Toward large-area sub-arcsecond x-ray telescopes

Stephen L. O’Dell\(^a\), Thomas L. Aldcroft\(^b\), Ryan Allured\(^b\), Carolyn Atkins\(^c\), David N. Burrows\(^d\), Jian Cao\(^e\), Brandon D. Chalifoux\(^f\), Kai-Wing Chan\(^g\), Vincenzo Cotroneo\(^b\), Ronald F. Elsner\(^a\), Michael E. Graham\(^e\), Mikhail V. Gubarev\(^a\), Ralf K. Heilmann\(^f\), Raegan L. Johnson-Wilke\(^d\), Kiranmayee Kilaru\(^b\), Jeffery J. Kolodziejczak\(^a\), Stuart McMurdoch\(^b\), Brian D. Ramsey\(^a\), Paul B. Reid\(^b\), Raul E. Riveros\(^i\), Jacqueline M. Roche\(^a\), Timo T. Saha\(^i\), Mark L. Schattenburg\(^f\), Daniel A. Schwartz\(^b\), Susan E. Trolier-Mckinstry\(^d\), Melville P. Ulmer\(^e\), Semyon Vaynman\(^e\), Alexey Vikhlinin\(^b\), Xiaoli Wang\(^g\), Martin C. Weisskopf\(^a\), Rudeger H. T. Wilke\(^d\), and William W. Zhang\(^j\)

\(^{a}\) NASA Marshall Space Flight Center, Huntsville, AL 35812, USA
\(^{b}\) Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
\(^{c}\) University of Alabama in Huntsville, Huntsville, AL 35899, USA
\(^{d}\) Pennsylvania State University, University Park, PA 16802, USA
\(^{e}\) Northwestern University, Evanston, IL 60208, USA
\(^{f}\) Massachusetts Institute of Technology, Cambridge, MA 02139, USA
\(^{g}\) University of Maryland Baltimore County, Goddard Space Flight Center, Greenbelt, MD 20771, USA
\(^{h}\) Universities Space Research Association, Marshall Space Flight Center, Huntsville, AL 35812, USA
\(^{i}\) Oak Ridge Associated Universities, Goddard Space Flight Center, Greenbelt, MD 20771, USA
\(^{j}\) NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract

The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (> 1 m\(^2\)) and finer angular resolution (< 1\(^\prime\)). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (>100 m\(^2\)) of lightweight (= 1 kg m\(^-2\) areal density) high-quality mirrors—possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large-area sub-arcsecond x-ray telescopes.

Key words: X-ray telescopes, x-ray optics, active optics, electro-active devices, silicon mirrors, differential deposition, ion implantation