Centennial Challenges Program
Space Technology Mission Directorate

CubeSat Lunar and Deep Space Challenges
Centennial Challenges

- Centennial Challenges Program is unique in Space Technology Program
 - Stimulates innovative development using cash prize competitions
 - Targets technical solutions in areas of interest to NASA
 - Serves to competitors
 - US citizens, permanent residents, or US entities only
 - Primarily TRL 4-6 development
 - Intellectual Property rights
 - Minimal reporting and government oversight
- Reaching solutions beyond the typical government solicitations and methods

We Need You!
Prize Competitions

- **Stimulates innovation in ways unlike contracts or grants**
 - Reward achievement, not effort
 - **Competitors are not paid until goals are achieved**

- **Achieves returns that outweigh investment**
 - High ratio of private investment to prize value *at a fraction of the cost of traditional procurement.*
 - Almost all funds go to prize purses

- **Reaches new sources of innovation and talent**
 - Multiple teams
 - Multiple approaches to same problem

- **Stimulates new commercial ventures**
 - New startups
 - New partners
 - More commercial competition

- **Educate, inspire, and motivate the public**
 - Train the future workforce; Inclusion, not exclusion
 - Increase awareness of science & engineering
Previous Centennial Challenges

Since 2005, 24 competitions held in 9 Challenges
~$6.0M in prizes awarded to 16 different teams

Regolith Excavation – $750K
Lunar Lander – $2M
Astronaut Glove – $550K

Power Beaming - $900K
Personal Air Vehicle - $250K
Green Flight – $1470K
Incentivize advancement in robotic navigation and sample manipulation technologies.

Goal: Demonstrate a fully autonomous robot that can locate and retrieve several identified samples with no use of GPS or other terrestrial navigation aids.

PRIZE PURSE: $1.49 Million

Status

- 10 teams competed June 5-6, 2013
- 18 teams competed June 11-14, 2014
- Level I Winners
 - Team Survey (2013)
 - West Virginia University (2014)
- Competitors Include
 - Universities and High School Students
 - Amateur Designers
 - Industrial Teams

http://wp.wpi.edu/challenge/
SRR Level I Winners

West Virginia University

Team Survey

08/03/2014
Incentivize advancement in avionic capabilities for operation in the Next Generation (NextGen) Airspace concept.

- **Phase 1 Competition ($500K)**
 - Fly 4-Dimensional Trajectories (4DT)
 - Employ ADS-B IN
 - Maintain safe separation from cooperative air traffic
 - Operate safely in a number of contingency situations

- **Phase 2 Competition ($1M) (Planned)**
 - Maintain safe separation from uncooperative air traffic
 - Employ ADS-B IN and OUT
 - Have onboard systems capable of communicating verbally with the Air Traffic Control (ATC) system

- **Status**
 - Registration open
 - Phase 1 Competition Fall 2014. Phase 2 will be one year after Phase 1 success.

[Detect, Sense & Avoid for Separation Assurance](http://go.usa.gov/YHmA)
New Challenges

• Centennial Challenge Program is pleased to announce two new challenges to kick off this Fall
 – The CubeSat Deep Space Communications Challenge
 – The CubeSat Lunar Propulsion and Communications Challenge

• Qualified Teams will launch on board NASA's Exploration Mission EM-1 at no cost
 – EM-1 is the first uncrewed lunar flyby of Orion
 – Secondary Payloads will deploy during trans lunar orbit
Goal: Incentivize small spacecraft deep space operations capabilities development, leading to the economic achievement of NASA, other government agencies, academia, and industry objectives.

- **CubeSat Form Factor**
 - Advantages include
 - Low cost
 - Small size, mass, and power
 - Easier launch vehicle integration
 - Current limitations include
 - Short-term operations, in Low Earth Orbit (LEO)
 - Communications subsystems
 - Low-bandwidth data rates
 - Low transmit power
 - Low-gain
 - Unique protocols, or amateur radio wavelengths
 - No in-space propulsion (with limited exceptions)
 - No deep space navigation

- **Future Applications include**
 - Astrophysics
 - Planetary Exploration
 - Heliophysics
 - Earth Science
 - DoD Applications
 - Near Earth Object Exploration

- **Successful teams will demonstrate sustained spacecraft and ground-segment capabilities necessary for deep-space exploration.**
Challenge Firsts

- First opportunity for non-government entities to develop spacecraft, and compete to operate at the moon and beyond
- Challenges incentivize alternate solutions to
 - Deep Space Communications
 - Ground station networks
 - Deployable CubeSat antennas
 - Improved transmitters
 - Game-changing high bandwidth optical
 - In-Space Propulsion
 - CubeSat market poised to offer a variety of propulsion systems
 - To date, only NanoSail-D has demonstrated propulsion in LEO
 - Three propulsion types allowed
 - Solar sail
 - Solar electric
 - Chemical (subject to SLS approval)
 - Longevity in Deep Space:
 - New approaches to rad hardening
 - Thermal and power management
 - Advanced CubeSat GN&C to achieve lunar orbit and steer antennas
- First ever in-space Centennial Challenge
Challenge Structure

- **Concurrent In-space Challenges**
 - **Lunar CubeSat Propulsion and Communications Challenge**
 - Achieve Lunar Orbit
 - Downlink the largest volume of error-free data
 - 30-minute burst
 - 28-day aggregate
 - Survive the longest
 - Transmit the last data packet heard within the challenge timeframe
 - **CubeSat Deep Space Communications Challenge (> 4 million km)**
 - Farthest data transmission distance
 - Largest volume of error-free data
 - 30-minute burst
 - 28-day aggregate
 - Longest duration of operability
 - Transmit the last data packet heard within the challenge timeframe

- **Five Ground Qualification Competitions (GQC) Milestones**
 - **Purposes:**
 - Gain insight into competitor’s mission designs
 - Provide feedback to teams
 - Award intermediate prizes
 - Judging based on technical maturity, compliance with Challenge Rules and with SLS requirements
 - GQCs culminate in down-select for EM-1 integration and launch
 - GQCs not required of teams that elect to procure 3rd-party launches
Prize Structure

- Lunar Challenge Will Award Up To $3M
 - Achieve Lunar Orbit $1.5M *(shared)*
 - Error Free Communication $1.0M
 - Longevity *(Orbit maintenance)* $500k
- Deep Space Communication Challenge Will Award Up To $1.5M
 - Error Free Communication $1.0M
 - Longevity *(No maintenance needed)* $250k
 - Distance $250k
- Ground Qualification Competition (GQC) Will Award Up To $1.0M
- Challenges End Date is 365 Days After NASA-provided Launch Date
- Winner(s) Determined by Submitted Results At The End of Competition Period
- Teams Competing In More Than One Challenge
 - Must Use A Single Spacecraft
 - Must Meet All Respective Challenge Rules To Qualify for Prize

$5.5M Allocation of Prize Money

08/03/2014 2014 Small Satellite Conference
Versatility of Rules

- Challenges are structured to cover a variety of scenarios:
 - EM-1 or other launcher
 - Teams may choose to qualify for EM-1, or obtain their own launch (at their expense)
 - Propulsion or no propulsion
 - Deep Space Challenge does not require propulsion
 - 365-day time rule should allow exotic trajectories to lunar orbit
 - With/Without NASA-provided Space Communication and Navigation (NEN, DSN)
 - Competitors may elect to use Deep Space Network (DSN) at their cost or procure own ground station
 - Third party methods must provide NASA specified evidence for authenticating transmission origin
- Rules avoid “hard coding” certain TBD constraints at this time:
 - EM-1 launch date
 - Final number of secondary payload slots
Lunar Challenge Time Line

Fall 2014 Competition Registration

Late 2017 EM-1 Launch

Late 2018 Competition End

GQC1 $0k
GQC2 $200k
GQC3 $300k
GQC4 $300k
GQC5 $200k

Down Select (if more Teams than launch spaces)

Team A
Team B
Team C
Team D
Team X
Team Y
Team Z

Productivity & Longevity Prizes: $3.0M
Largest Volume of Error-free Data
Achieve Lunar Orbit
Longest Survival

3rd-Party Launch

CubeSat Lunar Centennial Challenge:
Can your team achieve lunar orbit, return the most data, and last the longest?
CubeSat Deep Space Centennial Challenge: Can your team go well beyond lunar orbit, return the most data, and last the longest?
Summary

• New Challenges Starting
 – CubeSat Deep Space Communications
 – CubeSat Lunar Propulsion and Communications
• Favorable Responses To Request for Information
 – 29 Respondents on First
 – 20 Respondents on Second (7 Repeats)
 – 42 Total Respondents
• Challenge Information
 – Registration to Begin Fall 2014
 – Kickoff Summit Will Be Held
 – For More Information Go To NASA Centennial Challenges Website

www.nasa.gov/challenges
BACKUP
<table>
<thead>
<tr>
<th>Role</th>
<th>Name and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centennial Challenge Deputy Program Manager</td>
<td>Eric Eberly</td>
</tr>
<tr>
<td>Centennial Challenge Program Manager</td>
<td>Sam Ortega</td>
</tr>
<tr>
<td>CubeSat Deep Space and Lunar Challenges Administrator</td>
<td>Jim Cockrell, ARC</td>
</tr>
<tr>
<td>Communications Technical Advisors</td>
<td>Steve Horan, LARC; Steve Townes, JPL</td>
</tr>
<tr>
<td>Trajectory Analysis</td>
<td>Anthony Genova, ARC</td>
</tr>
<tr>
<td>Propulsion Technical Advisor</td>
<td>Tim Smith, GRC; Chuck Taylor, LARC</td>
</tr>
<tr>
<td>SMD Representatives</td>
<td>Dr. Pete Panetta, Planetary Sciences Division; Dr. David Klumpar, Heliophysics Division</td>
</tr>
</tbody>
</table>