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Overview and Motivation 

•  Manufacturing process development and product design with the goal of 
performance optimization within specified constraints can often involve a very 
large trade space. 

•  Not only the selection of technological methods and design parameters, but the 
sequence of process steps can significantly influence the resulting performance.  

•  Such efforts benefit from the early development of high-fidelity simulations, 
which can illuminate the tall poles and guide the choices toward performance 
optimization. 

•  Ideally these simulations would provide an integrated end-to-end picture of the 
entire process so that one option can be weighed against another, i.e. to 
investigate strategic alternatives. 

•  We anticipate that the manufacturing process required for the production of 
large-area actively-controlled x-ray optics modules falls into this category. 
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Overview and Motivation 

•  At MSFC, we are involved in several technology development efforts for higher resolution / 
larger area / lighter weight  x-ray optics. 

•  All of these technologies share the need to be mounted/assembled/aligned into modular 
units for testing or for flight. 

•  We have identified a requirement to develop the capability to assess the impact of mounting 
options on performance. 

•  The goal is to develop an optimal mounting strategy or a small set of testable strategic 
options for any specified x-ray optics technology, which would be applicable to the fully-
developed manufacturing process. 

•  We are in the very early stages of developing this capability for active optics, so results, so 
far, are relatively simplistic and naive. 

•  Nevertheless, we feel that including active optics mounting strategies in our repertoire will 
help to drive our understanding of technical challenges and capabilities to overcome them to 
a higher level in the future. 
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Posing Key Questions 

•  The process involved may be very complex 

Fabricate 
Optics 

Metrology 
Measurements 

Align 
P-H 

Metrology 
Measurements 

Bond to 
form Pairs 

Assemble pairs 
into modules 

Initial figure 

Alignment 
errors 
Distortions due 
to alignment 
system 

Distortions 
due to 
bonding 

Distortions 
due to 
assembly 

Final figure 

Module 
Test 

•  Key questions for mounting strategy 
–  What kind of distortions are uncorrectable by bimorphs? 
–  How are uncorrectable distortions minimized? 

•  Which design parameters? 
•  Which process techniques? 
•  In what sequence are processes performed? 
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Approach 

•  Since this is virtual development, we use simulations to begin to 
answer key questions  

•  Steps: 
–  generate large samples of initial figure error maps 
–  develop deflection models based on plate/shallow shell theory 

and validate against FEM 
•  Develop and apply boundary conditions as appropriate to address 

the question in terms of figure distortions 
–  compute influence function basis for response to piezo 

actuation �voltage� 
–  fit basis to initial figure + distortions to determine final figure  

which minimizes RMS axial slope errors or RMS 2-reflection ray 
divergence 

–  Compare results from configuration alternatives 
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Modeling Methods 

•  Monte carlo technique to generate figure error maps�
–  Probably should just operate on Fourier components instead.�

•  Finite difference deflection model based on Kirchhoff�s plate bending theory 
(1850), and Donnell-Mushtari-Vlasov shallow shell theory.(Ventsel & Krauthammer, 2001)�

–  Numerically solve �biharmonic� equation with boundary conditions�
•  approximate piezo with a force distribution�

–  For curved plates plan to solve  a pair of 4th order equations  with 
boundary conditions ( not yet implemented )�

•  For now using influence functions from FEM (Carolyn Atkins) for curved plates�
•  Rationale�

–  Quicker to run, implemented in Mathematica®�

–  No additional expense and training�
–  No need to take time from trained FEM experts�

∇4η(x, y) = p(x, y)/D,
η(x, y) = deflection in plate coordinates,
p(x, y) = pressure distribution orthogonal to the plate, and
D = flexural rigidity = Eh3

12(1−ν2) ,
where E = is Elastic Modulus,
h = thickness, and
ν = Poisson’s Ratio.

Kirchhoff: DMV: 

∇4η(x, y) = (p(x, y) + 1
R cos2 Θ

4

∂2Φ(x,y)
∂y2 )/D,

∇4Φ(x, y) = −Eh 1
R cos2 Θ

4

∂2η(x,y)
∂y2 ,

Φ(x, y) = Airy stress function,
Θ = shell azimuthal extent, and
R = shell radius.
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Model Validation 

•  Compared finite difference(FD)  solutions to FEM solutions with modeled piezos 
–  16 cm x 10 cm simply constrained flat 
–  5 mm x 5 mm piezo with 0.5 mm separation 
–  0.4 mm thick glass 
–  0.2 mm thick piezo  

•  FEM mesh is automatically generated (Comsol®) 
•  FD is on 0.25 mm grid (x elements) 
•  FD approximates piezos with a distribution of localized forces 
•  Agreement is very good. 

2-D influence functions for FD (solid blue) and FEM (dashed red)  
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One-D illustration 

•  Use simple beam theory to illuminate questions in 1 dimension�
�

•  Fixed mount vs. simply supported�
–  Influence functions are obviously different for a beam with fixed ends, vs. 

an unconstrained beam�

•  Actuator effectiveness depends on position�
•  Actuators are relatively ineffective near mounting points�
•  Completeness of resulting basis composed of the full set of influence 

functions is affected by mounting                Performance improvement is 
affected�
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One-D illustration II  

•  Begin to quantify effects using simulated error maps�
•  Assume a surface error spectrum�

f(σs, ω) = σs

√
sin 3π

k

π(k−3)λ
kλk−1

λk+ωk ,

where σs is the RMS slope error,
ω is the spatial frequency,
k is the assymptotic power law index and,
λ is a cutoff parameter to tune the low frequencies.

•  Surface map is the discrete inverse Fourier transform of the above spectrum�
•  Monte Carlo phases ±π  and 0.5-2x amplitudes to generate a series of similar 

surface maps�
•  Adjust λ to match adjustability response which cuts off at Nyquist of piezo 

frequency.�
•  Adjust k to control high frequency content, performance floor�
•  For 2D let: � �         for axial and azimuth frequencies�
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One-D illustration III  

•  Unconstrained (upper) vs. fixed (lower)�
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Initial RMS slope errors:  
4.4 arcsec 

After unconstrained 
adjustment:  
0.48 arcsec 

After adjustment in fixed 
configuration:  

0.71 arcsec 

ratio fixed-to-
unconstrained 

RMS slope errors 

Mounting with adjusters 
activated would 

generally yield improved 
performance 

initial RMS of slope errors at 
two ends ends 

1000 simulated cases 
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2-D Flat illustration 

•  Similar analysis for a 2-D flat 
plate�

Optimize for 
RMS axial slope 

error 

Optimize for 
RMS deviation 

from prescription 

RMS axial slope 
errors:  

3.0 arcsec 

RMS axial slope 
errors:  

3.5 arcsec 

Initial RMS 
axial slope 

errors:  
10.6 arcsec 

•  Which results in better performance after mounting?�
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2-D shell segment 

•  Differences in influence functions�
•  Influence functions on curved 

optics can differ significantly 
from flat.�

–  due to the effective rigidity 
caused by the curvature�

–  The central displacement/
volt is smaller.�

–  The edge displacement/
volt is about the same.�

–  The surface deforms more 
along the azimuthal 
direction than the axial 
direction�

•  So edge displacement for a 
given central displacement is 
larger.�

–  This must be included in 
the analysis of mounting 
distortions�
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Shell Optical Performance vs. Mounting parameters II 

•  Some sample end-to-end trade spaces�
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Conclusions 

•  Expect that considering mounting strategy early, and allowing some 
flexibility in options could lead to better overall result�

–  NOT: given mounting, what�s the best optical configuration�
–  NOT: given optics, what�s the best mounting�
–  INSTEAD: given nothing, what's the best combination of design 

parameters, technologies and processing sequence.�
•  Considering  adjustable x-ray optics in a non-specific context, while 

something of an exercise, helps us to quickly come in-tune with significant 
mounting issues, in addition to producing some interesting strategic 
principles.�

•  We plan to: �
•  Expand the finite difference approach to curved segments (shallow shells) and 

full shells�
•  Develop an interface to efficiently investigate larger parameter spaces�
•  Develop and test prototypes of promising concepts�

•  Attention to mounting details will obviously not improve optical system 
performance by orders magnitude but may lead to factors in the 1.4-2 
range.�


