1,5,-.09) | 0.58 (1,5,-.09) | 0.56 (1,5,-.09)
0.83 0. 0.84 (1,4,0) 0.86 (1,5,0) 0.86 (1,5,0) 0.83 (1,5,0)
90/12/90 --- -0.080207 0.96 (1,5,-.04) | 0.98(1,5,-.04) | 0.97 (1,5,-.04) | 0.94 (1,5,-.04)
0.99 0. 1.01 (1,5,0) 1.03 (1,5,0) 1.02 (1,5,0) 0.99 (1,5,0)
90/0/25.3/90 --- -0.094055 0.96 (1,5,-.04) | 0.98(1,5,-.04) | 0.98 (1,5,-.04) | 0.94 (1,5,-.04)
1.00 0. 1.02 (1,5,0) 1.04 (1,5,0) 1.04 (1,5,0) 1.00 (1,5,0)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E,= 10.8 GPa, G, =5.78 GPa, v, = 0.29

* Nonlinear rotations about the normal are neglected
R=82.5mm, h=0.5mm, and q_*=82.61 kPa

! see equation (152)

#

Table 139. Buckling-pressure ratio

cr
qext

*

q ext

supported edges and subjected to uniform hydrostatic pressure (L/R = 5)

for laminated-composite cylinders” with simply

Laminate' | Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure | shear, L} Live Pressure
90/67 --- -0.240788 0.62 (1,4,-.06) | 0.63(1,4,-.05) | 0.63 (1,4,-.05) | 0.59 (1,4,-.05)
0.83 0. 0.84 (1,3,0) 0.88 (1,4,0) 0.88 (1,4,0) 0.83 (1,4,0)
90/4.9/90 --- -0.032581 1.02 (1,4,-.01) | 1.05(1,4,-.01) | 1.04(1,4,-.01) | 0.98 (1,4,-.01)
0.99 0. 1.03 (1,4,0) 1.06 (1,4,0) 1.05 (1,4,0) 0.99 (1,4,0)
90/0/20.2/90 --- -0.074562 0.99 (1,4,-.02) | 1.02(1,4,-.02) | 1.02(1,4,-.02) | 0.96 (1,4,-.02)
1.00 0. 1.03 (1,4,0) 1.07 (1,4,0) 1.07 (1,4,0) 1.00 (1,4,0)

* Numbers in parentheses, (m,n, 1), indicate the number of axial half-waves, circumferential waves, and

skewedness parameter, respectively
" E, =146 GPa, E,= 10.8 GPa, G_,=5.78 GPa, v,,=0.29
* Nonlinear rotations about the normal are neglected

" R=825 mm, h=0.5 mm, and q

¥ see equation (152)

ext

*=50.65 kPa
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Table 140. Buckling-pressure ratio

*

q ext

supported edges and subjected to uniform hydrostatic pressure (L/R = 10)

e for laminated-composite cylinders” with simply

Laminate’ | Ref. 92, Present study
Fligge
live Induced Donnell Sanders* Sanders Sanders
pressure shear, L.} Live Pressure
90/76 --- -0.130924 0.76 (1,2,-.01) | 0.83(1,3,-.02) | 0.83(1,3,-.02) | 0.74 (1,3,-.02)
0.87 0. 0.84 (1,2,0) 0.98 (1,3,0) 0.98 (1,3,0) 0.87 (1,2,0)
90/0/90 --- 0.
1.00 0. 1.08 (1,3,0) 1.12 (1,3,0) 1.12 (1,3,0) 1.00 (1,3,0)
90/0/13.1/90 --- -0.047625 1.04 (1,3,-.01) | 1.09(1,3,-.01) | 1.09(1,3,-.01) | 0.97 (1,3,-.01)
1.00 0. 1.06 (1,3,0) 1.12 (1,3,0) 1.11 (1,3,0) 0.99 (1,3,0)

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

" E, =146 GPa, E,= 10.8 GPa, G, =5.78 GPa, v, = 0.29

#

¥ see equation (152)

ext

* Nonlinear rotations about the normal are neglected

R=82.5mm, h=0.5mm, and q_* =25.63 kPa
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Table 141. Buckling pressure (N/mm?®) for a laminated-composite cylinders with simply supported

edges and subjected to hydrostatic compression or to hydrostatic pressure and torsion

Loading Ref. 94 Present study
Fliigge Sanders Sanders* Donnell
Live Pressure Live Pressure Live Pressure
Hydrostatic pressure 0.03766 (7)* | 0.03722(1,7,0)" | 0.03727 (1,7,0) 0.03766 (1,7,0)
L =051L,=1
Hydrostatic pressure 0.03613 (7) | 0.03657 (1,7,.02) | 0.03662 (1,7,.02) | 0.03698 (1,7,.02)
and torsion
L =05L=1L=1

* Number in parentheses, (n), indicates the number of circumferential waves

* Numbers in parentheses, (m,n, T), indicate the number of axial half-waves, circumferential waves, and
skewedness parameter, respectively

* Nonlinear rotations about the normal are neglected

* R=250.625 mm, h=1.25 mm, and L =530 mm

TLaminate stiffnesses:

A, =0.60278 x 10° N/mm
A, =0.23801 x 10° N/mm
A, =0.N/mm
A,,=0.65646 x 10° N/mm
A,,=0.N/mm

A, =0.27417 x 10° N/mm

36680 x 10°N
16988 x 10° N
N
37798 x 10° N
N
19248 x 10° N

1

2

B
Il

22

o

6

B, =0.
B,=0.
B,=0.
B,,=0.
B, =0.
B,=0.

66

0.29772 X 10° N mm
0.15627 x 10° N mm
0. N mm

0.29353 x 10° N mm
0.

0.

1

1
1
1

N mm

D
D
D
D
D
D 17510 x 10° N mm

2
6
2
6
6

2!
2
6

282



Middle surface of cylinder

Figure 1. Geometry and coordinate system of a cylindrical shell.
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(¢) Ring cross-section

Centroid

Shell wall

iff I . .
(a) Stiffener layout (b)Stringer cross-section

Figure 2. Stiffener details.
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Zone of localized

Zone of localized bending

bending

Central zone of uniform
stress and deformation

Figure 3. Circumfrential stress resultant distribution and localized-bending zones
in a compression-loaded cylinder with ends restrained against radial displacement.

dh
N

=}
1
[N

(1N
N[

>
1
N

)
N/

>
1
w

/T
L/

>
Il
N

N
L/

S5
I
al

M
(v

>
I
»

o
.y

S
1
~

R
A

>
I
o

dh!
S

SN
L

n=10

N
N

n=11

Figure 4. Circumferential waveforms used in equation (77c).
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(a) Three-dimensional rendering of a buckling mode

Axial half-wave length

[
-

A

Buckle

2nR

A
Y

(b) Contour plot of the radial displacement

Figure 5. Typical buckle pattern of a compression-loaded cylinder.
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(a) Three-dimensional rendering of a skewed buckling mode

Nodal line

X

(b) Contour plot of the radial displacement

Figure 6. Typical skewed buckle pattern of a compression-loaded anisotropic cylinder or an orthotropic
cylinder subjected to shear loads.
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Figure 7. Representative cylinders corresponding to the same value of the Batdorf Z parameter (Z about 150).
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Figure 8. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply
supported edges for R’/h=50 and L/R<50 (v=0.3).
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Figure 9. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply
supported edges for R’/h=50 and L/R<8 (v=0.3).
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Figure 10. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
isotropic cylinders with simply supported edges for R/h=50 and L/R<50 (v=0.3).
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Figure 11. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply
supported edges for R/h=100 and L/R<50 (v=0.3).

0.8. i
Donnell’s equations, NXZRh =0.67
n' D
yd
Sanders’ equations
0.4 /
Sanders’ equations, @’ neglected
h
* 3
Eh
. b=
0-2 R' 12(1-v?)
|<—>|
L
0.00 2 4 6 8

Aspect ratio, L/R

Figure 12. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply
supported edges for R’h=100 and L/R<8 (v=0.3).
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Figure 13. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
isotropic cylinders with simply supported edges for R/h =100 and L/R <50 (v=0.3).
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Figure 14. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply
supported edges for R/h =500 and L/R<50 (v=0.3).
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Figure 15. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply
supported edges for R/h=500 and L/R<8 (v=0.3).
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Figure 16. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
isotropic cylinders with simply supported edges for R/h =500 and L/R<50 (v=0.3).
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Figure 17. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply

supported edges for R’h=1000 and L/R<50 (v=0.3).

0.8

0.6

0.4

0.2

0.0}

T ———

‘ cr

N, Rh

Donnell’s equations, XZD =0.67
T

Sanders’ equations

Sanders’ equations, ¢ neglected

0 2 4

Aspect ratio, L/R

Figure 18. Nondimensional buckling loads for compression-loaded (N,) isotropic cylinders with simply

supported edges for R/h=1000 and L/R<8 (v=0.3).
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Figure 19. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
isotropic cylinders with simply supported edges for R’/h =1000 and L/R<50 (v=0.3).
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Figure 20. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
isotropic cylinders with simply supported edges for R/h =50, 100, 500, and 1000 (v =0.3).
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Figure 21. Nondimensional buckling stress ratios for compression-loaded isotropic cylinders with simply
supported edges, for R/h =50, 100, 500, and 1000 (v = 0.3).
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Figure 22. Values of the abscissa shown in figure 21 as a function of R/h and for select values of L/R (v =0.3).
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Figure 24. Nondimensional buckling loads for external-pressure-loaded isotropic cylinders with simply
supported edges for R/h =50 (v =10.3).
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Figure 25. Nondimensional buckling loads for external-pressure-loaded isotropic cylinders with simply
supported edges for R’/h =100 (v = 0.3).

297



100

50

Nondimensional

buckling pressure,

pch3
D
20 Sanders’ equations - dead pressure
/
\ Donnell’s equations - dead pressure
10 NS /
5\\\ //
N
5 \:\\\
Ny
Sanders’ equations - live pressure
2
0 10 20 30 40 50

Aspect ratio, L/R

Figure 26. Nondimensional buckling loads for external-pressure-loaded isotropic cylinders with simply
supported edges for R/h =500 (v =0.3).
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Figure 27. Nondimensional buckling loads for external-pressure-loaded isotropic cylinders with simply
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Figure 28. Differences in external buckling pressure, with respect to results based on Sanders’ live-pressure equations,
for isotropic cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 29. Differences in external buckling pressure, with respect to results based on Sanders’ live-pressure equations,
for isotropic cylinders with simply supported edges for R/h =100 (v=0.3).
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Figure 30. Differences in external buckling pressure, with respect to results based on Sanders’ live-pressure equations,
for isotropic cylinders with simply supported edges for R/h =500 (v=10.3).
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Figure 31. Differences in external buckling pressure, with respect to results based on Sanders’ live-pressure equations,
for isotropic cylinders with simply supported edges for R/h =1000 (v = 0.3).
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Figure 32. Difference in the external buckling pressures, with respect to results based on Sanders’ live-pressure
equations for isotropic cylinders with simply supported edges for R/h =50, 100, 500, and 1000 (v = 0.3).
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Figure 33. Nondimensional buckling pressure ratios for external-pressure-loaded isotropic cylinders with simply
supported edges, for R/h =50, 100, 500, and 1000 (v = 0.3).
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Figure 36. Nondimensional buckling loads for hydrostatic-pressure-loaded isotropic cylinders
with simply supported edges for R/h =500 (v =0.3).
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Figure 37. Nondimensional buckling loads for hydrostatic-pressure-loaded isotropic cylinders
with simply supported edges for R/h = 1000 (v = 0.3).
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Figure 38. Differences in external hydrostatic buckling pressure, with respect to results based on Sanders’
live-pressure equations, for isotropic cylinders with simply supported edges for R/h =50 (v=0.3).
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Figure 39. Differences in external hydrostatic buckling pressure, with respect to results based on Sanders’
live-pressure equations, for isotropic cylinders with simply supported edges for R/h =100 (v =10.3).
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Figure 40. Differences in external hydrostatic buckling pressure, with respect to results based on Sanders’
live-pressure equations, for isotropic cylinders with simply supported edges for R/h =500 (v =10.3).
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Figure 41. Differences in external hydrostatic buckling pressure, with respect to results based on Sanders’
live-pressure equations, for isotropic cylinders with simply supported edges for R/h =1000 (v =0.3).
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Figure 42. Difference in buckling loads, with respect to results based on Sanders’ equations, for hydrostatic-pressure-
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Figure 43. Nondimensional buckling pressure ratios for hydrostatic-pressure-loaded isotropic cylinders
with simply supported edges, for R/h = 50, 100, 500, and 1000 (v = 0.3).
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Figure 44. Nondimensional buckling loads for isotropic cylinders subected to axial compression and internal
pressure and with simply supported edges for R/h =50 (v =0.3).
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Figure 45. Nondimensional buckling loads for isotropic cylinders subected to axial compression and internal
pressure and with simply supported edges for R/h =100 (v = 0.3).
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Figure 46. Nondimensional buckling loads for isotropic cylinders subected to axial compression and internal

pressure and with simply supported edges for R/h =500 (v = 0.3).
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Figure 47. Nondimensional buckling loads for isotropic cylinders subected to axial compression and internal

pressure and with simply supported edges for R/h =1000 (v = 0.3).
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Figure 49. Ring, stringer, and corrugated wall details for stiffened cylinders of reference 59.
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Figure 50. Corrugated cylinder with external rings (Dr. Randall C. Davis shown with the cylinder).
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Figure 51. Buckled cylinder with rectangular external stringers and stringer details.
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Figure 53. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders

with simply supported edges for R/h =50 (v =0.3).
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Figure 54. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 55. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 56. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 57. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 59. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 60. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 61. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 62. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 63. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 64. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 65. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 66. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 67. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders

with simply supported edges for R/h =50 (v =0.3).
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Figure 68. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 69. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 70. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 71. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
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Figure 72. Difference in buckling loads, with respect to results based on Sanders’ equations, for compression-loaded
stringer-stiffened isotropic cylinders with simply supported edges for R/h =50 (v =10.3).
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Figure 73. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders

with simply supported edges for R/h =500 (v =0.3).
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Figure 74. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v =0.3).
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Figure 75. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v = 0.3).
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Figure 76. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v = 0.3).
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Figure 77. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v = 0.3).
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Figure 78. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v = 0.3).
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Figure 79. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v = 0.3).
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Figure 80. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v = 0.3).
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Figure 81. Nondimensional buckling loads for compression-loaded stringer-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v = 0.3).
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Figure 82. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 83. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 84. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 85. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).

349



Shell wall \\ X Ring properties:
Area, A,
/ Centroidal moment of inertia, I’
Torsion constant, J,
Eccentricity, e,

Young’s modulus, E,

Centroid

Shell wall

12 Ring
Donnell’'s equations, NxziRh =0.97
©D Euler column-buckling equation
1.0 \-
M. A \ 7
v /\\(

0.8 -y N EA El _y
N5 Rh \ i d.D
Al
n D

\ _ G . 10 &_g
0.6 \ 2d,(1-v)D h
Sanders’ equations
20.9, 0.64
0.4 ( _0 9.064) AN
m=n= 1 \\ \
N %74.\
Sanders’ equations, @ neglected
0'00 10 20 30 40 50

Aspect ratio, L/R

Figure 86. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 87. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 88. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 89. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v =0.3).
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Figure 90. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =50 (v = 0.3).
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Figure 91. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v =0.3).
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Figure 92. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v =0.3).
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Figure 93. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v =0.3).
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Figure 94. Nondimensional buckling loads for compression-loaded ring-stiffened isotropic cylinders
with simply supported edges for R/h =500 (v =0.3).

358



100

50

Nondimensional

buckling
pressure,
pch3
D
20
10
5
2

h

|

Stringer spacing, d,
\
I
\

—
I

Stringer properties:

Area, A,

Centroidal moment of inertia, I
Torsion constant, J,
Eccentricity, e,

Young’s modulus, E,

Centroid

Shell wall
A=_Eh_
1-v
2
_hA
D="12

Sanders’ equations - dead pressur

(0]

Donnell’s equations

- dead pressure

AT
_—
ff{

\\ buckling modes
N ;
T ——————
\\ \
N
/!
Sanders’ equations - live pressure
EAs_, Eily_,
d.A d.D
GJ e
o= =0 Ss_
2d,(1-v)D h =0
[ . - . . . . .
10 20 30 40 50

Aspect ratio, L/R

Figure 95. Nondimensional buckling loads for external-pressure-loaded stringer-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 96. Nondimensional buckling loads for external-pressure-loaded stringer-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 97. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 98. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 99. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 100. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 101. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).

365



10000

1000

Nondimensional
buckling
pressure,

pchS
D

100

10

1
Sanders’ equations

- dead pressure

Donnell’s equations - dead pressure

/

X

N

—~

Sanders’ equations - live

pressure

Ring spacing, d,

Ring properties:

Area, A,

Centroidal moment of inertia, I’
Torsion constant, J,
Eccentricity, e,

Aspect ratio, L/R

L h Young’s modulus, E,
R Centroid
er
L
Shell wall
A= _Eh
1-v°
T EA, E,l
=1 rr =
L dA dp 1 b=hA
12
——_ G _ Gh
2d,(1-v)D h =10
0 10 20 30 40 50

Figure 102. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic

cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 103. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 104. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 105. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 106. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 107. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 108. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 109. Nondimensional buckling loads for external-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 110. Nondimensional buckling loads for external-hydrostatic-pressure-loaded stringer-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 111. Nondimensional buckling loads for external-hydrostatic-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 112. Nondimensional buckling loads for external-hydrostatic-pressure-loaded ring-stiffened isotropic

cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 113. Nondimensional buckling loads for external-hydrostatic-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =50 (v =0.3).
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Figure 114. Nondimensional buckling loads for external-hydrostatic-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 115. Nondimensional buckling loads for external-hydrostatic-pressure-loaded ring-stiffened isotropic
cylinders with simply supported edges for R/h =500 (v = 0.3).
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Figure 116. Nondimensional buckling loads for compression-loaded [(£30),], cylinders
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Figure 117. Nondimensional buckling loads for compression-loaded [(£45)], cylinders
with simply supported edges for R/h =50 and L/R <50.
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Figure 118. Nondimensional buckling loads for compression-loaded [(£60)], cylinders
with simply supported edges for R/h =50 and L/R <50.
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Figure 119. Nondimensional buckling loads for compression-loaded [(£30),], cylinders
with simply supported edges for R/h =500 and L/R <50.
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Figure 120. Nondimensional buckling loads for compression-loaded [(£45),], cylinders
with simply supported edges for R/h =500 and L/R <50.
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Figure 121. Nondimensional buckling loads for compression-loaded [(£60)], cylinders
with simply supported edges for R/h =500 and L/R <50.
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Figure 122. Nondimensional buckling loads for external-pressure-loaded [(£30),], cylinders with
simply supported edges for R/h = 50.
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Figure 123. Nondimensional buckling loads for external-pressure-loaded [(45),], cylinders with
simply supported edges for R/h = 50.
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Figure 124. Nondimensional buckling loads for external-pressure-loaded [(+60) ], cylinders with
simply supported edges for R/h = 50.
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Figure 125. Nondimensional buckling loads for external-pressure-loaded [(£30),], cylinders with
simply supported edges for R/h = 500.
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Figure 126. Nondimensional buckling loads for external-pressure-loaded [(+45),], cylinders with
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Figure 127. Nondimensional buckling loads for external-pressure-loaded [(+60),], cylinders with
simply supported edges for R/h = 500.
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Appendix A
Displacement Formulation of the Buckling Equations

The buckling equations are expressed in a form in which the loading parameter and the
displacements U,(x.y), U (xy), and W(xy) are the primary unknowns as follows. First, equations
(18b) and (18c¢) are substituted into equation (21c) to get

1)

%xx - %11(({1)’() + %12((111))/) + %13(8&) (Ala)

7, =70[8) 7.8 + 72,(%) (Alb)

7, =70,(0.)+ 72,(8) + 72,(4) (Alo)

where

0 |0

%11( ):Allax_'—(Als_Bmch)ay (A2a)

7. )= (Am +B, ;)%(A +B, ;)% (A2b)

AL az az az

%13(): R ( )_Bny_Blzaiyz_zBmm (A2C)
d , | 9d

%21( ) :A1287X+ (A26_826 ch)ay (A2d)

0 c, |0
QR)aX + (A22 + B22 R)ay (A2e)

%23( ): R ( )_Bng—Bzzajyz_szsm (A2f)

c, | d
%31( ) :A1687+ (A“—B“ 2R)ay (A2g)
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where

xx:%ll((lll)") %12((111))’) 7%13(8&)
=, (8) + W)+ (W)

B, 9 o 9’
%13( ) = Rz( ) Dll aXZ D12 a 2 2Dl6 axay
0 c, |0
. ()=B, = (B26 - Dzszé)ay

B, d 0 o
7%23( ): R ( ) Dlz ax2 D22 ) 2 2Dzsm
d c, | d
7%31( ) =By ox + (B66 — Dy 2R)ay
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(A2h)

(A2i)

(A3a)

(A3b)

(A3c)

(Ada)

(Adb)

(A4c)

(A4d)

(Ade)

(A4f)

(Adg)



Next, equations (A3) and (A4) are substituted into (23c) and (23d) to get

(1) )

Q.= qn((lll)x) + qlz(uy) + q]s((‘;‘})

and

(1) (1)

= qz,(ux) + QZZ(uY) + q23(w)

where

2

3¢,) o’ c d c, |0
=(B]6+D 2)82+(B12+B66+[2D12+3D66] 2)8x8y+(B26+D z)ayz

2R %R

) 0

qn( )2877%13( )+W%33( )
B, d B, 9 3’ 9’ 3’ )
:%&+%W—Dll§—(Dlz+2D56)W 3D16ﬁ_ 2687}13
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(Adh)

(A41)

(A5a)

(A5b)

(A6a)

(AGb)

(A6c¢)

(A6d)



Abe)
3¢, o’ 5¢,| o c,\ o (
= (B66 + D66 2R2 )axz + (2B26 + D26 ZRZ)aXay + (Bzz + D22 R2)8y2
d d
Wl )= ox 7 ) + o057 ) a6
B, 0 B, 0 o’ 9’ 3’ 3’
- R &4— R W_D16§_3D26W_(D12+2D66)m_D2287y3

Equations (26) and (A1) - (A6) are substituted into equations (23) to get

2()20)4() 1) 5.006.04.0)] )
‘412( ) ‘422( ) ‘423( ) \%)Y/ =P 421( ) 422( ) 423( ) \%)YI (A7)

2()2.040|" 9090407
where
9’ c, 3’ c, C, 9’
111( ) = All g + (ZAIG - B]s R)m + (A66 - B66 E + Dse 4R2)ayz (A8a)

2 ):(A“B sCQ)az +

usﬁa

c 3¢, | @
At A+ |But By —Di 3 5yt
X2 12 66 [ 12 66 R 66 4R2) X y

) (A8b)

c c, |0
Ayt By —Dy—5 |
( 26 26 2R 26 2R2)ay2
3 3
A, 9 1 c, |d J c,) ?
-413( ): R]Z ax+§(A26 - By 2125{)8}/_B” g - (BIZ T 2B — Dy Rz)axayz +

(A8c)

3

3’ P
C C
(DIG ﬁ - 3B16)m + (Dzszﬁ - Bzé)ays
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and

c 9, | 9’ 5¢ 3c,| d
‘422( ) - (A()s + 3B66 Ez + D66 4R22)a)(2 + (2A26 + B26f2 + D26 RzQ\)aXay
C ¢, |9
(Azz + 2B22 Ez + D22 EZz 87}/2
3¢c,\ d c,\ 0 3¢,) 9
123( ) - 11{(A26 + B26 2]{)3)& + Il{(Azz + Bzsz)ay - (Bm + Dm 21{)8)8
c o’ c o’ c
- (3B26 + 7D, 2}2{)8)(8}]2 - (Blz +2B, + [Dlz + 3D66:|Rz)ax28y - (Bzz + Dzziz
a4 a4 a4 a4 a4
‘133( ) = D11 y + 4D16 m + 2(D12 + 2D66)ax278yz + 4D26 aTay3 + Dzz aiy“
2B, 9" 2B, 0 4By O +ﬂ( )
R o R gy R oty g
S 9|(Lw o )2
¢11( ) 4 ay[(LI”XX+L24yy) ay]
Cl 0 0
é]z( ) == Z aay[(Ll(ﬂ)xx + Lz(ﬂ)yy) aX]
d
613( ) = C4Q3q§ aix
Cl 0 0 a
éz]( ):_482([(141(4) Lz(ﬂ)yy)ay]
_ C, (0) C, a (0) 0 a Q
¢22( ) -T2 LZ”yy( ) + 4 0x (Llﬂxx + LGyy) ox |~ Cats
c, d d
gzs() = R(ngyy ay L3(22xy &) + C4Q3q§ W
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3

)

oy’

(A8d)

(A8e)

(A8f)

(A9a)

(A9b)

(A9c¢)

(A9d)

(A9e)

(A9)



g.()= ZaK LY g—x +L, g—y) 4 _(%(L;’zxy g—x —L%, g—y +ed, % + %1( )
The boundary conditions given by equations (25) are expressed as
8. (0)+8 (V) +B,(W)=0 or ¥ =0
.[0)+ (1) BW) =B (1) b)) o U =0
B[]+ B.(0)+ BV 5| B0+ B or W=0
o
g (W)+& (V)+B, (W)=0 or S-=0

where

3c 0 c 3¢, | 0
gzl( ) = (Alé + 2_Rz Bl6)& + (A66 + By ﬁ — Dy Ri)yy

= C,C,

B()-- S ]2
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3c 9¢c, | d 5¢ 3c, | d
?22( ) (A66 + B66 Rz D66 4R22)a (AZG + B26 2 2 D26 2R22)ay (Al ld)

= 1C2 0 0 0
B )= gL L5 (Alle)

) (A119)

_ az C, 82 c, az
gm( ) Bn aX2+(3B16_D15 2R)8Xay+2(B“_D“ m)ayz (Allg)
3¢, |0 o
232( ) - (BIG Dy 2R) (B12 + 2B+ [D12 + 3D6(] Ixdy +
52 (A11h)
2(B% + D, ")
R |oy
- 0 ©C2
B )=-L% () (Allh)
B,d 2B,9d . O 3 O . 9 :
R ax T R gy ~Duo s (D +4D66)axay 4Dy~ P g s (AL
= 0 a 0 a A
B )=-L%xt L% gy (A1)
d c, | d )
B )=Bug (Bm‘DlszR)ay (A1)
3c, ) C, 0
I O
B, 9’ 3’ d’
g43( ): R ( ) D, Q_DIZ 87}/2_2])16 Ixdy (A]]])
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For the case of passive loads,

a(12()20)] Jana020]w) [202090|m
2l)<l)20)| A7) (5 -Ral el w

00| 20a020|¥] Ta0s0a0]

where

G- B ) Ao
g ):_jgy[(w + L )§X] (A13b)
G.()=cla, o (A13¢)
¢;():_3§([(ng ", )gy] (a130

* *0)* 0 0 a * .
g.()-- % L)+ 5 aaxl(L‘(”) L )axl —clE() (Al3e)

* 2 *0)* d 0 + -0
¢23() = ;(L;ﬂ)yy W L3(”) Xy 7) + C4Q3q€ W (A13ﬂ
: d  oq,
g, ()=cd ‘qg % ol )] (A13g)

(A13h)



Likewise, the boundary conditions become

B, (0)+B (V)+B (W)=0 or U =0 (Alda)

or U.=0 (A14b)

or W=0 (Al4c)
(1)
B ()& (8)+B,(W)=0 o =0 (Al4d)
where

2.() -]y (Al5a)
2.()-° e LA A (A15b)
Z.()-- L2, 2() (A15c)

,g,* __ Lo 0 Lo 0
() o TL gy (A15d)
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Appendix B
Coefficients in Equation (112)

The stiffness coefficents in equation (112) are given by

2nR Lag 5 2nR L 4
C
AHJ f(a_x“)dXder(A%— °6R2+D j f > dd +
0 0

(B1)
2nR L
(2A16B,6°RZ)J J (afxﬂ %l)dxdy
0 0
2nR L Yy 2nR L M M
11 2 302 11 2
k (A12+BlzR)J J ( X )d d + A1r+B1(2R J Jr d d +
0 0
Rt M A
3c CL
(A«+BmR e J J & ax” d dy + (B2)
2nR L a 3
(A26 + B26R 26 J’ J’ g“ 422 dy
2nR L
k22 = (‘A22+13222C2 +D22 z f J
R
2nR L
(A%+B“3§2+D - d dy + (B3)

2nR L 2nR L
8 )
(2A,6+B%502 +D263C2 f J é” 422 dxdy — [ J ) dxdy
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28+l [ (Yo, o L
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0 a ) 9
—BHJ' (_“ x33 d dy Blzf f - - d d - J f 1 833
0 JO
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2mR L 2R
MR L ) 2R pL s
[ i1
o Jo o Jo
L MR L
(%33)2dxdy - 2L3J f (% %}f})dxdy
0 0 0

(B11)

(B12)
2nR
_ c.L,

Using equations (110) gives

2R L )
EM” _ i 3R L \’.2
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0 0
2nR L )
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Using these expressions for the integrals, the stiffness coefficients given by equations (B1)
through (B6) become
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