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Background 

New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 
5.1.5.1 Requirements – Thermal Runaway Propagation  
a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 
watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be 
evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity 
of the design to demonstrate cell-to-cell propagation in the intended application and environment.  

 
NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments 
through comprehensive prevention protocols. This prevention-centered approach has included extensive 
screening for manufacturing defects, as well as robust battery management controls that prevent abuse-
induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood 
of occurrence of such an event highly improbable.  
 
 
b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the 
event in the intended application and environment as well as to identify design modifications to the 
battery or the system that could appreciably reduce that severity.  

 
In addition to prevention protocols, programs developing battery designs with catastrophic failure modes 
should take the steps necessary to assess the severity of a possible thermal runaway event. Programs should 
assess whether there are reasonable design changes that could appreciably affect the severity of the 
outcome.  
Evaluation should include environmental effects to surrounding hardware (i.e., temperature, pressure, 
shock), contamination effects due to any expelled contaminates, and venting propulsive effects when venting 
overboard.  
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Cell Specifications 
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Spec. Cond. LG18650B4 LG18650C2 BP 5300 

Capacity Nominal 2.6 Ah 2.8 Ah 5.3 Ah 

Voltage Nominal 3.7 3.72 V 3.65 V 

Std. Charge CC/CV 
Cut off 

0.5C 
4.2 V 
50 mA 

0.5C 
4.3 V 
50 mA 

0.7C 
4.2 V 
50 mA 

Std. 
Discharge 

CC 
Cut off 

0.2C 
2.75 V 

0.2C 
3.0 V 

0.2C 
2.75 V 

Weight Max 48.0 g 53.0 g 93.5 g 

Operating 
Temperature 

Charge 
Discharge 

0 to 45 °C 
-20 to 60 °C 

0 to 45 °C 
-20 to 60 °C 

-20 to 60 °C 
-40 to 70 °C 

Vent Location Header Header 2 on flat 
side 

J. Jeevarajan, Ph.D. NASA/JSC 

LG18650 B4 
LG18650 C2 



Thermal Runaway Trigger Method 

• 2 inch square Kapton heater elements (40W) 

• Pressure sensitive adhesive (PSA) on backside 

• 20W (20V @ 1A) heater power applied 

• 3-5 °C/min desired heating rate 

• All tests were carried out inside an abuse test chamber 

• A 5 minute N2 purge was carried out before start of test and after test. 
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Omega KHLV-202/40-P 
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Test Matrix 
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Test # Cell 
Type 

Configuration SOC Cell Arrangement Intercell space 
Material 

1 BP5300 9S 100% 3x3, 2mm Air 

2 LGB4 9S 100% 3x3, 2mm Air 

3 LGB4 9S 100% 3x3, 4mm Air 

4 BP5300 4S 100% 2x2,  Radiant Barrier 

5 LGC2 9P, Fork-tabs 100% 3x3, 4mm Air 

6 LGC2 9P, Fork-tabs 100% 3x3, 2mm Air 

7 BP5300 4P, Fork-tabs 100% 2x2,  Radiant Barrier 

8 BP5300 9P, Fork-tabs 50% 2x2,  Radiant Barrier 

9 LGC2 9P, Fork-tabs 100% 3x3, 1mm Air 

10 LGC2 9P, Serpentine (S) tabs 100% 3x3, 1mm Air 

11 LGC2 9P, S-tabs 100% 3x3, 2mm Air 

12 BP5300 4P, S-tabs 50% 2x2, Radiant Barrier 

13 LFP/SKC 14P (2.2 Ah) Fork Tabs (10A fuse) 100% 5X5X4 Air 

14 LFP/SKC 14P (2.0 Ah) Fork tabs (10A fuse) 100%  5X5X4 Air 

15 BP5300 9P 100% 3x3, 2mm Intuplas 

16 LGC2 9P 100% 3X3,  2mm Intuplas 

17-20 BP/LG 9P 100 & 50% 3X3, 4 mm Intuplas 
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Tests 

• Preliminary Runs 
– BP 5300 and LG B4cell tests with 2mm (air) spacing; 

Series configuration; 100% SOC 

• Cell-to-cell Spacing –LG C2 
– 1, 2, and 4mm spacing; 100% SOC; 9P (Fork and 

Serpentine) 

• Radiant Barrier - BP 
–  Folded radiant barrier sample; 100% and 50% SOC; 4P 

• Intuplas – LG and BP 
– 2 mm; 100% SOC; 9P (Fork) 
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BP5300 2mm Air Space at 100% SOC (9S config.) 

• Complete Thermal runaway of cell 5 

• Propagation to cell 2 (in vent path), and cell 8 (adjacent to heater) 

• Contents ejected from cell 5 and 7 

• Heater power 20W (1A at 20V) 

• Spacers (in left picture below) removed before test 
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BP5300 2mm Air Space 9S 100% SOC 
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LG B4 4mm Cell-to-Cell Space at 100% SOC 
9S config. 

• Thermal runaway observed in trigger cell 5 

• No propagation 

• All other voltages held at 4.19V 
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Pre-test 9S-LGB4 

Post-test 9S-LGB4 



LG B4 4mm Space at 100% SOC (9S config.) 
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#1 
4.16 

#2 
4.16 

#3 
4.17 

#9 
4.16 

#7 
4.17 

#6 
4.16 

#5 
0.0 

#4 
4.16 

#8 
4.16 

Post-OCVs (4.2 V pre) 



Cell-to-Cell Space LG C2 Cell Tests 

• 1, 2, and 4 mm spacing between cells 

• LG 18650 C2 (2.8 Ah) in 9P  

configuration 
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LG C2 – 1mm Space 9P Fork Config. 
100% SOC 

• Propagation to adjacent cells 

• No propagation to diagonal cells 

• Voltage/capacity drain observed  

• No crimp opening or extrusion of electrode roll 

• Elevated adjacent cell temperatures (120 °C) 
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1mm 
horizontal 

8.8mm 
diagonal 
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Fork Pattern 



LG C2 – 1mm Air Space 9P Fork Config. 100% SOC 
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#1 
4.27 

#2 
0 

#3 
4.27 

#9 
4.26 

#7 
4.27 

#4 
0.637 

#5 
0 

#6 
2.086 

#8 
0.429 

Post-OCVs (4.3 V pre) 



LG C2 – 1mm Air Space 9P Serpentine (S-type) 
Config. -100% SOC 

• Significant damage to adjacent cells 

• No propagation to all diagonal cells 

• Post-test OCVs all 0 V 

• No extrusion of electrode roll 

• Elevated adjacent cell temperatures (120-150 °C) 
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Pre-test Post-test 



LG C2 – 1mm Air Space 9P Serpentine (S-type) Config. 
100% SOC 
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Post-Test  
OCV: all 0 V 

Cell 5 

Adjacent Cells 



• Complete thermal runaway of cell 5 

• Thermocouple wire melted from venting 

• Voltage/capacity drain observed from adjacent cells 2, 6, and 
8 

• No crimp opening or extrusion of electrode roll  

• Elevated adjacent cell temperatures (100 °C) 

 

LG C2 – 2mm Air Space 9P Fork Config. 100% SOC 
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LG C2 – 2mm Air Space 9P Serpentine (S-type) 
Config. 100% SOC 

• Complete TR of cell 5 

• Some damage to cell 4 

• Post-test OCVs all 0V 

• No extrusion of electrode roll 

• Elevated adjacent cell temperatures (100 °C) 
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Pre-Test 
Post-Test 



LG C2 – 4mm Air Space 9P Fork Config. 100 % 
SOC 

• Complete thermal runaway of cell 5 

• No propagation 

• Capacity/Voltage drain observed on adjacent cells 2 and 8 

• No crimp opening or extrusion of electrode roll  
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Cell 2 

Cell 4 Cell 3 

Cell 1 Cell 2 

Radiant Barrier 

• To mitigate radiation heat transfer and protect against direct 
flame from side vents in BP cells 

• Per Boeing donor 
– Outer layers are quartz cloth,  

– there are 5 nickel foil layers inside with Linoweave (open mesh quartz 
cloth) separator layers between the nickel foil layers.  
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BP5300 at 100% SOC with Radiant Barrier (4S 
config.) 

• Can ruptured and contents 
ejected from triggered cell 

• No propagation 
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BP5300 at 100% SOC with Radiant Barrier (4P 
config.) 

• Can ruptured and contents 
ejected from triggered cell  

• No propagation 
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#4: 
4.18V 

#3: 
4.18V 

#1:  
4.18V 

#2:  
0V 

Post-OCVs (4.2 V pre) 



BP5300 at 50% SOC with Radiant Barrier (4P config.) 

• No expulsion of contents 

• Fire started through vent opening 
and spreads to adjacent cell 

• Heat transfer from cell 2 to cell 1 

• Cells 3 and 4 displayed 
capacity/voltage drain 
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Post-test 

Pre-test 

Gap in barrier w/ melting  
of restraint clip 

Restraint Clip 

#4: 
0.28V 

#3: 
1.5V 

#1:  
0V 

#2:  
0V 

Post-OCVs (4.2 V pre) 



Intumescent Material 
• Intuplas 

– Nanocomposite consisting of thermoplastic carrier and 
inorganic intumescent activator 

– Activates at 200 °C to form a dense, insulating ash 
– 2 hour fire rating with ASTM E119 
– Manufactured by Pyrophobic Systems Ltd. 
 
 

• WSTF Testing 
– Flame propagation 
– Off-gassed products 
– Tested to NASA-STD-6001 
– Material passed flame propagation and off-gas test 
(Courtesy: Mike Fowler) 
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Intuplas Modules 

3 each of 2 mm, 4mm spacing for BP 
and LG cells designs 
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QTY Form Factor Layout Spacing 

3 BP5300 3x3 2mm 

3 BP5300 3x3 4mm 

3 18650 3x3 2mm 

3 18650 3x3 4mm 
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LG C2 at 100% SOC with 2mm Intuplas (9P config.) 

All cells vented 



BP5300 at 100% SOC with 2mm Intuplas (9P config.) 
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Negative 
Terminals  
(Top of 
Module  
during 
test) 

Positive 
 Terminals 

All cells held 4.17V 
Except cell 5 



SKC LFP 14.7 Ah 14P Module 2-100 % SOC 
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Cell positive terminals 50 W Heater 

7 deg C / min. 
Heating rate 



SKC LFP 14.7 Ah 14P Module 2-100 % SOC 
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Thermal Propagation Analysis 
(Calculations by Carlos Lopez) 
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• Convection negligible in space 

• Conduction dominates at T < 500 °C 

• Radiation exponentially increases 
with temperature 

• Increasing spacing significantly 
decreases heat transfer 

• Fire due to electrolyte venting in the 
presence of high temperatures can 
cause significant propagation. 

 
Spacing Rate of Heat Transfer 

∆𝑥 (mm) Qrad (W) Q cond (W) Total (W) 

1 5.69 18.06 23.76 

2 5.34 9.03 14.37 

4 4.77 4.52 9.28 

𝑄𝑐𝑜𝑛𝑑 = 𝑘𝐴
𝑇1 − 𝑇2
∆𝑥

 

𝑄𝑟𝑎𝑑 =
𝜎(𝑇1

4 − 𝑇2
4)

1 − 𝜀1
𝜀1𝐴1

+
1
𝑭𝟏𝟐

+
1 − 𝜀2
𝜀2𝐴2

 

𝑭𝟏𝟐 =
1

2𝜋
𝜋 + 𝑪2 − 22 − 𝑪 − 2 cos−1 2

𝑪  

𝑪 = 1 + 𝜟𝒙
𝒓  



Summary 

• Increasing cell spacing decreased adjacent cell damage 

• Electrically connected adjacent cells drained more than physically adjacent 
cells 

• Radiant barrier prevents propagation when fully installed between BP cells 

• BP cells vent rapidly and expel contents at 100% SOC 

– Slower vent with flame/smoke at 50% 

– Thermal runaway event typically occurs at 160 °C 

• LG cells vent but do not expel contents 

– Thermal runaway event typically occurs at 200 °C 

• SKC LFP modules did not propagate; fuses on negative terminal of cell may 
provide a benefit in reducing cell to cell damage propagation. 
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Backup Slides 
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Test Chamber Setup 
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