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• RMSE is presented as a fraction of the timeseries standard deviation,

fRMSE

• Error propagation & triple colocation accurately detect spatial vari-

ability in fRMSE

• Triple colocation accurately estimates the magnitude of soil moisture

anomaly fRMSE

• Triple colocation is robust to representativity differences between data

sets used

• ASCAT and AMSR-E have similar anomaly fRMSE for most land cov-

ers in the study domain
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Abstract

Root Mean Square Errors (RMSE) in the soil moisture anomaly time se-

ries obtained from the Advanced Scatterometer (ASCAT) and the Advanced

Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Re-

trieval Model) are estimated over a continental scale domain centered on

North America, using two methods: triple colocation (RMSETC) and error

propagation through the soil moisture retrieval models (RMSEEP ). In the

absence of an established consensus for the climatology of soil moisture over

large domains, presenting a RMSE in soil moisture units requires that it be

specified relative to a selected reference data set. To avoid the complications

that arise from the use of a reference, the RMSE is presented as a fraction of

the time series standard deviation (fRMSE). For both sensors, the fRMSETC
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and fRMSEEP show similar spatial patterns of relatively high/low errors, and

the mean fRMSE for each land cover class is consistent with expectations.

Triple colocation is also shown to be surprisingly robust to representativity

differences between the soil moisture data sets used, and it is believed to ac-

curately estimate the fRMSE in the remotely sensed soil moisture anomaly

time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both

data sets have very similar accuracy across a range of land cover classes, al-

though the AMSR-E accuracy is more directly related to vegetation cover. In

general, both data sets have good skill up to moderate vegetation conditions.

Keywords: Microwave soil moisture, remotely sensed soil moisture

validation, triple colocation, error propagation

1. Introduction

Soil moisture is an important control over hydrological and meteorologi-

cal forecasts, since it can determine the partitioning of energy and moisture

incident at the land surface. Increasing recognition of the role of soil mois-

ture has motivated recent developments in globally observing near-surface

soil moisture from satellites. These developments have included retrieving

soil moisture from already orbiting sensors, such as the Advanced Scat-

terometer (Wagner et al., 1999; Bartalis et al., 2007) and the Advanced Mi-

crowave Scanning Radiometer - Earth Observing System (AMSR-E) (Njoku,

1999; Owe et al., 2001). Additionally, several new remote sensors have been

specifically designed to sense soil moisture, including the European Space

Agency’s Soil Moisture Ocean Salinity (SMOS) mission, launched in 2009

(Kerr et al., 2001), and NASA’s Soil Moisture Active Passive mission, sched-
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uled for launch in 2014 (Entekhabi & coauthors, 2010).

The performance of new remotely sensed soil moisture data sets is bench-

marked against predetermined Root Mean Square Error (RMSE) target accu-

racies (Kerr et al., 2001; Entekhabi & coauthors, 2010) based on comparison

to pixel scale near-surface soil moisture observations obtained from either

dense networks of in situ sensors (Jackson et al., 2012) or low-level ground-

based/airborne microwave sensors (Gherboudj et al., 2012). However, these

pixel scale observations are available at only a handful of locations, and fur-

ther development and application of remotely sensed soil moisture data sets

will require a better understanding of their accuracy across the globe.

Evaluating soil moisture over continental scale domains is not straight for-

ward, since the true global soil moisture is unknown, due to the systematic

differences between soil moisture estimates obtained from different remote

sensors and numerical models (Reichle et al., 2004). These systematic dif-

ferences can arise from i) differences in the soil and vegetation parameters

assumed, or ii) representativity differences, for example due to differences

in horizontal, vertical, and temporal support (Vinnikov et al., 1999; Reichle

et al., 2004), or differences in the soil moisture processes resolved by each

soil moisture estimate (Koster et al., 2009)

In the literature a common approach to evaluating soil moisture over

continental scales has been to use the Root Mean Square Difference (RMSD)

with an alternative soil moisture estimate, for example from a model (dall’Amico

et al., 2012), or from networks of sparse in situ soil moisture sensors (Wagner

et al., 1999; Reichle et al., 2007; Draper et al., 2009). However, this approach

generates misleading results, since the errors in the alternative data set are
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included in the RMSD (hence, the use of root mean square difference, rather

than error).

Consequently, this study investigates recently developed methods to esti-

mate distributed Root Mean Square Errors (RMSE) in remotely sensed soil

moisture over continental-plus scale domains. The focus is on the RMSE

for consistency with the metric specified for remote sensing target accura-

cies. Also, the RMSE is useful for specifying observation error variances

for data assimilation. The RMSE is estimated for two remotely sensed soil

moisture products: the Surface Degree of Saturation (SDS) retrieved from

active microwave ASCAT observations (Wagner et al., 1999; Bartalis et al.,

2007), and the X-band passive microwave AMSR-E soil moisture retrieved

with the Land Parameter Retrieval Model (LPRM; Owe et al. (2001); de Jeu

& Owe (2003)). While neither of these missions were designed to sense soil

moisture, both have been providing useful soil moisture observations (Draper

et al., 2012), with the advantage of a relatively long data record.

Two methods for estimating the RMSE of the ASCAT and AMSR-E soil

moisture data are investigated. The first method is triple colocation (Stoffe-

len, 1998; Scipal et al., 2008b), which combines three independent estimates

of a state variable to calculate the errors in each, by assuming an additive

error model. The second method is error propagation through the model

used to retrieve soil moisture from the microwave observations, as developed

by Naeimi et al. (2009) for the ASCAT SDS and Parinussa et al. (2011b) for

the AMSR-E LPRM retrievals. The error estimates are investigated over a

continental scale domain, between 25-50◦N in North America.

Due to the systematic differences between large scale soil moisture esti-
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mates, different soil moisture data sets describe different climates as mea-

sured by their central moments. Without knowledge of the true soil mois-

ture climate, these differences cannot be attributed to errors in a particular

data set. Consequently, when comparing soil moisture data sets over large

domains, the systematic differences between their mean and variance (and

possibly higher-order moments) are typically eliminated by rescaling all data

sets to have statistics consistent with an arbitrarily selected reference data

set (Reichle & Koster, 2004; Scipal et al., 2008a). Hence over large domains,

soil moisture RMSEs estimated by comparing different data sets are based on

rescaled data sets, and are then presented relative to the climatology of the

reference (e.g., Scipal et al. (2008b); Draper et al. (2009); Dorigo et al. (2010);

dall’Amico et al. (2012)). Before the triple colocation and error propagation

RMSE estimates are presented in this study, the effect of this rescaling to

a reference data set on the subsequent RMSE is demonstrated, to establish

how the RMSE should be interpreted.

The remainder of this paper is structured as follows. The soil moisture

data sets and RMSE estimation methods are reviewed in Sections 2 and 3,

respectively. The latter includes the introduction of statistical uncertainty

estimates for the triple location RMSE, and the development of a strategy

to compare RMSE estimates calculated over large domains from rescaled soil

moisture data sets. The ASCAT and AMSR-E triple colocation and error

propagation RMSE estimates are then examined in Section 4.1 to establish

how useful the two methods might be for evaluating remotely sensed soil

moisture. Also, the assumptions underlying triple colocation are tested in

Section 4.2, by examining the dependence of the estimated RMSE on the
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triplet of data sets used. Finally, a discussion of the implications of the

results, and the conclusions drawn from this study are presented in Sections

5 and 6, respectively.

2. Data

2.1. Remotely sensed soil moisture data sets

ASCAT is a C-band scatterometer, orbiting in a sun-synchronous orbit

on EUMETSAT’s MetOp satellite. The soil moisture data used here were

retrieved from ASCAT backscatter observations at the Vienna University of

Technology, using the semiempirical change detection approach of Wagner

et al. (1999) and Bartalis et al. (2007) (WARP 5.4 version). This yields an

observation of the surface degree of saturation, ranging between 0 and 100%,

representing the driest and wettest observation at each location, respectively.

While the SDS must be multiplied by the porosity to give a soil moisture

value, it will be referred to here as a soil moisture observation for convenience.

The ASCAT SDS relate to soil moisture over a ∼1 cm deep surface layer,

with a spatial resolution of 25 km (reported on a 12.5 km grid).

The AMSR-E instrument, orbiting on NASA’s Aqua satellite in a sun-

synchronous orbit, observed at six-dual polarized frequencies of which the

two lowest (C- and X-band) are routinely used to infer soil moisture. The

AMSR-E soil moisture data used here were retrieved at the VU University

Amsterdam from X-band brightness temperatures using the LPRM (Owe

et al., 2001; de Jeu & Owe, 2003). At X-band, AMSR-E observations relate

to a surface layer depth slightly less than 1 cm with a horizontal resolution

close to 40 km, although the swath data (reported every 5-10 km) were used
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here.

The maximum available coincident data record, spanning ∼4.75 years,

from January 2007 (first ASCAT data) to October 2011 (failure of AMSR-E)

has been used. To avoid complications from the differing statistical moments

of day- and nighttime observations, only nighttime data have been used.

On average the nighttime crossing over North America occurs at 3 UTC (9

pm) for the (ascending) ASCAT overpass, and at 9 UTC (1 am) for the

(descending) AMSR-E overpass. Both satellite overpasses were assumed to

occur at 6 UTC, and have been interpolated to a 25 km grid, before being

cross-screened to retain only locations and times for which both data sets

are available.

For ASCAT, locations with dense vegetation were screened using the er-

ror propagation RMSEs provided with the data (see Section 3.2), following

Mahfouf (2010) and Dharssi et al. (2011). An upper limit of 14% (in SDS

units) was applied. For AMSR-E, dense vegetation was screened using an

upper threshold of 0.8 for the vegetation optical depth, which is retrieved in

parallel with the soil moisture (Owe et al., 2001). Both soil moisture data

sets were also screened to remove grid cells with a wetland fraction above

10%, or where the Catchment land surface model (Section 2.2) indicates

frozen conditions, snow cover, or precipitation. Additionally, the ASCAT

soil moisture observations were discarded where the topographic complexity

was above 10% (Draper et al., 2012), and LPRM observations flagged as

having moderate or strong radio frequency interference were also discarded.

Finally, a lower cut-off of 100 coincident data was imposed at each grid cell.

Figure 1 shows a map of the land cover classes for the regions where re-
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motely sensed data are available after the above quality control. On average,

there were 272 coincident data at each grid cell plotted. The quality control

has screened out most of the grid cells with densely vegetated classes, how-

ever small pockets of deciduous broadleaf, evergreen needleleaf, and woody

savanna remain, as well as large regions of mixed forest, and crop/natural

mix in the east. The ASCAT and AMSR-E soil moisture data are not ex-

pected to have any skill over these densely vegetated land cover classes, and

an additional screening is usually applied to the soil moisture data based on

independent vegetation data (e.g., Draper et al. (2012)). However, this was

not done here, to test whether the error estimation methods under investiga-

tion can detect the larger errors expected for densely vegetated conditions.

2.2. Catchment model soil moisture

Soil moisture simulations from NASA’s Catchment land surface model

(Koster et al., 2000) were used as the third data set in the triple colocation

calculations. Catchment was run on a 25 km grid over the experiment do-

main, using meteorological data from the NASA Modern-Era Retrospective

analysis for Research and Applications (MERRA) (Rienecker et al., 2011),

with the precipitation forecasts corrected towards rain gauge observations.

The near-surface soil moisture (0-2 cm) simulated at 6 UTC each day was

then extracted for comparison to the remotely sensed data.

2.3. In situ soil moisture data

In situ soil moisture observations were used as an alternate data set to test

the assumptions underlying the triple colocation method at the SCAN/SNOTEL

(Schaefer et al., 2007) sites shown in Figure 1. At each of these sites a daily
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time series of near-surface (0-5 cm) soil moisture observations at 6 UTC

was sampled from the hourly SCAN/SNOTEL observations. After cross-

screening the in situ observations for the availability of ASCAT and AMSR-E

observations and applying a lower cut-off of 100 coincident observations, 57

SCAN/SNOTEL sites were included in this study (Figure 1), with an average

of 261 coincident observations at each site.

3. Methods

3.1. Triple colocation

Triple colocation has been used to estimate the errors in the soil mois-

ture anomaly time series from ASCAT (θA), AMSR-E (LPRM) (θL), and the

Catchment model (θC), using the method described by Stoffelen (1998). For

each data set the soil moisture anomaly time series was constructed using the

difference of the raw data from their multi-year, seasonally varying climatol-

ogy. The seasonal climatology was computed as the 31 day moving average,

with the moving averages based on data from all years for the 31 day period

surrounding each day of year.

At each grid cell, the anomaly soil moisture time series are assumed to

include a signal of the true soil moisture anomalies (θ) plus a zero-mean error

ε:

θA = α(θ + εA) (1)

θL = λ(θ + εL) (2)

θC = γ(θ + εC) (3)
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where α, λ, and γ are the triple colocation calibration constants, used to

rescale the data sets to eliminate the systematic differences in their variabil-

ity. A bias term was not included, since anomaly time series have been used.

There are insufficient degrees of freedom to solve for all terms, and so one

data set is selected as the reference and the remaining two are calibrated to

be consistent with this reference. For example, if θA is the reference, α = 1,

and the remaining calibration constants are estimated:

< θLθC >

< θAθC >
=

λ < θ2 + θεL + θεC + εLεC >

< θ2 + θεA + θεC + εAεC >
(4)

< θLθC >

< θAθL >
=

γ < θ2 + θεL + θεC + εLεC >

< θ2 + θεA + θεL + εAεL >
(5)

where < >̇ represents the long-term mean. If the errors in each data set

are not correlated with each other or with the true soil moisture state, then

the ratio of the expected sums on the right hand side of the above equations

becomes one. The left hand side of each equation then provides the esti-

mated calibration constants, λ̂ and γ̂. The calibrated data sets can then be

combined to give:

< (θA −

θL

λ̂
).(θA −

θC
γ̂
) >=< ε2A > − < εAεL > − < εAεC > + < εLεC > (6)

< (
θL

λ̂
− θA).(

θL

λ̂
−

θC
γ̂
) >=< ε2L > − < εAεL > − < εLεC > + < εAεC > (7)

< (
θC
γ̂

− θA).(
θC
γ̂

−

θL

λ̂
) >=< ε2C > − < εAεC > − < εLεC > + < εAεL > (8)

If the errors are again assumed to be mutually uncorrelated, the last three

terms in each equation become zero, and the square root of the left hand side

gives the triple colocation estimate of the RMSE (RMSETC(A)). Here the
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A in parentheses indicates that these estimates were obtained using θA as

the reference data set. The RMSE can be converted to use another reference

by multiplication with the appropriate calibration constant, or by repeating

the calculation with an alternative calibration constant set to one.

Since the triple colocation was based on soil moisture anomalies from the

seasonal cycle, the RMSETC represent only the errors in the soil moisture

anomaly time series, or equivalently the anomalies from the mean seasonal

cycle in the RMSE time series. That is, the mean seasonal cycle in the er-

rors and the long-term mean error (bias) are not included in the RMSETC .

Anomalies from the seasonal cycle were used following Miralles et al. (2010),

who found anomalies to be more consistent with the triple colocation assump-

tions than raw soil moisture time series. The importance of using anomalies

from the seasonal cycle will be confirmed in Section 4.2.

To date, most soil moisture triple colocation studies have excluded the

calibration constants from equations 1-3, and instead rescaled the data sets

with the ratio of their standard deviations prior to applying the above error

model (e.g., Miralles et al. (2010); Dorigo et al. (2010); Parinussa et al.

(2011a)). However, as discussed by Stoffelen (1998) and Yilmaz & Crow

(2013), this results in biased calibration constants, which will then lead to

biased RMSE estimates. In this study, standard deviation scaling would

have resulted in many unphysically large RMSE estimates (exceeding the

soil moisture anomaly time series standard deviation by up to 50%).

Triple colocation relies on all three data sets observing the same variable

and having mutually uncorrelated errors. These assumptions have yet to be

thoroughly tested for soil moisture, and will be checked in Section 4.2. For
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soil moisture, a particular concern is the representativity differences between

different soil moisture data sets. Appendix A examines how these represen-

tativity differences will contaminate the triple colocation RMSE estimates.

In summary, where there are representativity differences between the data

sets used, the triple colocation will favor the two most similarly defined data

sets.

3.2. Error propagation through the retrieval models

For remotely sensed soil moisture retrievals, the soil moisture error as-

sociated with the uncertainty in the instrument measurements and the re-

trieval model parameters can be estimated by propagating these uncertain-

ties through the retrieval model. For ASCAT, error estimates (Naeimi et al.,

2009) are produced in parallel with the SDS data using Gaussian error prop-

agation. For AMSR-E, Parinussa et al. (2011b) propagates the input er-

rors through the LPRM model using the partial derivatives of the radiative

transfer equation. These error propagation techniques generate an expected

RMSE for each soil moisture observation, giving a time series of the ex-

pected RMSEs. At each grid cell, the square root of the mean of the squared

error time series has been used as the error propagation RMSE estimate

(RMSEEP ).

It is unclear whether the error propagation RMSE estimates better rep-

resent absolute soil moisture errors, or anomalies from the seasonal cycle of

the error time series. The RMSE time series have a clear seasonal cycle asso-

ciated with the seasonal cycle in the sensitivity of retrieval model parameters

to various errors, indicating that at least some of the seasonal scale errors are

included. However, error propagation cannot measure other aspects of the
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longer-term errors. For example, errors in the retrieval model structure, such

as in the separation of the vegetation and soil moisture signals, are a major

source of seasonal to annual scale errors, and cannot be detected by error

propagation. Nor does the error propagation include the long-term (length

of the full data record) bias. In the absence of clear evidence either way, the

error propagation results are assumed to relate to the anomalies from the

seasonal cycle of the error time series, consistent with the ε defined for the

triple colocation (in equations 1-3).

3.3. Confidence intervals of the triple colocation RMSE

For the error propagation, only one realization of the RMSE time se-

ries is available and so fRMSEEP confidence intervals cannot be estimated.

For triple colocation, by contrast, fRMSETC confidence intervals can be esti-

mated using boot strapping, following Caires & Sterl (2003). Boot strapping

is useful for estimating the standard error of statistics for which the pop-

ulation distribution is unknown or complex. The sample itself is used to

approximate the population, and an empirical population distribution of the

test statistic is constructed by resampling the original sample multiple times,

with replacement to preserve the sample size. A test of the impact of the

number of resamples on the estimated confidence intervals indicated stable

results after approximately 500 resamples, and so a conservative count of

1000 resamples has been used, consistent with Wilks (2006). The required

percentiles for the test statistic (the RMSE) have then been estimated di-

rectly from the boot-strapped distribution.

To estimate the confidence limits for the mean triple colocation RMSE

over multiple grid cells, two different approaches have been used. When
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the mean is estimated over contiguous spatial areas, such as over a land

cover class in Section 4.1, all of the contiguous grid cells are conservatively

assumed not to be independent. For a contiguous region covering n grid

cells, the mean RMSETC has then been estimated in the usual way, using√
1

n
Σn

i=1(RMSEi)2. The 90% confidence interval for the mean is then cal-

culated separately for the upper (95th percentile minus median) and lower

(median minus 5th percentile) intervals, and for both the mean of the con-

tributing intervals is used. In contrast, for calculating the mean RMSETC

and its confidence interval over the SCAN/SNOTEL sites in Section 4.2, the

results at the individual SCAN/SNOTEL sites are assumed to be indepen-

dent so long as they are sufficiently separated. Hence, the domain was divided

into 5◦x5◦ grid cells, and the SCAN/SNOTEL sites within each of these grid

cells were assumed to lack independence, while the results for each 5◦ grid

cell were assumed to be independent. Within each 5◦ grid cell, the mean

RMSE (RMSE5◦) and the width of the upper and lower confidence intervals

were estimated as described above for contiguous areas. The domain-wide

mean RMSETC over the m 5◦ grid cells containing SCAN/SNOTEL sites was

then estimated as
√

1

m
Σm

i=1(RMSE5◦,i)2. The width of the upper and lower

confidence intervals for the mean were each then calculated as the mean of

respective intervals for the m contributing 5◦ grid cells, divided by the square

root of m.

3.4. Fractional RMSE (fRMSE)

As outlined in Section 1, when two soil moisture data sets are compared

over large spatial domains the systematic differences between their central

moments are usually removed by rescaling each data set to have statistics
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consistent with a chosen reference data set (e.g., by using the calibration

constants defined by equations 1-3). This has several consequences for the

interpretation of the resulting RMSE. Most obviously, since the mean differ-

ence between the data sets has been removed, the resulting RMSE does not

include the bias. Additionally, the RMSD estimated by comparing two fields,

A and B, with equivalent means is a function of the standard deviation of

each field (σA and σB) and the correlation (R) between them:

RMSD(A,B) =
√

< (A− B)2 > =

√
σ2
A + σ2

B − 2RσAσB (9)

A RMSE based on rescaled soil moisture data then depends on the stan-

dard deviation of the reference data set, and the correlation with the vali-

dating truth: note that the signal of the accuracy of the data is derived from

the latter.

To highlight the dependence of the RMSE on the reference standard de-

viation, Figures 2 compares the time series standard deviation of the soil

moisture anomalies for ASCAT, AMSR-E, and Catchment, to the triple colo-

cation ASCAT error estimates, represented using each of these data sets as

the reference. There are considerable differences in the σ for each data set,

with the mean varying between 14% SDS (or 0.07m3m−3 assuming a poros-

ity of 0.5m3m−3) for ASCAT, 0.07m3m−3 for AMSR-E , and 0.03m3m−3 for

Catchment. The spatial patterns described by each are also very different.

The absolute values of the ASCAT RMSETC also differ depending on which

data set is used as the reference, with the mean RMSE varying between 9%

SDS (0.05m3m−3), 0.04m3m−3, and 0.03m3m−3 when ASCAT, AMSR-E,

and Catchment are used, respectively. The spatial patterns in the ASCAT
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fRMSETC also differ depending on which reference was used, and in each

case there are clear features of the reference σ in the RMSE maps.

While at individual locations the ratio of the RMSE between different

data sets does not depend on the selected reference data set, the ratio and

even the ranking of the domain-averaged RMSE does depend on the refer-

ence. For example, Table 1 lists the mean RMSETC across the domain for

each data set, presented using each data set as the reference. With AS-

CAT as the reference, the mean RMSETC for AMSR-E and Catchment are

both more than 50% higher than the ASCAT RMSETC , and Catchment has

the highest mean RMSETC . However with AMSR-E as the reference, the

difference between the ASCAT RMSETC and the AMSR-E and Catchment

RMSETC is reduced. Of more consequence, with Catchment as the reference

the ranking of the RMSETC changes, and AMSR-E has the highest mean

RMSETC , although the differences are now small.

This study investigates the spatial variability in remotely sensed soil mois-

ture RMSEs. If the RMSE were presented in soil moisture units (relative to

a reference data set), the spatial variability in each would be very similar,

due to the common signal of the reference standard deviation. Hence, the

fractional RMSE (fRMSE ) is introduced for examining the RMSE:

fRMSEX = RMSEX(X)/σX (10)

The fRMSE is obtained by presenting the RMSE for data set X (RMSEX)

using itself as the reference (RMSEX(X)), and then dividing this by the

standard deviation of X (σX). With the signal of the standard deviation

effectively removed from equation 9, the fRMSE statistic is consistent with
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the common use of correlation statistics to evaluate soil moisture (e.g., Re-

ichle et al. (2007); Scipal et al. (2008a); de Jeu et al. (2008); Parinussa et al.

(2011a); Draper et al. (2012)).

The fRMSE has several advantages over presenting the RMSE using an

arbitrary reference. It is self contained, and has a well defined range between

0 (perfect estimates) and 1 (noise, with no signal of the truth), with values

greater than 1/
√

2 (∼ 0.7) indicating an error variance that exceeds the

variance of the true time series. Users of a specific data set need only multiply

the fRMSE by the standard deviation of that data set to obtain a RMSE

in soil moisture units, rather than requiring access to the arbitrary reference

data set. The fRMSE also allows more flexibility in comparing different error

estimates, since it does not rely on being able to convert all error estimates

to a common reference (which will allow the inter-comparison of the triple

colocation RMSE obtained with different data triplets in Section 4.2).

A potential disadvantage of the fRMSE, however, is that by convert-

ing the RMSE for each data set to its own climatology, the ratio of the

RMSEs for two data sets at a given location is not conserved, although

the ranking between them is. While the RMSE ratio could be preserved

by converting each RMSE to a common reference (say data set Y), and

then dividing by the standard deviation of that reference, this leads to

the inclusion of the errors in the reference data set in the statistic (since

RMSEX(Y )/σ(Y ) =
√

ε2X(Y )/(σT (Y ) + εY (Y ))2, where σT is the standard

deviation of the true soil moisture). The result is no longer self contained

and can generate unexpected results.

For the remainder of this paper, the RMSE estimates are presented using
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the fRMSE. While the RMSEEP are not based on rescaled data sets, they

implicitly reflect the climatology of the data set to which they apply, and

a fRMSE has been calculated by dividing the error propagation RMSE by

the standard deviation of the soil moisture anomaly time series. Note that

reporting the errors as a fRMSE magnifies differences between the error esti-

mates. Soil moisture, and consequently the error in soil moisture, is usually

reported with a precision of 0.01 m3m−3. Based on the (spatial) mean stan-

dard deviation of 0.08m3m−3 for AMSR-E in Figure 2b, a RMSE of 0.01

m3m−3 is equivalent to a fRMSE of 0.1.

4. Results

4.1. fRMSE over the domain

As discussed above, in Section 3.4, the error estimates are presented here

in terms of the fRMSE (equation 10). Figure 3 shows maps of the ASCAT

and AMSR-E fRMSE calculated from triple colocation (fRMSETC) and er-

ror propagation (fRMSEEP ). Spatially, the fRMSEEP is smoother than the

fRMSETC , likely due to noise in the triple colocation estimates, and the

dependence of the error propagation on coarsely defined model parameters.

The most obvious feature of the four maps is that the AMSR-E fRMSEEP are

unphysically large, with values consistently above two (i.e., a RMSE more

than double the time series standard deviation). In contrast, the ASCAT

fRMSEEP are within the expected range, and tend to be slightly lower than

the fRMSETC .

The error propagation methods were developed with a focus on predicting

the temporal and spatial variability in the RMSE of a specific data set. The
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magnitude of the fRMSEEP depends on the magnitude of the uncertainties

specified for the retrieval model input and parameters, however the uncer-

tainties in the retrieval model parameters are not well understood at scales

relevant to remote sensing, and so are specified somewhat arbitrarily. Hence,

little weight should be placed on the magnitude of the error propagation out-

put, and the unrealistic absolute values obtained for the AMSR-E fRMSEEP

are not surprising.

In terms of the spatial variability in the RMSE, Figure 3 shows a general

agreement in the broad patterns described by the fRMSETC and fRMSEEP

for each data set, all of which are consistent with expectations. All four

maps show the expected increase in fRMSE toward the more vegetated east

of the domain, although for the ASCAT fRMSEEP (Figure 3b) the eastward

increase is weaker than for the other maps.

The ASCAT and AMSR-E errors can only be compared based on the

triple colocation results, given the uncertain magnitude of the error propaga-

tion output. In Figure 3 the ASCAT and AMSR-E fRMSETC appear to be

very similar across the domain, except over the croplands in the Mid-West

of the US where the ASCAT fRMSETC are much lower than the AMSR-E

fRMSETC , and immediately to the east of the Rocky Mountains where the

AMSR-E fRMSETC are lower than the ASCAT fRMSETC .

To establish whether these differences in the fRMSETC are significant,

Figure 4 shows the width of the 90% confidence interval for the fRMSETC

estimates, while Figure 5 indicates regions where the (one sided) differences

between the ASCAT and AMSR-E fRMSETC are significant (at 5%). In Fig-

ure 4 the confidence intervals in the Mid-West of the US and in the northeast
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of the domain exceed 0.5 for ASCAT (that is, the 90% confidence interval

spans more than 50% of the standard deviation), and also for AMSR-E over

a subregion of the Mid-West. Over the rest of the domain, the confidence

intervals are between 0.1-0.3, with a tendency for the ASCAT and AMSR-E

intervals to offset each other (i.e., one is reasonably high where the other

is reasonably low). Despite the large uncertainties, Figure 5 shows that the

lower ASCAT fRMSETC (compared to the AMSR-E fRMSETC) is signifi-

cant across much of the Mid-West. Figure 5 also clearly shows the tendency

for the AMSR-E fRMSETC to be lower than the ASCAT fRMSETC in the

west of the plotted domain, while the ASCAT fRMSETC tends to be lower

in the east of the domain. This east-west difference has been reported by

previous triple colocation studies comparing passive and active microwave

soil moisture retrievals (Scipal et al., 2008b; Dorigo et al., 2010).

Figure 6 shows the mean fRMSE by land cover, for each land cover class

with at least 100 grid cells in Figure 3, along with 90% confidence intervals

for the fRMSETC estimates (Section 3.3). At the microwave frequencies

observed by ASCAT and AMSR-E, interference from vegetation is a major

source of error in soil moisture retrievals. Hence, the mean LAI over each land

cover class is also included in Figure 6 to provide a proxy for the vegetation

interference. As expected, there is a general pattern across the land cover

classes of increasing mean fRMSE with increasing LAI.

For ASCAT, the agreement between the fRMSETC and fRMSEEP is in

general very good, except that over the five most densely vegetated categories

(woody savanna, ever-green needleleaf, deciduous broadleaf, forest, and crop-

lands/natural cover), the mean fRMSEEP is lower than the mean fRMSETC ,
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and is even below the 1/
√

2 line (hence the relatively low fRMSEEP in the

east in Figure 3b). The analysis was repeated without discarding ASCAT

data with high error propagation errors (see Section 2.1), and this separate

analysis (not shown) confirms that this quality control step was not the cause

of the low ASCAT fRMSEEP in the east of the domain.

For AMSR-E, the relationship between the fRMSETC and fRMSEEP

is less consistent. For triple colocation, the variability between the mean

AMSR-E fRMSETC for each land cover class directly reflects the variability in

the mean LAI. However, for error propagation the mean AMSR-E fRMSEEP

are grouped into two bins: the three land cover classes with the lowest LAI

were effectively assigned similar and relatively low mean fRMSEEP , while the

remaining five land cover classes were effectively assigned similar relatively

high mean fRMSEEP . This tendency to assign the errors to one of two modes

is also evident in the lack of graduated colors in Figure 3d.

The ASCAT SDS retrieval model includes a semiempirical vegetation cor-

rection that removes the climatological seasonal cycle of the vegetation signal

from the observed backscatter. This correction is thought to be reasonably

effective over moderate vegetation conditions, and in theory moderate veg-

etation will be less detrimental to the accuracy of the ASCAT SDS than to

the accuracy of the AMSR-E soil moisture. This is consistent with Figure

6 which shows that the relationship between the mean LAI and the mean

fRMSE is much stronger for AMSR-E than for ASCAT. For ASCAT, factors

other than vegetation can also contribute to the errors in the soil moisture

retrievals. For example, open shrubs have the lowest mean LAI in Figure 6,

yet the mean ASCAT fRMSE estimates over the open shrubs are very high
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(close to 1/
√

2) for both methods. The open shrub grid cells are in the arid

southwest of the domain (Figure 1), where the coverage in Figure 3 is poor

(229 out of nearly 7000 grid cells). The poor performance of the SDS in arid

environments is an established (although not well understood) limitation of

the ASCAT change-detection model (Wagner et al., 2003). Additionally, over

grasslands and croplands both fRMSETC and fRMSEEP indicate similar AS-

CAT fRMSE, despite the croplands having much higher LAI. This reasons

for this difference are not known.

In terms of the relative performance of the ASCAT and AMSR-E soil

moisture, while there are some differences in their mean fRMSETC over dif-

ferent land cover classes in Figure 6, none of these differences are significant.

As was noted above, over the croplands the fRMSETC for ASCAT is quite

low, and much lower than the AMSR-E fRMSETC . While this result is not

statistically significant, the enhanced ASCAT skill is supported by the mean

fRMSEEP also being relatively low for croplands. For the three least vege-

tated land cover classes (open shrubs, grassland, and crops), at least one of

the ASCAT and AMSR-E fRMSETC are significantly less than 1/
√

2, indi-

cating an ability to accurately detect soil moisture anomalies. These three

land cover classes constitute 63% of the domain with fRMSE values in Figure

3. Over the five more densely vegetated land cover classes, the fRMSETC is

generally above or close to 1/
√

2, indicating poor skill with errors exceed-

ing the true soil moisture variability, and confirming the usual practice of

screening the ASCAT and AMSR-E data at these locations (Section 2.1).

Finally, in Figures 3 and 4 the plotted coverage is less than that of the

quality controlled data in Figure 1, due to the triple colocation having pro-
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duced negative mean square errors at 17% of the locations that passed the

quality control procedures described in Section 2.1. These locations are gen-

erally adjacent to regions where data have been screened by the quality con-

trol, or are barren/open shrub grid cells in the arid southwest where the

ASCAT errors are very large. This suggests that triple colocation may re-

quire a minimum skill from all three data sets, which is consistent with the

assumption that all three data sets observe the same variable.

4.2. Dependence of RMSETC on the data triplet

Triple colocation is based on the assumption that all three data sets ob-

serve the same variable and have mutually uncorrelated errors. However,

representativity differences (extending beyond systematic differences in the

central moments) are inevitable between global soil moisture data sets, and

will lead to violations of these assumptions. The consequences of this are in-

vestigated here, by testing how the fRMSETC estimates differ when different

data sets are used in the triple colocation data triplet. In situ soil moisture

from the 57 SCAN/SNOTEL sites have been used as an alternate data set.

Figure 7 shows the mean fRMSETC averaged over the SCAN/SNOTEL

sites, calculated with different data triplets selected from the ASCAT, AMSR-

E, Catchment, and SCAN/SNOTEL soil moisture anomalies. For a given

data set the differences between the fRMSETC estimates are small when

different data triplets are used, although some of these differences are sta-

tistically significant. The maximum fRMSETC difference for a given data

set due to the use of different data triplets is ∼ 0.1, much smaller than the

0.2− 0.5 differences reported from Figure 6, and close to the precision of soil

moisture data.
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The dependence of the fRMSETC estimates on the data triplet used in the

triple colocation is also consistent with the expected representativity differ-

ences between the four data sets. For ASCAT and AMSR-E, the fRMSETC

estimates are significantly lower when both ASCAT and AMSR-E are in-

cluded in the triplet (left two triplets in Figure 7) than when only one

of the remote sensors is included. Likewise, for both Catchment and the

SCAN/SNOTEL data, the fRMSETC is lower, sometimes significantly, when

only one of the remote sensors is included (right two triplets) than when both

are included in the triplet. This tendency to favor the remote sensors when

both are included in the data triplet, and to favor the other two data sets

when only one remote sensor is included, suggests a representativity differ-

ence between the two remote sensors on one hand, and the Catchment and

SCAN/SNOTEL data on the other hand (see Appendix A).

If the results from Figure 7 are generalized across the domain presented

in Section 4.1, then the representativity differences reported above will have

had little impact on the results reported here, most obviously because the

fRMSETC differences reported in Section 4.1 are much larger than the < 0.1

differences obtained here. Also, the representativity differences discussed

above will not influence the ASCAT and AMSR-E fRMSETC in Section 4.1,

so long as the fRMSETC is interpreted as being relative to a soil moisture

truth defined to resolve the same features as the remote sensors. However,

the Catchment fRMSETC calculated in Section 4.1 (but not shown) will have

included a small representativity error (of ∼ 0.15), associated with the repre-

sentativity differences between the modeled soil moisture and the soil mois-

ture truth defined by the remote sensors.
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The above result is dependent on the triple colocation having been based

on soil moisture anomalies from the mean seasonal cycle, rather than on

anomalies from a single long-term mean or on raw data. Repeating Figure 7

with the triple colocation based on anomalies from the long-term mean over

the full data record (as opposed to anomalies from a seasonally varying cli-

matology) resulted in fRMSETC for a given data set that consistently differed

by more than 0.5 depending on which data triplet was used. This confirms

the previous statement of Miralles et al. (2010) that the triple colocation

assumptions are better satisfied for soil moisture by using anomalies defined

as deviations from the seasonal cycle.

Finally, Figure 7 also highlights that RMSE estimates from triple coloca-

tion are far more accurate than a RMSD based on comparison to only one

other data set. The latter method is most often based on observations from

individual in situ soil moisture sensors, yet in Figure 7 the SCAN/SNOTEL

RMSE (when estimating coarse scale soil moisture) are as large as the AS-

CAT and AMSR-E RMSEs. Hence, the RMSD between either remote sensor

and the SCAN/SNOTEL data will significantly over-estimate the RMSE

in the remotely sensed data. To address this, Miralles et al. (2010) esti-

mate an in situ-based RMSE for data set X (RMSEIS
X ), by correcting the

RMSD between X and the in situ data (RMSDIS
X ) with a triple colocation

estimate of the RMSE of the in situ data (RMSETC
I ), using RMSEIS

X ≈

√
(RMSDIS

X )2 − (RMSETC
I )2. While this method is useful for highlighting

the contribution of the in situ errors to the RMSDX
I , it is equivalent to sim-

ply estimating the RMSE for θX using triple colocation. With reference to

the triple colocation equations (equations 6- 8), the corrected RMSD can be
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written:

RMSEIS
X ≈

√
(RMSDIS

X )2 − (RMSETC
I )2 (11)

=
√

< (θX − θI)2 > − < (θX − θI)(θX − θY ) > (12)

=
√

< (θX − θI)(θY − θI) > (13)

= RMSETC
X (14)

The calibration constants have been neglected above for clarity. However,

this results does not change if the calibration constants are included, except

for the introduction of an inconsistency between the calibration constants

used in the RMSETC and RMSDIS calculations, since the latter is based

on only two data sets and will be biased (Stoffelen, 1998).

5. Discussion

The root mean square errors in soil moisture anomaly time series from

AMSR-E and ASCAT have been estimated across a continental scale domain

in North America using two methods: (i) triple colocation with Catchment

model soil moisture as the third data set, and (ii) error propagation through

the respective soil moisture retrieval models. These methods have been inves-

tigated to determine their utility for evaluating remotely sensed soil moisture

over large domains, including for the specification of observation error vari-

ances needed for data assimilation.

In the absence of an consensus soil moisture climatology over large do-

mains, presenting a RMSE in soil moisture units requires that it be specified
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relative to a selected reference data set. The absolute value and spatial pat-

terns of a RMSE in soil moisture units will then depend on the selected

reference data set, and specifically on its standard deviation (Figure 2). In

this study this dependence is reduced by presenting the RMSE for each data

set as the fraction of the standard deviation of that data set (fRMSE).

Comparing the triple colocation and error propagation fRMSE over the

continental scale domain indicates that both methods can accurately detect

the large scale variability in soil moisture errors. In Figure 3 the regions

with relatively high and low fRMSETC and fRMSEEP agree very well, and

in Figure 6 the variability in the mean fRMSETC and fRMSEEP over each

land cover class also agrees with expectations.

The error propagation methods are designed to determine the spatial and

temporal variation of the errors within a given data set, and while not used

here, the unique ability to produce time series of the errors may be the most

useful feature of error propagation. The magnitude of the RMSE output

from the error propagation depends on the magnitude of the uncertainties

specified for the retrieval model parameters, and these uncertainties are not

well understood. Hence, the magnitude of the error propagation output is

not necessarily expected to be correct. In this study, the ASCAT fRMSEEP

appear to be approximately correct, while the AMSR-E fRMSEEP were un-

realistically large. For AMSR-E, the LPRM model parameter uncertainties

used in the error propagation were conservatively estimated to be quite large

(Parinussa et al., 2011b), and reducing the uncertainties specified for example

in the roughness or single scattering albedo would reduce the error propaga-

tion output to more realistic values. More generally, to have any confidence
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in the magnitude of the error propagation output will require an improved

understanding of the uncertainty in the retrieval model parameters. This

could be achieved during the calibration of the retrieval model parameters,

by using methods that generate both parameter values and the uncertainty

in those parameters (e.g., De Lannoy et al. (2013)).

The errors in the fRMSEEP themselves can also be useful for identifying

shortcomings of the retrieval models. For AMSR-E LPRM, the fRMSEEP

were relatively low over sparsely vegetated regions, and relatively high over

densely vegetated regions, with little graduation between these two modes

(Figures 3 and 6). In contrast, the AMSR-E fRMSETC gradually increased

with increasing vegetation density, resulting in the expected strong correla-

tion with LAI in Figure 6. This error propagation behavior can be traced

to a limitation of the tau-omega model used by the LPRM. The tau-omega

model parametrizes the attenuation of the soil moisture signal by vegetation

using an exponential function of vegetation optical depth (equation 2, Pari-

nussa et al. (2011b)), resulting in an exponential increase in the tau-omega

error propagation output with increasing vegetation optical depth (Figure

2, Parinussa et al. (2011b)). The sudden and steep increase in the LPRM

fRMSEEP with increasing vegetation in Figures 3 and 6 of this study sug-

gests that the tau-omega model is over-estimating this non-linear sensitivity

to vegetation attenuation. This suggests a potential to improve the LPRM,

and other retrieval algorithms using the tau-omega model.

Likewise, for ASCAT the fRMSETC and fRMSEEP disagree over the east-

ern US, where the fRMSETC is much higher than the fRMSEEP (by > 0.2).

The cause of this discrepancy is unknown, however the combination of higher
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fRMSETC and lower fRMSEEP suggests errors in the ASCAT SDS estimates

in this region associated with a physical process that is not properly ac-

counted for in the SDS retrieval model.

For triple colocation there is no evidence that the absolute values of the

fRMSETC are not accurate, with the caveat that the errors are relative to the

soil moisture anomaly truth defined by the three data sets used. However,

the dependence of the fRMSETC on the triplet of data sets used was tested at

57 SCAN/SNOTEL sites, revealing surprising robustness to representativity

differences between the data sets used, particularly given the substantial rep-

resentativity differences expected between the point-based in situ and coarse

scale soil moisture estimates. There were only small systematic differences

(below the typical precision of soil moisture) between the fRMSETC for a

given data set, depending on the triplet of data sets used. While the repre-

sentativity differences between the various soil moisture anomaly data sets

were of little consequence here, caution is still recommended when selecting

the data sets to be used in soil moisture triple colocation. Additionally, this

result requires that the triple colocation be based on soil moisture anomalies

from the seasonal mean.

In contrast to error propagation, triple colocation provides a consistent

method for estimating the RMSE of different remotely sensed soil moisture

data sets. In Section 4.1, the triple colocation results showed that in gen-

eral ASCAT and AMSR-E have similar accuracy over a range of land cover

conditions, although the AMSR-E errors have a stronger dependence on veg-

etation cover. The exceptions, both of which have previously been reported

in the literature (Wagner et al., 2003; Scipal et al., 2008b; Dorigo et al.,
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2010), are the high ASCAT fRMSETC in arid regions and the low ASCAT

fRMSETC over the croplands in the Mid-West of the US. Note that slightly

better AMSR-E accuracy is expected in most other regions of the globe where

C-band observations can be used, since only X-band data were used here due

to radio frequency interference contaminating the C-band observations over

North America.

6. Conclusions and Recommendations

The above findings have implications for the evaluation of remotely sensed

soil moisture data. Currently, novel soil moisture data sets retrieved from re-

mote sensors are validated against predetermined target accuracies specified

in soil moisture units (relative to the true soil moisture). This validation is

typically based on a limited number of well-observed pixels. In Figures 2 and

3 there is substantial spatial variation in the soil moisture RMSE and fRMSE,

highlighting that an evaluation based on a limited number of locations will

not necessarily be representative of larger domain. Hence, the above valida-

tion approach should be complemented with distributed methods that can

estimate the soil moisture RMSE globally.

Both triple colocation and error propagation can accurately detect regions

of relatively high and low fRMSE. While the definition of the RMSE produced

by triple colocation (unbiased RMSE of anomalies from the seasonal cycle)

and error propagation (errors associated with model input and parameters

only) differs from that currently defined by remote sensing target accuracies,

these methods could still be useful for identifying regions where the accuracy

from well-observed pixels can be confidently extrapolated, and where the ac-
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curacy might differ (particularly where it is unexpectedly reduced). For most

applications, triple colocation is more useful, since in addition to predicting

the spatial variability in the errors, it can accurately detect the magnitude

of the RMSE.

However, it is unclear how current target accuracies (in soil moisture

units) should be interpreted in a truly global evaluation. Most obviously,

without knowledge of the true global soil moisture climatology, an assessment

in soil moisture units requires selecting a reference, and this arbitrary decision

determines the magnitude of the resulting errors. Also, as pointed out by

Entekhabi et al. (2010), a uniform (or maximum) RMSE in soil moisture

units is difficult to interpret over a large domain, since the same value can

indicate very good skill in a region of high variability and be trivially satisfied

in a region with low variability. Alternatively, interpreting a target accuracy

as the mean RMSE over a large domain is also problematic, since the choice

of reference data set affects the relative performance of different data sets

(e.g., Table 1). Hence, extending the evaluation (or specification of target

accuracies) of remotely sensed soil moisture to a near-global domain will

require the use of alternative metrics, such as the fRMSE.

Finally, for data assimilation observation error variances are often speci-

fied to be constant across the assimilation domain, in the soil moisture units

of either the model or the observations (in the latter case, the error vari-

ance is then scaled to be consistent with the model climatology in the same

manner as the observations are). Again, the specification of a constant soil

moisture RMSE over a large domain is not sensible, and at a minimum it

would be better to specify a constant fRMSE. An even better solution would
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be to introduce the spatial variability in the fRMSE, by using mean values

for each land cover class from either the triple colocation or error propagation

methods. Ideally, the temporal variability from the error propagation could

also be used, after appropriate rescaling to correct the absolute values.
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Appendix A. Dependence of triple colocation on features resolved

by the data triplet

For soil moisture data sets, representativity differences between different

data sets are common (beyond differences in the central moments), for ex-

ample due to differences in the spatial or temporal support or in the soil

moisture processes resolved by different data sets. As outlined by Stoffelen

(1998) the truth defined by triple colocation, against which the RMSE are

estimated, includes only the features resolved by all three data sets. It is

demonstrated here that where there are representativity differences between

the three data sets, in that they do not all resolve the same features, the

triple colocation RMSE will favor the two most similar data sets.

In the instance where one data set differs from the other two data sets in

that it resolves additional variability that is not present in the other two data

sets (for example variability at a finer spatial scale), the additional features
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will be attributed to errors in that data set, increasing its triple colocation

error estimate. However, in the instance where one data set differs from the

other two data sets in that it lacks a source of additional variability that is

present in the other two data sets, the triple colocation RMSE estimates still

favor the two more similar data sets. For example, consider the triple coloca-

tion of data sets X1, X2, and Y, where X1 and X2 both resolve an additional

source of variability not resolved by Y. This additional variability is assigned

to representativity errors in X1 and X2, resulting in a non-negligible corre-

lation between the ‘errors’ for X1 and X2. If this is the only non-negligible

covariance between the errors, then the triple colocation error estimates ob-

tained from equations 6-8 are:

RMSETC(X1) =

√
< ε2X1 > − < εX1.εX2 >2 (15)

RMSETC(X2) =

√
< ε2X2 > − < εX1.εX2 >2 (16)

RMSETC(Y ) =

√
< ε2Y > + < εX1.εX2 >2 (17)

The additional features resolved by X1 and X2 are subtracted from the

X1 and X2 RMSE estimates, and added to the RMSE estimate for Y; the

triple colocation has effectively produced RMSE relative to a truth defined

to include the additional features resolved by X1 and X2.

In the above example the correlated errors between X1 and X2 will also

affect the calibration constants in equations 4-5. However, this effect will

be secondary to that described above since in equations 4 and 5 the error

covariances appear next to the variance of the truth, while in the equations

above the error covariances appear next to the error variances, against which
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they will constitute a much larger fraction.
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Figure 1: MODIS land cover classes (Friedl et al., 2002), plotted where remotely sensed

soil moisture data are available after quality control. Black circles indicate the location of

the SCAN/SNOTEL sites used in Section 4.2.
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a) σASCAT b) RMSEASCAT (ASCAT)

c) σAMSR−E d) RMSEASCAT (AMSR-E)

e) σCAT CH f) RMSEASCAT (CATCH)

Figure 2: Maps of (left) the standard deviation in the soil moisture anomaly time series

from a) ASCAT (%), c) AMSR-E (m3m−3), and e) Catchment (m3m−3), and (right)

RMSE estimates for ASCAT from triple colocation, presented using b) ASCAT (%), d)

AMSR-E (m3m−3), and f) Catchment (m3m−3) as the reference data set. Both are plotted

only where triple colocation results are available.
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a) ASCAT fRMSETC b) AMSR-E fRMSETC

c) ASCAT fRMSEEP d) AMSR-E fRMSEEP

Figure 3: fRMSE of (left) ASCAT and (right) AMSR-E, fRMSE estimated using the

(upper) triple colocation and (lower) error propagation methods, plotted only where triple

colocation results are available. Note the different color scale for the AMSR-E fRMSEEP

in subfigure d.

a) ASCAT b) AMSRE

Figure 4: Width of the 90% confidence interval for the fRMSETC of the a) ASCAT and b)

AMSR-E soil moisture anomalies, plotted only where triple colocation results are available.
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Figure 5: Comparison of ASCAT and AMSR-E fRMSETC . Blue (red) indicates AMSR-E

fRMSETC less (more) than ASCAT fRMSETC , with darker shades indicating a significant

difference at 5%.
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Figure 6: Mean by land cover class for the fRMSETC and fRMSEEP of a) ASCAT and b)

AMSR-E, and for c) LAI. For fRMSETC the 90% confidence interval is included (uncer-

tainty estimates are not available for fRMSEEP ). Note the different y-axis (on right) for

the AMSR-E fRMSEEP . The dashed line indicates a fRMSE of 1/
√

2, above which the

signal to noise ratio is below one.
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Figure 7: Mean fRMSE and its 90% confidence interval estimated across the

SCAN/SNOTEL sites, using triple colocation based on different combinations of three

of (A) ASCAT, (L) AMSR-E, (C), Catchment, and (I) in situ data sets. The data triplet

is indicated in the x-axis labels, while the plotted symbol/color indicates the data set for

which the error is estimated. The dashed line indicates a fRMSE of 1/
√

2, above which

the signal to noise ratio is below one.
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Table 1: Domain-average RMSE obtained from triple colocation (RMSETC) for AMSR-

E, ASCAT, and Catchment model soil moisture, presented using each data set in turn as

the reference.

Reference RMSETC

ASCAT AMSR-E CATCH

ASCAT (%) 9 15 16

AMSR-E (m3m−3) 0.04 0.05 0.06

CATCH (m3m−3) 0.03 0.04 0.03
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