
An Efficient Solution Method for Multibody
Systems with Loops Using Multiple Processors

Tushar K. Ghosh, Luong A. Nguyen
National Security Solutions

L-3 Communications
Houston, Texas, USA

Leslie J. Quiocho
Software, Robotics and Simulation Division

NASA Johnson Space Center
Houston, Texas, USA

Abstract--This paper describes a multibody dynamics
algorithm formulated for parallel implementation on
multiprocessor computing platforms using the divide-and-
conquer approach. The system of interest is a general
topology of rigid and elastic articulated bodies with or
without loops. The algorithm divides the multibody system
into a number of smaller sets of bodies in chain or tree
structures, called “branches” at convenient joints called
“connection points”, and uses an Order-N (O (N))
approach to formulate the dynamics of each branch in
terms of the unknown spatial connection forces. The
equations of motion for the branches, leaving the
connection forces as unknowns, are implemented in
separate processors in parallel for computational
efficiency, and the equations for all the unknown
connection forces are synthesized and solved in one or
several processors. The performances of two
implementations of this divide-and-conquer algorithm in
multiple processors are compared with an existing method
implemented on a single processor.

Keywords-Multibody dynamics; multiple processors; divide-
and-conquer algorithm; computational efficiency; Order-N.

I. INTRODUCTION

The Software, Robotics and Simulation Division (SRSD) of
the NASA Lyndon B. Johnson Space Center provides
mathematical modeling and simulation to support engineering
analyses and crew training activities for the center. The
division currently uses a mass matrix-based formulation to
simulate the dynamics of on-orbit robotic manipulators
implemented in a single processor of the simulation host
computer. The SRSD has recently taken up the task of
developing real time and non-real time simulation models for
space exploration vehicles and mechanisms which consist of a
large number of rigid and flexible bodies configured as
structures with multiple branches, both with and without loops.
In the pursuit of this task the division is in the process of
developing and evaluating generic multibody dynamics code
using parallel processing that would also allow the necessary
flexibility and control for use in different simulations. This
paper presents an approach that was considered and evaluated.

II. PREVIOUS WORK

Dynamics simulation of multibody systems using
algorithms that can be computed in parallel has been an active
research area for many years. Fijani et al. [1] developed the
first known algorithm that can be parallelized to derive a time
O(log N) algorithm with O(N) processors. Featherstone [2]
proposed a divide-and-conquer algorithm (DCA) O(log N)
formulation for chains of articulated bodies which was also
generalized to handle tree and loop configurations [3].
Anderson and Duan [4] considered a hybrid direct and iterative
solution scheme that allows a substantially higher degree of
parallelization than normally obtainable with conventional
recursive O(N) procedures. Their method is applicable to any
general system of rigid bodies which may contain arbitrary
joint types, multiple branches and/or closed loops. Based on
the DCA approach by Featherstone which may not be
computationally efficient in the presence of a modest number
of processors, Critchley and Anderson [5] demonstrated that
efficiency can be improved by breaking the original DCA
system into subsystems where faster sequential techniques can
be applied.

In this paper, an alternate formulation is developed and
implemented for solving the forward dynamics of a general
system of multiple flexible/rigid bodies with constrained
motion which can be implemented in multiple processors. The
DCA techniques are also adopted in the final phase of the
solution to avoid a large square matrix inversion operation.

III. FORMULATION

Figure 1 shows a multibody system consisting of 18 bodies
and having two loops. The bodies are connected by joints
having up to six degrees of freedom. The connections between
bodies 3 and 8 and between bodies 11 and 14 are considered
as closures of loops 0 and 1 respectively. Body 0 (also called
the base body of the system) is the body chosen according to
convenience, it is tracked with respect to an inertial frame.

Figure 2 shows the same system divided into four branches
with the loops cut at convenient points. After loop connections
are cut and replaced with equal and opposite forces that
maintain the loops, each branch assumes a tree structure. The
branch containing the base body of the system is labeled
Branch 0. A branch adjacent to another branch in the direction

Figure 1. Multibody System Configuration

Figure 2. Multibody System Divided into Branches with
Loops Cut

of Branch 0 is called its previous branch. Other adjacent
branches to a branch are called its child branches. The body of
a branch that connects to the previous branch is labeled the
base body or Body 0 of the branch. Connections at a cut loop
are called loop connections. Other connections between
branches are called branch connections. Connection points are
defined as points where two branches meet. Connection point
0 of a branch is located on its base body at the inboard end of
the proximal joint and connects rigidly with the connection
point on the previous branch.

The connection points and spatial connection forces
between the branches that act at the connection points are

shown in Figure 2 as j
iO and j

iF respectively where j is the

index for the branch and i is the index for connection point of
the branch. The connection forces are among the unknowns to
be solved for. The connection forces between two branches are
equal and opposite. They are expressed in the respective

branch reference frames and therefore a frame transformation
is needed, as shown in the figure, when the two are used in an

equation. k
jT is the 6x6 spatial transformation matrix needed

to pre-multiply a spatial vector expressed in branch j
coordinate frame in order to express it in that of the branch k
frame.

For the connection points at a cut loop, one end is called
the parent, and the other end is called the follower. They may
be arbitrarily assigned, but in the present formulation, where
one connection point is considered fixed on one body and the
other may move on the connecting body, the former is called
the parent and the latter is called the follower. The spatial
force experienced by the parent connection point is defined as
the corresponding loop force and is labeled i,LF where i is the

loop index. The spatial force experienced by the follower
connection point is the negative of the force on the parent
point with appropriate frame transformation.

Since at a connection point the two connection forces are
equal and opposite, there is only one unknown spatial force at

any connection. Our goal is to determine the quantities j
0F and

i,LF for j = 1 to bN -1 and i = 0 to N -1, where bN and N

are the number of branches and loops of the system. If needed,
0
0F is computed afterwards within the solution for dynamics of

Branch 0.

A. Equations of A Branch

Treating each branch as an independent multibody system,
its equations may be derived using known methods like the
traditional mass matrix or Order-N with two modifications.

The first modification would have the connection forces j
iF

appear explicitly in the expressions for the derivatives of the
generalized speeds of the system. In the usual formulation of
multibody system equations these forces are treated as known
quantities. The second modification involves derivation of the
expressions for the acceleration of connection points in terms
of connection forces using the solution obtained for the time
derivatives of generalized speeds and kinematics. These
modifications involve some effort but are straight forward and
are not being reported in this paper. The spatial acceleration of
a connection point is obtained as

j
k

1N

0k

j
k,i

j
i

j
i FHhA

j

 (1.1)

where j
iA is the spatial inertial acceleration of the connection

point i of branch j, j
ih is a 6x1 array made of known forces,

generalized coordinates and generalized speeds of the branch,
j
k,iH is a 6x6 matrix made of the generalized coordinates of

the branch, and jN is the number of connection points of the

branch.

B. Solution Method 1: Simultaneous Determination of
Connection Forces Via Connection Matrix

In this method we create a connection equation for the
system and solve for all connection forces at once. We can see

that j
0

j
k FF when k = 0, n

0
j

n
j

k FTF when the connection

point k has a child branch n connected to it, r,L
j

k FF when

the connection point k is the parent connection point of loop r,

and r,L
j

s
j

k FTF when the connection point k is the follower

connection point of loop r with the parent located on branch s.
The parameters n, r and s for any branch j and its connection
point k are determined in the initialization pass of the
simulation. With the above information and defining bN and

N as the number of branches and number of loops

respectively, we can write:

1N

0r
r,L

j
rN,i

k
0

1N

1k

j
k,i

j
i

j
i FMFMhA

b

b

 (1.2)

where

 j
0,i

j
k,i HM when k = 0,

 j
n

j
k,i TH when connection point k is attached to the

 child branch n
 = 0 Otherwise

 j
k,i

j
rN,i HM

b
 when connection point k is the parent of

 loop r

 j
s

j
k,i TH when connection point k is the follower

 point of loop r, with parent on branch s
 = 0 Otherwise

1) Loop Spatial and Constraint Force
Loop closure points may allow degrees of freedom in

rotation and/or translation. Accordingly, the spatial force at
loop r parent point may be expressed by the equation

r,Fr,Fr,Lr,Lr,L F̂PF̂PF (1.3)

where r,LP and r,FP are]N6[r,c and)]N6(6[r,c
matrices made of columns of spatial unit vectors in the
constrained and free directions respectively, where r,cN is the

number of constraints in the loop r. r,LF̂ is the array of r,cN

constraint forces to be determined and r,FF̂ is the array of

r,cN6 forces in the free directions. In the current derivation

it is assumed that r,FF̂ is fully known, even though it may be

formulated to be related to r,LF̂ .

2) Branch Connection Equations
Consider the connection between a branch i and its previous
branch p. Let m be the connection point of branch p attached

to connection point 0 of branch i. The spatial accelerations of

the two points must be equal, i.e., p
m

i
p

i
0 ATA . Using Equation

(1.2) and (1.4) we then get the equation for connection
between two branches:

i

1N

0r
r,LrN,i

k
0

1N

1k
k,i ĥFM̂FM̂

b

b

for i = 1 to 1Nb (1.4)

where
i

k,0
p

k,m
i
pk,i MMTM̂

r,L
i

rN,0
p

rN,m
i
prN,i P)MMT(M̂

bbb

1N

0r
r,Lr,F

p
rN,m

i
p

i
rN,0

p
m

i
p

i
0i F̂P]MTM[hThĥ

bb

3) Loop Connection Equations
Consider the loop j. Let the branch id and connection node

id of the parent node be n and m respectively and those of the
follower node be s and r respectively. Accelerations of the
parent node and follower nodes in the constrained directions
contained in the matrix j,LP must match. This condition results

in the following equation

0]VCXK[PVP]AAT[P jjjj
T

j,Lj
T

j,L
n
m

s
r

n
s

T
j,L

 (1.5)
where jV and jX are spatial velocity and position of the

follower with respect to the parent constrained point expressed

in parent branch frame.]VCXK[P jjjj
T

j,L is the

Baumgarte’s stabilization term [6] for the constraint, jK and

jC are the stabilization constants. jV , jX and j,LP are

obtained from kinematic equations. Using Eqs. (1.2) and (1.3)
in Eq. (1.5) one gets the following loop connection equations.

jN

1N

0r
r,LrN,jN

k
0

1N

0k
k,jN bbb

b

b
ĥFM̂FM̂

 for j = 0 to 1N (1.6)

where

]MTM[PM̂ s
k,r

n
s

n
k,m

T
j,Lk,jNb

k,L
s

kN,r
n
s

n
kN,m

T
j,LkN,jN P]MTM[PM̂

bbbb

)VCXK(PVP]hhT[Pĥ jjjj
T

j,Lj
T

j,L
n
m

s
r

n
s

T
i,LjNb

1N

1k

k
Fk,F

s
kN,r

n
s

n
kN,m

T
j,L F̂P]MTM[P

bb

Equations (1.4) and (1.6) can be written in one compact
equation

 ĥFM̂ c (1.7)

where cF is an array containing k
0F and r,LF̂ . M̂ is a

symmetric positive definite matrix which is called the
connection matrix. This equation corresponds to Eq. (35) of

[4]. After Equation (1.7) is solved, k
0F and r,LF̂ are extracted

from cF , and spatial parent loop force r,LF is generated using

Equation (1.3). The forces k
0F and r,LF are used to generate

the equal and opposite forces exerted on the other ends of the
connections, completing computation of all forces that act on
the individual branches. The connection forces are then used
in the individual group equations to generate their solutions.

C. Solution Method 2: Sequential Determination of
Connection Forces

Eq. (1.5) requires inversion of a large square matrix. Due to
overheads created by the Portable Operating System Interface
for Unix (POSIX) thread function calls, parallelizing the
solution of this equation for improving its computational
efficiency may not always be successful. We could instead
determine the connection forces sequentially using the divide-
and-conquer concept for multiple articulated bodies described
in [2] to achieve better computational efficiency. As proof of
concept, a system with five branches described in the next
section was considered. Eq. (1.1) can be rewritten for each of
the 5 branches {0,1,2,3,4} of the system as an articulated body
with two handles (single or multiple joints) as follows (In this
method all quantities are expressed in the coordinate frame of
the base body of branch 0).

For branch 0,

}0{
2

}0{
12

}0{
1

}0{
11

}0{
1

}0{
1 F̂ĤF̂Ĥĥâ (2.1)

}0{
2

}0{
22

}0{
1

}0{
21

}0{
2

}0{
2 F̂ĤF̂Ĥĥâ (2.2)

where,

 0
2

}0{
1 Aâ 0

2
}0{

1 hĥ

0
2,2

}0{
11 HĤ 0

3,2
0

1,2
}0{

12 HHĤ

 0

3,3
0

1,3

0
3,1

0
1,1}0{

22 HH

HH
Ĥ

0
2

}0{
1 FF̂

0
3

0
1}0{

2
F

F
F̂

For branch 1,

}1{
2

}1{
12

}1{
1

}1{
11

}1{
1

}1{
1 F̂ĤF̂Ĥĥâ (2.3)

}1{
2

}1{
22

}1{
1

}1{
21

}1{
2

}1{
2 F̂ĤF̂Ĥĥâ (2.4)

where,

1
1

1
0}1{

1
A

A
â

1
1

1
0}1{

1
h

h
ĥ

 1

1,1
1

0,1

1
1,0

1
0,0}1{

11 HH

HH
Ĥ

 1

4,1
1

3,1
1

2,1

1
4,0

1
3,0

1
2,0}1{

12 HHH

HHH
Ĥ

1

4,4
1

3,4
1

2,4

1
4,3

1
3,3

1
2,3

1
4,2

1
3,2

1
2,2

}1{
22

HHH

HHH

HHH

Ĥ

1
1

1
0}1{

1
F

F
F̂

1
4

1
3

1
2

}1{
2

F

F

F

F̂

Similarly, expressions for the handle accelerations can be
obtained for branches 2, 3 and 4. For a rigid connection which
is the case for all five connection points of the system of Figure
3, the connection forces at the interface points between

branches 0 and 1 are equal and opposite, i.e., }1{
1

}0{
2 F̂F̂ , and

the accelerations of the branches at these points are related by

}0{
2

}1{
1 ââ (2.5)

the equations (2.1) through (2.4) can be used to combine the
branches 0 and 1 into a subsystem {0,1} defined by

}1,0{
2

}1,0{
12

}1,0{
1

}1,0{
11

}1,0{
1

}1,0{
1 F̂ĤF̂Ĥĥâ (2.6)

}1,0{
2

}1,0{
22

}1,0{
1

}1,0{
21

}1,0{
2

}1,0{
2 F̂ĤF̂Ĥĥâ (2.7)

where

}0{
21

}1,0{}0{
12

}0{
11

}1,0{
11 ĤWĤĤĤ (2.8)

}1{
12

}1,0{}1{
21

}1{
22

}1,0{
22 ĤWĤĤĤ (2.9)

 T}1,0{
12

}0{
21

}1,0{}1{
21

}1,0{
21 ĤĤWĤĤ (2.10)

}1,0{}0{
12

}0{
1

}1,0{
1 GĤĥĥ (2.11)

}1,0{}1{
21

}1{
2

}1,0{
2 GĤĥĥ (2.12)

 1}0{
22

}1{
11

}1,0{ ĤĤW

 (2.13)

 }1{
1

}0{
2

}1,0{}1,0{ ĥĥWG (2.14)

}0{
1

}1,0{
1 F̂F̂ (2.15)

}1{
2

}1,0{
2 F̂F̂ (2.16)

These connection forces can be computed using the formula

}1,0{}0{
2

}1{
12

}1,0{}0{
1

}0{
21

}1,0{}1{
1 GF̂ĤWF̂ĤWF̂ (2.17)

when the external forces at the handles of the subsystem {0,1}
and the internal active joint forces are known. Note that this
computation only requires the inversion of a 12 x 12 matrix.
Continue with combining branches 3 and 4 into the subsystem
{3,4}, then combining the subsystem {0,1} with the branch
{2} into the subsystem {0,1,2}, and finally combining the
subsystems {0,1,2} and {3,4} into the big system {0,1,2,3,4}
to solve for the connection forces across the interface of these
subsystems. The computation of all connection forces in terms
of matrix inversions for this approach turns out to include one
6 x 6 operation and three 12 x 12 operations which require less
computer time than the original 42 x 42 matrix inversion
operation.

IV. TEST MODEL AND IMPLEMENTATION

A conceptual Multi-Mission Space Exploration Vehicle
(MMSEV) similar to one shown in Fig. 3 is simulated using
the C programming language on a 3.07 GHz i386 computer
platform with eight processors. This system consists of a crew
module modeled as a rigid body and three identical
articulating legs and two identical manipulator arms attached
to the crew module. Each leg and manipulator has seven
revolute joints to provide rotation in the sequence roll, yaw,
pitch, pitch, pitch, yaw and roll. Each leg and manipulator arm
has two long elements in the middle, which are called booms.
The booms are considered flexible in the flexible model of the
system. Booms in legs and the manipulators have eight and
four flexible degrees of freedom respectively. Other elements
of legs and manipulators are considered rigid. The ends of two
manipulator arms rigidly connect to a rigid payload (not
shown in the figure). The free ends of legs are rigidly
anchored to the planet or the asteroid, which for the purpose of
simulation is arbitrarily considered as a rigid body. Fictitious
mass properties were used for evaluation of the simulation.

The system is divided into five branches. Branch 0 consists of
the base body, and one leg. It has 13 rigid and 16 flex degrees
of freedom (dofs). Branch 1 consists of the second leg and the
crew module. Branch 2 consists of the third leg. They have 7
rigid and 16 flex DOFs each. The two manipulators constitute
Branches 3 and 4. Each of them branches has 7 rigid and 8
flex DOFs. The system has a total of 41 rigid and 64 flex
degrees of freedom. Equations of individual branches are
implemented using the Order-N approach. Each computation
cycle of the system consists of six consecutive steps. Step 1 is
a forward pass to determine the position and velocity states of
the bodies of each branch starting with the base body, using
the generalized coordinates and generalized speeds of the
branch. Step 2 is a backward pass, starting with the outermost
bodies, to implement the dynamics equations. Step 3

determines the quantities j
k,iH and j

ih of Equation (1.1). Step 4

generates the connection forces using Method 1 or Method 2.
Step 5 determines the time derivatives of the generalized
speeds and integrates them to update the generalized speeds
and generalized coordinates of the branch. Steps 1, 2 and 3
were executed together in 5 processors in parallel, one for
each branch. Step 4 in Method 1 was performed in two sub-

steps 4a and 4b. In Step 4a the matrix M̂ is generated in 7
separate processors, one for each row. Step 4b solves Eq. (1.5)
using one or several processors. Step 4 could also be
performed using Method 2. Recall that equation (2.17)
provides the formula for computing the connection forces
between branches {0} and {1}. This formula can be similarly
obtained for the connection forces between other
branches/subsystems. Step 4 in Method 2 then computes
sequentially the connection forces across the interface between
subsystems {0,1,2} and{3,4}, {3} and {4}, {0,1} and {2}, and
finally between {0} and {1} with the exception of the
connection forces between {3} and {4} which can be
calculated in parallel with other connection forces after the

Fig. 3 A Conceptual Multi-mission Space Exploration Vehicle

computation of the connection forces between {0,1,2} and
{3,4}.

Step 5 was executed in 5 processors, one for each branch.
The parallel implementation was done using standard POSIX
threads utility function calls.

V. RESULTS AND DISCUSSIONS

Table I shows the total computation times for each branch
and loop. They were obtained by adding computation times for
different segments of the code corresponding to the five steps
mentioned earlier, from a code without parallelization. In the
parallelized code computations were distributed such that one
processor was assigned to one group or one loop only. Since
different amounts of computations are involved in different
groups and loops the computation was not equally distributed
between the processors. However, distributing computations
otherwise would have resulted in a very complicated and
difficult to maintain code. Table II shows other relevant timing
data, with and without parallelization. All times are in seconds
and for one computation cycle. Rigid and Flex models refer to
cases where the booms are considered rigid and flexible,
respectively.

It was found that the speed-up ratio, defined as the ratio of
actual time for one cycle of computations with parallelization
to that without parallelization, was 1.64 and 1.72 for rigid and
flex models respectively. Even though 5 and 7 processors were
used in different parts of the code, these numbers were low for
three reasons: (1) a significant amount (22.9% for rigid,
17.34% for flex) of code could not be parallelized, (2)
computations could not be distributed evenly for coding
considerations and (3) parallelization overhead involved in the
POSIX function calls. Since most of the time 5 processors were
used, a speed up of at least 2.60 was expected, for example, for
the rigid model using Amdahl’s Law [7]. The primary reason
for getting a lower number is the uneven distribution of
computations to the processors; computation in processor 1was
significantly more than others because branch 1 has more
connection points.

The total non-parallelized computation time presented in
Table II was obtained by subtracting the sum of branch and
loop times from the total cycle time. The expected time with
parallelization was determined by adding the maximums for
branch time and loop time to non-parallelized computation
time.

Table III presents the timing data for Step 4 implemented
by Methods 1 and 2. It may be seen that Method 2 did not
reduce the computation time for Step 4 for this problem.

TABLE I. TIMING DATA (SECONDS) FOR PARALLELIZED CODE

SEGMENTS

 Rigid Model Flex Model

Branch 0 1.115e-04 1.873e-04

Branch 1 2.579e-04 4.343e-04

Branch 2 9.434e-05 1.727e-04

Branch 3 8.616e-05 1.249e-04

Branch 4 8.421e-05 1.237e-04

Loop 0 1.068e-05 1.110e-05

Loop 1 8.466e-06 8.634e-06

Loop 2 4.779e-06 4.786e-06

Total for Parallelized
Computations

65.808e-05 106.744e-5

TABLE II. TIMING DATA (SECONDS) FOR ONE CYCLE FOR

METHOD 1

 Rigid Model Flex Model

Total, without
parallelization

85.37e-05 129.13e-05

Total, with
parallelization,
Method1

52.00e-05 75.00e-05

Speed-Up Ratio 1.64 1.72

Total non-parallelized
Computations

19.56e-05 22.39e-05

Expected total with
parallelization

46.42e-05 66.93e-05

Parallelization
overhead

5.58e-05 8.07e-05

Solution of Eq. (3.10) 6.58e-05 6.59e-05

TABLE III. TIMING DATA (SECONDS) FOR STEP 4 FOR

METHODS 1 & 2

 Rigid Model Flex Model

Method 1: step 4a 7.200e-05 7.203-05

Method 1: step 4b 6.583-05 6.595-05

Total for Method 1 1.378e-04 1.380e-04

Total for Method 2 1.650e-04 1.640e-04

Attempts to speed up solution of Eq. (1.5) by parallelization
were not successful. This was because the overhead involved in
in the parallelization of Choleski solution exceeded the saving

TABLE IV. Timing Results (seconds) for Different Methods

Rigid Flex

Mass Matrix (existing code) 57.40e-05 406.3e-05

Method 1 without parallelization 85.37e-05 129.1e-05

Method 1 with parallelization 52.00 e-05 75.00e-05

Method 2 with parallelization 53.60 e-05 76.54e-05

in computation for this problem. Since the time taken for this
step was small compared to the total cycle time, the
improvement would not have been significant anyway.

Table IV presents the comparison of computing cycle times
for methods presented here and the existing mass-matrix based
computation. The computation time for Method 1 where the
system is modeled as a single branch without parallelization is
also presented.

VI. ACKNOWLEDGMENT

This work was performed under a contract with NASA
Johnson Space Center.

VII. REFERENCES

1. Fijany, A., Sharf, I., D’Eleuterio, G.M.T.: Parallel O (N)
algorithms for computation of manipulator forward dynamics,
IEEE Transactions on Robotics and Automation 11 (3) (1995)
389–400.
2. Featherstone, R.: A divide-and-conquer articulated body
algorithm for parallel O(log N) calculation of rigid body
dynamics. Part 1: basic algorithm. Int. J. Robot. Res. 18, 867–
875 (1999)
3. Featherstone, R.: A divide-and-conquer articulated body
algorithm for parallel O(log N) calculation of rigid body
dynamics. Part 2: trees, loops, and accuracy. Int. J. Robot.
Res.18, 876–892 (1999)
4. Anderson, K.S., Duan, S.: Highly parallelizable low-order
dynamics simulation algorithm for multi-rigid-body systems.
J. Guid. Control Dyn. 23, 355–364 (2000)
5. Critchley, J., Anderson, K., Binani, A.: An efficient
Multibody Divide and Conquer Algorithm and
Implementation. Journal of Computational and Nonlinear
Dynamics 4/021004, 1-10 (2009)
6. Baumgarte, J: Stabilization of constraints and integrals of
motion in dynamical systems. Computational Methods in
Applied Mechanics and Engineering. 1 1-16 (1972).
7. Amdahl, Gene M: Validity of the single processor approach
to achieving large-scale computing capabilities. AFIPS
Conference proceedings 30, 438-485 (1967)

