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Abstract--This paper describes a multibody dynamics 
algorithm formulated for parallel implementation on 
multiprocessor computing platforms using the divide-and-
conquer approach. The system of interest is a general 
topology of rigid and elastic articulated bodies with or 
without loops. The algorithm divides the multibody system 
into a number of smaller sets of bodies in chain or tree 
structures, called “branches” at convenient joints called 
“connection points”, and uses an Order-N (O (N)) 
approach to formulate the dynamics of each branch in 
terms of the unknown spatial connection forces. The 
equations of motion for the branches, leaving the 
connection forces as unknowns, are implemented in 
separate processors in parallel for computational 
efficiency, and the equations for all the unknown 
connection forces are synthesized and solved in one or 
several processors. The performances of two 
implementations of this divide-and-conquer algorithm in 
multiple processors are compared with an existing method 
implemented on a single processor. 
 
Keywords-Multibody dynamics; multiple processors; divide-
and-conquer algorithm; computational efficiency; Order-N. 

I.  INTRODUCTION 

The Software, Robotics and Simulation Division (SRSD) of 
the NASA Lyndon B. Johnson Space Center provides 
mathematical modeling and simulation to support engineering 
analyses and crew training activities for the center. The 
division currently uses a mass matrix-based formulation to 
simulate the dynamics of on-orbit robotic manipulators 
implemented in a single processor of the simulation host 
computer. The SRSD has recently taken up the task of 
developing real time and non-real time simulation models for 
space exploration vehicles and mechanisms which consist of a 
large number of rigid and flexible bodies configured as 
structures with multiple branches, both with and without loops. 
In the pursuit of this task the division is in the process of 
developing and evaluating generic multibody dynamics code 
using parallel processing that would also allow the necessary 
flexibility and control for use in different simulations. This 
paper presents an approach that was considered and evaluated. 

II. PREVIOUS WORK 

Dynamics simulation of multibody systems using 
algorithms that can be computed in parallel has been an active 
research area for many years. Fijani et al. [1] developed the 
first known algorithm that can be parallelized to derive a time 
O(log N) algorithm with O(N) processors. Featherstone [2] 
proposed a divide-and-conquer algorithm (DCA) O(log N) 
formulation for chains of articulated bodies which was also 
generalized to handle tree and loop configurations [3]. 
Anderson and Duan [4] considered a hybrid direct and iterative 
solution scheme that allows a substantially higher degree of 
parallelization than normally obtainable with conventional 
recursive O(N) procedures. Their method is applicable to any 
general system of rigid bodies which may contain arbitrary 
joint types, multiple branches and/or closed loops.  Based on 
the DCA approach by Featherstone which may not be 
computationally efficient in the presence of a modest number 
of processors, Critchley and Anderson [5] demonstrated  that 
efficiency can be improved by breaking the original DCA 
system into subsystems where faster sequential techniques can 
be applied.  

In this paper, an alternate formulation is developed and 
implemented for solving the forward dynamics of a general 
system of multiple flexible/rigid bodies with constrained 
motion which can be implemented in multiple processors. The 
DCA techniques are also adopted in the final phase of the 
solution to avoid a large square matrix inversion operation. 

III. FORMULATION 

Figure 1 shows a multibody system consisting of 18 bodies 
and having two loops. The bodies are connected by joints 
having up to six degrees of freedom. The connections between 
bodies 3 and 8 and between bodies 11 and 14 are considered 
as closures of loops 0 and 1 respectively. Body 0 (also called 
the base body of the system) is the body chosen according to 
convenience, it is tracked with respect to an inertial frame. 
 

Figure 2 shows the same system divided into four branches 
with the loops cut at convenient points. After loop connections 
are cut and replaced with equal and opposite forces that 
maintain the loops, each branch assumes a tree structure. The 
branch containing the base body of the system is labeled 
Branch 0. A branch adjacent to another branch in the direction 



  
 
Figure 1.  Multibody System Configuration 

  
Figure 2. Multibody System Divided into Branches with 
Loops Cut 

 
of Branch 0 is called its previous branch. Other adjacent 
branches to a branch are called its child branches. The body of 
a branch that connects to the previous branch is labeled the 
base body or Body 0 of the branch. Connections at a cut loop 
are called loop connections. Other connections between 
branches are called branch connections. Connection points are 
defined as points where two branches meet. Connection point 
0 of a branch is located on its base body at the inboard end of 
the proximal joint and connects rigidly with the connection 
point on the previous branch. 
 

The connection points and spatial connection forces 
between the branches that act at the connection points are 

shown in Figure 2 as j
iO and j

iF respectively where j is the 

index for the branch and i is the index for connection point of 
the branch. The connection forces are among the unknowns to 
be solved for. The connection forces between two branches are 
equal and opposite. They are expressed in the respective 

branch reference frames and therefore a frame transformation 
is needed, as shown in the figure, when the two are used in an 

equation. k
jT is the 6x6 spatial transformation matrix needed 

to pre-multiply a spatial vector expressed in branch j 
coordinate frame in order to express it in that of the branch k 
frame. 
 

For the connection points at a cut loop, one end is called 
the parent, and the other end is called the follower. They may 
be arbitrarily assigned, but in the present formulation, where 
one connection point is considered fixed on one body and the 
other may move on the connecting body, the former is called 
the parent and the latter is called the follower. The spatial 
force experienced by the parent connection point is defined as 
the corresponding loop force and is labeled i,LF where i is the 

loop index. The spatial force experienced by the follower 
connection point is the negative of the force on the parent 
point with appropriate frame transformation. 
 

Since at a connection point the two connection forces are 
equal and opposite, there is only one unknown spatial force at 

any connection. Our goal is to determine the quantities j
0F and 

i,LF for j = 1 to bN -1 and i = 0 to N -1, where bN and N

are the number of branches and loops of the system. If needed,
0
0F is computed afterwards within the solution for dynamics of 

Branch 0. 

 
A. Equations of A Branch 

Treating each branch as an independent multibody system, 
its equations may be derived using known methods like the 
traditional mass matrix or Order-N with two modifications. 

The first modification would have the connection forces j
iF

appear explicitly in the expressions for the derivatives of the 
generalized speeds of the system. In the usual formulation of 
multibody system equations these forces are treated as known 
quantities. The second modification involves derivation of the 
expressions for the acceleration of connection points in terms 
of connection forces using the solution obtained for the time 
derivatives of generalized speeds and kinematics. These 
modifications involve some effort but are straight forward and 
are not being reported in this paper. The spatial acceleration of 
a connection point is obtained as 

j
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j
k,i

j
i

j
i FHhA

j





     (1.1) 

where j
iA is the spatial inertial acceleration of the connection 

point i of branch j, j
ih is a 6x1 array made of known forces, 

generalized coordinates and generalized speeds of the branch, 
j
k,iH is a 6x6 matrix made of the generalized coordinates of 



the branch, and jN is the number of connection points of the 

branch. 
 

B. Solution Method 1: Simultaneous Determination of 
Connection Forces Via Connection Matrix 

In this method we create a connection equation for the 
system and solve for all connection forces at once. We can see 

that j
0

j
k FF   when k = 0, n

0
j

n
j

k FTF   when the connection 

point k has a child branch n connected to it,  r,L
j

k FF  when 

the connection point k is the parent connection point of loop r, 

and r,L
j

s
j

k FTF  when the connection point k is the follower 

connection point of loop r with the parent located on branch s. 
The parameters n, r and s for any branch j and its connection 
point k are determined in the initialization pass of the 
simulation. With the above information and defining bN and 

N as the number of branches and number of loops 

respectively, we can write: 
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where 

 j
0,i

j
k,i HM    when k = 0, 

          j
n

j
k,i TH    when connection point k is attached to the 

                               child branch n 
           = 0   Otherwise 

 j
k,i

j
rN,i HM

b
  when connection point k is the parent of 

                             loop r 

           j
s

j
k,i TH   when connection point k is the follower 

                      point of loop r, with parent on branch s 
            = 0 Otherwise 
 

1) Loop Spatial and Constraint Force 
Loop closure points may allow degrees of freedom in 

rotation and/or translation. Accordingly, the spatial force at 
loop r parent point may be expressed by the equation 

r,Fr,Fr,Lr,Lr,L F̂PF̂PF      (1.3) 

where r,LP and r,FP are ]N6[ r,c and )]N6(6[ r,c
matrices made of columns of spatial unit vectors in the 
constrained and free directions respectively, where r,cN is the 

number of constraints in the loop r. r,LF̂ is the array of r,cN

constraint forces to be determined and r,FF̂ is the array of 

r,cN6  forces in the free directions. In the current derivation 

it is assumed that r,FF̂ is fully known, even though it may be 

formulated to be related to r,LF̂ . 

2) Branch Connection Equations 
Consider the connection between a branch i and its previous 
branch p. Let m be the connection point of branch p attached 

to connection point 0 of branch i. The spatial accelerations of 

the two points must be equal, i.e., p
m

i
p

i
0 ATA  . Using Equation 

(1.2) and (1.4) we then get the equation for connection 
between two branches: 
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for  i = 1 to 1Nb      (1.4) 
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3) Loop Connection Equations 
Consider the loop j. Let the branch id and connection node 

id of the parent node be n and m respectively and those of the 
follower node be s and r respectively. Accelerations of the 
parent node and follower nodes in the constrained directions 
contained in the matrix j,LP must match. This condition results 

in the following equation 

0]VCXK[PVP]AAT[P jjjj
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T

j,L
n
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n
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      (1.5) 
where jV and jX are spatial velocity and position of the 

follower with respect to the parent constrained point expressed 

in parent branch frame. ]VCXK[P jjjj
T

j,L  is the 

Baumgarte’s stabilization term [6] for the constraint, jK and 

jC are the stabilization constants. jV , jX and j,LP are 

obtained from kinematic equations. Using Eqs. (1.2) and (1.3) 
in Eq. (1.5) one gets the following loop connection equations. 
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 for j = 0 to 1N     (1.6) 
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Equations (1.4) and (1.6) can be written in one compact 
equation 

 ĥFM̂ c      (1.7) 

where cF is an array containing k
0F and r,LF̂ . M̂ is a 

symmetric positive definite matrix which is called the 
connection matrix. This equation corresponds to Eq. (35) of 



[4]. After Equation (1.7) is solved, k
0F and r,LF̂ are extracted 

from cF , and spatial parent loop force r,LF is generated using 

Equation (1.3). The forces k
0F and r,LF are used to generate 

the equal and opposite forces exerted on the other ends of the 
connections, completing computation of all forces that act on 
the individual branches. The connection forces are then used 
in the individual group equations to generate their solutions. 
 

C. Solution Method 2: Sequential Determination of 
Connection Forces 

Eq. (1.5) requires inversion of a large square matrix. Due to 
overheads created by the Portable Operating System Interface 
for Unix (POSIX) thread function calls, parallelizing the 
solution of this equation for improving its computational 
efficiency may not always be successful. We could instead 
determine the connection forces sequentially using the divide-
and-conquer concept for multiple articulated bodies described 
in [2] to achieve better computational efficiency. As proof of 
concept, a system with five branches described in the next 
section was considered. Eq. (1.1) can be rewritten for each of 
the 5 branches {0,1,2,3,4} of the system as an articulated body 
with two handles (single or multiple joints) as follows (In this 
method all quantities are expressed in the coordinate frame of 
the base body of branch 0). 

For branch 0,  
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For branch 1, 
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Similarly, expressions for the handle accelerations can be 
obtained for branches 2, 3 and 4. For a rigid connection which 
is the case for all five connection points of the system of Figure 
3, the connection forces at the interface points between 

branches 0 and 1 are equal and opposite, i.e., }1{
1

}0{
2 F̂F̂  , and 

the accelerations of the branches at these points are related by 

}0{
2

}1{
1 ââ       (2.5) 

the equations (2.1) through (2.4) can be used to combine the 
branches 0 and 1 into a subsystem {0,1} defined by 
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2 GĤĥĥ      (2.12) 

  1}0{
22

}1{
11

}1,0{ ĤĤW
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These connection forces can be computed using the formula 
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when the external forces at the handles of the subsystem {0,1} 
and the internal active joint forces are known. Note that this 
computation only requires the inversion of a 12 x 12 matrix. 
Continue with combining branches 3 and 4 into the subsystem 
{3,4}, then combining the subsystem {0,1} with the branch 
{2} into the subsystem {0,1,2}, and finally combining the 
subsystems {0,1,2} and {3,4} into the big system {0,1,2,3,4} 
to solve for the connection forces across the interface of these 
subsystems. The computation of all connection forces in terms 
of matrix inversions for this approach turns out to include one 
6 x 6 operation and three 12 x 12 operations which require less 
computer time than the original 42 x 42 matrix inversion 
operation. 

 



IV. TEST MODEL AND IMPLEMENTATION 

A conceptual Multi-Mission Space Exploration Vehicle 
(MMSEV) similar to one shown in Fig. 3 is simulated using 
the C programming language on a 3.07 GHz i386 computer 
platform with eight processors. This system consists of a crew 
module modeled as a rigid body and three identical 
articulating legs and two identical manipulator arms attached 
to the crew module. Each leg and manipulator has seven 
revolute joints to provide rotation in the sequence roll, yaw, 
pitch, pitch, pitch, yaw and roll. Each leg and manipulator arm 
has two long elements in the middle, which are called booms. 
The booms are considered flexible in the flexible model of the 
system. Booms in legs and the manipulators have eight and 
four flexible degrees of freedom respectively. Other elements 
of legs and manipulators are considered rigid. The ends of two 
manipulator arms rigidly connect to a rigid payload (not 
shown in the figure). The free ends of legs are rigidly 
anchored to the planet or the asteroid, which for the purpose of 
simulation is arbitrarily considered as a rigid body. Fictitious 
mass properties were used for evaluation of the simulation. 

 
The system is divided into five branches. Branch 0 consists of 
the base body, and one leg. It has 13 rigid and 16 flex degrees 
of freedom (dofs). Branch 1 consists of the second leg and the 
crew module. Branch 2 consists of the third leg. They have 7 
rigid and 16 flex DOFs each. The two manipulators constitute 
Branches 3 and 4. Each of them branches has 7 rigid and 8 
flex DOFs. The system has a total of 41 rigid and 64 flex 
degrees of freedom. Equations of individual branches are 
implemented using the Order-N approach. Each computation 
cycle of the system consists of six consecutive steps. Step 1 is 
a forward pass to determine the position and velocity states of 
the bodies of each branch starting with the base body, using 
the generalized coordinates and generalized speeds of the 
branch. Step 2 is a backward pass, starting with the outermost 
bodies, to implement the dynamics equations. Step 3 

determines the quantities j
k,iH and j

ih of Equation (1.1). Step 4 

generates the connection forces using Method 1 or Method 2. 
Step 5 determines the time derivatives of the generalized 
speeds and integrates them to update the generalized speeds 
and generalized coordinates of the branch. Steps 1, 2 and 3 
were executed together in 5 processors in parallel, one for 
each branch. Step 4 in Method 1 was performed in two sub-

steps 4a and 4b. In Step 4a the matrix M̂ is generated in 7 
separate processors, one for each row. Step 4b solves Eq. (1.5) 
using one or several processors. Step 4 could also be 
performed using Method 2. Recall that equation (2.17) 
provides the formula for computing the connection forces 
between branches {0} and {1}. This formula can be similarly 
obtained for the connection forces between other 
branches/subsystems. Step 4 in Method 2 then computes 
sequentially the connection forces across the interface between 
subsystems {0,1,2} and{3,4}, {3} and {4}, {0,1} and {2}, and 
finally between {0} and {1} with the exception of the 
connection forces between {3} and {4} which can be 
calculated in parallel with other connection forces after the  

 
Fig. 3 A Conceptual Multi-mission Space Exploration Vehicle 

 
computation of the connection forces between {0,1,2} and 
{3,4}. 
 

Step 5 was executed in 5 processors, one for each branch. 
The parallel implementation was done using standard POSIX 
threads utility function calls. 
 

V. RESULTS AND DISCUSSIONS 

Table I shows the total computation times for each branch 
and loop. They were obtained by adding computation times for 
different segments of the code corresponding to the five steps 
mentioned earlier, from a code without parallelization. In the 
parallelized code computations were distributed such that one 
processor was assigned to one group or one loop only. Since 
different amounts of computations are involved in different 
groups and loops the computation was not equally distributed 
between the processors. However, distributing computations 
otherwise would have resulted in a very complicated and 
difficult to maintain code. Table II shows other relevant timing 
data, with and without parallelization. All times are in seconds 
and for one computation cycle. Rigid and Flex models refer to 
cases where the booms are considered rigid and flexible, 
respectively. 

It was found that the speed-up ratio, defined as the ratio of 
actual time for one cycle of computations with parallelization 
to that without parallelization, was 1.64 and 1.72 for rigid and 
flex models respectively. Even though 5 and 7 processors were 
used in different parts of the code, these numbers were low for 
three reasons: (1) a significant amount (22.9% for rigid, 
17.34% for flex) of code could not be parallelized, (2) 
computations could not be distributed evenly for coding 
considerations and (3) parallelization overhead involved in the 
POSIX function calls. Since most of the time 5 processors were 
used, a speed up of at least 2.60 was expected, for example, for 
the rigid model using Amdahl’s Law [7]. The primary reason 
for getting a lower number is the uneven distribution of 
computations to the processors; computation in processor 1was 
significantly more than others because branch 1 has more 
connection points. 

The total non-parallelized computation time presented in 
Table II was obtained by subtracting the sum of branch and 
loop times from the total cycle time.  The expected time with 
parallelization was determined by adding the maximums for 
branch time and loop time to non-parallelized computation 
time. 



Table III presents the timing data for Step 4 implemented 
by Methods 1 and 2. It may be seen that Method 2 did not 
reduce the computation time for Step 4 for this problem. 

TABLE I. TIMING DATA (SECONDS) FOR PARALLELIZED CODE 

SEGMENTS  

 Rigid Model Flex Model

Branch 0 1.115e-04 1.873e-04

Branch 1 2.579e-04 4.343e-04

Branch 2 9.434e-05 1.727e-04

Branch 3 8.616e-05 1.249e-04

Branch 4 8.421e-05 1.237e-04

Loop 0 1.068e-05 1.110e-05

Loop 1 8.466e-06 8.634e-06

Loop 2 4.779e-06 4.786e-06

Total for Parallelized 
Computations  

65.808e-05 106.744e-5

 

TABLE II. TIMING DATA (SECONDS) FOR ONE CYCLE FOR 

METHOD 1  

 Rigid Model Flex Model

Total, without 
parallelization 

85.37e-05 129.13e-05

Total, with 
parallelization, 
Method1 

52.00e-05 75.00e-05

Speed-Up Ratio 1.64 1.72 

Total non-parallelized 
Computations 

19.56e-05 22.39e-05

Expected total with 
parallelization 

46.42e-05 66.93e-05

Parallelization 
overhead 

5.58e-05 8.07e-05

Solution of Eq. (3.10) 6.58e-05 6.59e-05

 

TABLE III. TIMING DATA (SECONDS) FOR STEP 4 FOR 

METHODS 1 & 2  

 Rigid Model Flex Model

Method 1: step 4a 7.200e-05 7.203-05

Method 1: step 4b 6.583-05 6.595-05

Total for Method 1 1.378e-04 1.380e-04

Total for Method 2 1.650e-04 1.640e-04

 

Attempts to speed up solution of Eq. (1.5) by parallelization 
were not successful. This was because the overhead involved in 
in the parallelization of Choleski solution exceeded  the  saving 

TABLE IV. Timing Results (seconds) for Different Methods  

Rigid Flex

Mass Matrix (existing code) 57.40e-05 406.3e-05

Method 1 without parallelization 85.37e-05 129.1e-05

Method 1 with parallelization 52.00 e-05 75.00e-05

Method 2 with parallelization 53.60 e-05 76.54e-05

 

in computation for this problem. Since the time taken for this 
step was small compared to the total cycle time, the 
improvement would not have been significant anyway. 

Table IV presents the comparison of computing cycle times 
for methods presented here and the existing mass-matrix based 
computation. The computation time for Method 1 where the 
system is modeled as a single branch without parallelization is 
also presented. 
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