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Abstract. This work presents the development of a two-moment cloud microphysics scheme within

the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the

implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme

that allows ice supersaturation and a new microphysics module embedded within the moist convec-

tion parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation,5

including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented

to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect

of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new param-

eterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity

wave motion is developed. The implementation of the new microphysics significantly improves the10

representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the

simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ

observations. The simulated global distribution of supersaturation is also in agreement with observa-

tions. It was found that when using the new microphysics the fraction of condensate that remains as

liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed15

in most models and is in better agreement with available observations. The performance of the new

microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forc-

ing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with

satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent

low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to20
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moderate variation in cloud microphysical parameters. However significant sensitivity in ice cloud

properties was found to variation in the dispersion of the ice crystal size distribution and the critical

size for ice autoconversion. The implementation of the new microphysics leads to a more realistic

representation of cloud processes in GEOS-5 and allows the linkage of cloud properties to aerosol

emissions.25

1 Introduction

Cloud microphysical schemes in global circulation models (GCMs) have evolved from directly pre-

scribing cloud properties (i.e., particle size and number, cloud amount and concentration of con-

densate) to explicit representation of the formation, evolution, and removal of cloud droplets and

ice crystals (e.g., Gettelman et al., 2010; Lohmann, 2008; Sud et al., 2013). The development of30

sophisticated cloud microphysics schemes allows a more realistic description of the variability and

interdependence of cloud properties, and will likely improve model predictions of climate (Lohmann

and Feichter, 2005). However their increased complexity has also brought about new challenges in

the description of small-scale dynamics, cloud particle nucleation, and the generation of precipita-

tion. Most models rely on simplified representations of such processes.35

Current GCMs typically use either single- (e.g., Del Genio et al., 1996; Bacmeister et al., 1999) or

two-moment cloud microphysics schemes (e.g., Gettelman et al., 2010; Sud et al., 2013; Lohmann

et al., 2008). More detailed schemes have also been developed, however their computational expense

make them unsuitable for climate studies (Khain et al., 2000). The advantage of two and higher

moment schemes is that cloud particle size is explicitly calculated and allowed to interact with40

radiation and the formation of precipitation. Some schemes also allow for supersaturation with

respect to the ice phase, required to explicitly model ice nucleation (e.g., Gettelman et al., 2010;

Wang and Penner, 2010). When coupled to an appropriate aerosol activation parameterization, two-

moment microphysics schemes are capable of modeling the modification of cloud properties by

aerosol emissions, an effect that has important implications for the evolution of climate (IPCC,45

2007; Lohmann and Feichter, 2005).

Mounting evidence suggests that aerosols, both natural and anthropogenic, play a key role in

many atmospheric processes. For example, the presence of ice in clouds at temperatures above 235

K depends on the presence of water-insoluble ice nuclei (IN) (Pruppacher and Klett, 1997). IN in

turn act as precipitation-forming agents in convective systems and mixed-phase clouds (Ramanathan50

et al., 2001; Rosenfeld and Woodley, 2000). Although they originate mostly from natural sources

(i.e., dust and biogenic material), anthropogenic IN emissions can modify the natural IN concentra-

tion. The effect of aerosols on clouds has also been associated associated with planetary radiative

perturbations from the modification of clouds by anthropogenic aerosol emissions (Twomey, 1977,

1991; Lohmann and Feichter, 2005). Emissions of cloud condensation nuclei (CCN) may also lead55
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to the modification of the precipitation onset in convective cumulus by decreasing the average size

of cloud droplets (Rosenfeld et al., 2008). Recent studies suggest that the interplay between CNN

and IN plays a significant role in the maintenance of Arctic clouds (Morrison et al., 2012; Lance

et al., 2011). Accurate representation of these effects in atmospheric models is critical for reliable

climate prediction, yet difficult due to their complexity and gaps on the understanding of CCN and60

IN activation.

A recent simulation of the non-hydrostatic implementation of the NASA Goddard Earth Observ-

ing System at 14 km spatial resolution demonstrated that as the spatial resolution increases the

parameterized convective transport of moisture plays a weaker role in the generation of cloud con-

densate. At high resolution the simulated cloud properties are controlled by the cloud microphysics65

(Putman and Suarez, 2011). For typical GCM resolutions (∼ 2◦) the parameterization of the convec-

tive generation of precipitation is critical for the correct simulation of the hydrological cycle and the

distribution of cloud tracers in the atmosphere (Arakawa, 2004). Most GCMs use single-moment

schemes to describe the microphysics of convective systems. Two-moment microphysical schemes

have also been developed for convective clouds, although mostly based on ideas originally developed70

for stratiform clouds (e.g., Lohmann, 2008; Song and Zhang, 2011; Sud et al., 2013).

The NASA Goddard Earth Observing System, Version 5 (GEOS-5) is a system of models inte-

grated using the Earth System Modeling Framework (ESMF) (Rienecker et al., 2008). The opera-

tional version of GEOS-5 is regularly used for decadal predictions of climate, field campaign sup-

port, satellite data assimilation, weather forecasts and basic research (Rienecker et al., 2008, 2011;75

Molod, 2012). GEOS-5 uses a single-moment cloud microphysics scheme to parameterize conden-

sation, sublimation, evaporation, autoconversion and sedimentation of liquid and ice (Bacmeister

et al., 2006). This single-moment approach captures the main climatic features related to the for-

mation of stratocumulus decks and tropical storms (Reale et al., 2009; Putman and Suarez, 2011).

However the single-moment approach prevents the explicit linkage of aerosol emissions to cloud80

properties and omits sub-grid variability in cloud properties. In this work we develop a new micro-

physical package for GEOS-5 that addresses these issues. The new two-moment cloud microphysics

scheme explicitly predicts the mass and number of cloud ice and liquid, rain and snow and links the

number concentration of ice crystals and cloud droplets to processes of cloud droplet activation and

ice crystal nucleation.85

2 Model Description

2.1 Operational GEOS-5

The cloud scheme in the operational version of GEOS-5 considers a single phase of condensate,

however the removal and evaporation of cloud water from detrained convection and in situ con-

densation are treated separately. The fraction of condensate existing as ice is assumed to linearly90
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increase between 273 K and 235 K. Processes of autoconversion, evaporation/sublimation, and ac-

cretion of cloud water and ice are treated explicitly (Bacmeister et al., 2006). Moist convection

is parameterized using the Relaxed Arakawa-Schubert (RAS) scheme (Moorthi and Suarez, 1992).

Generation and evaporation of convective, anvil and stratiform precipitation are parameterized ac-

cording to Bacmeister et al. (2006). Longwave radiative interactions with cloud water, water vapor,95

carbon dioxide, ozone, N2O and methane are treated following Chou and Suarez (1994). The Chou

et al. (1992) scheme is used to describe shortwave absorption by water vapor, ozone, carbon diox-

ide, oxygen, cloud water, and aerosols and scattering by cloud particles and aerosols. Cloud particle

effective size is prescribed and tuned to adjust the radiative balance at the top of the atmosphere.

The current version of GEOS-5 also accounts for the radiative effect of precipitating rain and snow100

according to Molod et al. (2012). Aerosol transport is calculated interactively using the GOCART

aerosol model (Colarco et al., 2010).

The calculation of large scale condensation and cloud coverage in GEOS-5 follows a total-water-

PDF approach (Smith, 1990; Rienecker et al., 2008; Molod, 2012). The total water probability

distribution function (PDF) is assumed to follow a top-hat distribution characterized by the critical105

relative humidity, which follows the formulation of Slingo (1987). Anvil cloud fraction is parame-

terized following Tiedtke (1993).

2.2 New Cloud Variables

The cloud microphysical scheme in GEOS-5 was augmented to calculate the evolution of the mass

number of ice crystals and cloud droplets. Four new prognostic variables were added to GEOS-5:110

ql, qi, nd and nc representing the grid-average mass and number mixing ratio of liquid and ice,

respectively. The evolution of a given tracer, η, is described by

∂η

∂t
=

(
∂η

∂t

)
adv

+
(

∂η

∂t

)
turb

+
(

∂η

∂t

)
ls

+
(

∂η

∂t

)
cv

(1)

where the terms on the right hand side of Eq. (1) represent the tendency in η due to advective

and turbulent transport and large scale and convective cloud processes, respectively. Advective and115

turbulent transport in GEOS-5 are described in Rienecker et al. (2008).
(

∂η
∂t

)
ls

refers to the change

in η from non-convective cloud processes (i.e., anvil and stratus clouds), whereas
(

∂η
∂t

)
cv

describes

the change in η from processes occurring within convective cumulus.

2.3 Microphysics of Stratiform and Anvil clouds

The stratiform cloud microphysics scheme of Morrison and Gettelman (2008, hereafter MG08) was120

implemented in GEOS-5. The scheme includes prognostic equations for the mass and number mix-

ing ratio of cloud ice and liquid, and diagnostically predicts the vertical profiles of rain and snow. The

version of MG08 implemented in GEOS-5 follows closely the description of Gettelman et al. (2010)

with a few modifications. The detailed mass and number balances leading to
(

∂nd

∂t

)
ls

,
(

∂ql

∂t

)
ls

,
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(
∂qi

∂t

)
ls

and
(

∂nc

∂t

)
ls

are presented in Morrison and Gettelman (2008). The MG08 scheme is used125

to describe the microphysics of convective detrainment and stratiform condensate.

In MG08 the size distribution of cloud droplets, rain, ice and snow is assumed to follow a gamma

distribution, i.e.,

ny(D) = No,yD
μy
y e−λyDy (2)

where the subscript “y” is used to represent a hydrometeor species and No,y and λo,y are the slope130

and intercept parameters of ny(D), calculated as in Morrison and Gettelman (2008) (c.f. Eq. 3). For

rain and snow it is assumed that μy = 0.

MG08 uses an exponential approximation to the size distribution of ice crystals i.e., μi = 0. The-

oretical considerations however suggest that ni(Di) in recently formed clouds is better represented

by lognormal and gamma functions in which the concentration of ice crystals decreases steeply for135

very small sizes (Barahona and Nenes, 2008). Since this behavior cannot be reproduced using an ex-

ponential distribution, setting μi = 0 may lead to underestimation of λi and overestimation of crystal

size. This assumption is relaxed in GEOS-5 and μi is calculated as a function of T following the

correlation of Heymsfield et al. (2002), obtained from extensive measurements in cirrus clouds. It is

assumed that μi = [0.5,2.5], where the in situ data are better constrained (Morrison and Grabowski,140

2008; Heymsfield et al., 2002). The critical size for ice autoconversion was set to Dcs = 400 μm.

The sensitivity of cloud ice water to μi and Dcs is analyzed in Section 4.

The autoconversion parameterization in MG08 (Khairoutdinov and Kogan, 2000) was replaced

by the formulation of Liu et al. (2006). The latter was preferred because of its greater flexibility

in representing the effect of cloud droplet dispersion on the autoconversion rate. The liquid water145

content exponent in Liu’s parameterization was set to 2.0 (Liu et al., 2006). Following Liu et al.

(2008) the cloud droplet size dispersion, μl, was parameterized in terms of the grid-scale mean

droplet mass.

Other modifications to MG08 include the calculation of the nucleated droplet number and ice

crystal concentration and the parameterization of the subgrid scale vertical velocity (Sections 2.3.2150

to 2.3.4). Partitioning of total condensate accounts for the Bergeron-Findeisen process following

Morrison and Gettelman (2008) and Gettelman et al. (2010). Ice and liquid cloud fraction are

however not discriminated and total cloud fraction is calculated using the probability distribution

function (PDF) of total water (Section 2.3.1).

2.3.1 Stratiform Condensation and Cloud Fraction155

Cloud fraction, fc, plays a crucial role in microphysical processes and is intimately tied to the in-

cloud number and mass mixing ratios. In GEOS-5 it is calculated using a prognostic PDF scheme,

i.e.,

fc =

∫ ∞
q∗ Pq(qt)dqt∫ ∞
0

Pq(qt)dqt

(3)
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where Pq(qt) is the total water PDF, qt = qv + qc, and qv, qc, and qt are the water vapor, total160

condensate and total water mixing ratio, respectively, and q∗ is the weighted saturation mixing ratio

between liquid and ice, given by

q∗ = (1−fice)q∗l +ficeq
∗
i (4)

where fice is the mass fraction of ice in the total condensate and q∗l and q∗i are the saturation specific

humidities for liquid and ice, respectively. Total condensate is therefore given by165

qc =

∫ ∞
q∗ (qt−q∗)Pq(qt)dqt∫ ∞

0
Pq(qt)dqt

(5)

The total water distribution in GEOS-5 is defined as a box-car PDF in non-anvil regions plus a δ-

function representing the detrained condensate from convective cumulus (Rienecker et al., 2008).

The same assumption is used in this work, however the lower limit of integration in Eqs. (3) and (5)

is modified to q∗Scrit, where Scrit is termed the critical saturation ratio. Scrit controls the level of170

supersaturation required for cloud formation within a model grid cell. As in the operational version

of GEOS-5, it is assumed that Scrit = 1 for mixed-phase and liquid clouds. However for ice clouds

linking Scrit to ice nucleation processes increases the minimum relative humidity required for cloud

formation, allowing for supersaturation with respect to ice. Thus, in cirrus clouds Scrit is calculated

by the ice nucleation parameterization (Section 3.5).175

Solution of Eq. (3) gives (Rienecker et al., 2008),

fc =
qmx−Scritq

∗

Δq
+fcn (6)

where qmx = qt +0.5Δq is the upper limit of the box-car distribution, Δq is the width of Pq(qt)

(Slingo, 1987) and fcn is the detrained anvil cloud fraction calculated according to Tiedtke (1993).

Similarly, solution of Eq. (5) gives for the total condensate (Rienecker et al., 2008),180

qc =
1
2

(qmx−Scritq
∗)2

Δq
+qc,det (7)

where qc,det is the mixing ratio of detrained condensate.

Microphysical processes modify qt and Pq(qt) via the formation of precipitation (Tompkins,

2002). The effect of the microphysics on the cloud fraction is accounted for as follows. Assum-

ing that the total water PDF (i.e., anvil and stratiform) after microphysical processing follows a185

box-car function, an equation similar to Eq. (7) can be written for the total condensate in the form,

qc +Δqc =
1
2

(q′mx−Scritq
∗)2

Δq′
(8)

where Δqc =
(

∂qc
∂t

)
ls

Δt is the change in total condensate over the time step Δt, and q′mx and Δq′

represent the values of qmx and Δq after the microphysics. Similarly for cloud fraction,

f ′
c =

q′mx−Scritq
∗

Δq′
(9)190
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Inverting Eq. (8) to find Δq′ gives,

Δq′ =
2qc +Δqc

(qmx−Scritq∗+Δqc)2
(10)

Combining Eqs. (9) and (10) eliminates Δq′ and qmx. The cloud fraction modified by the micro-

physics then becomes,

f ′
c =

(√
1− qt +Δqc−Scritq∗

qc +Δqc
+1

)−1

(11)195

In practice, an initial estimate of fc (Eq. 6) is used to calculate Δqc assuming that microphysical

processes proceed at constant cloud fraction. Then f ′
c is calculated from Eq. (11) and used for

radiative calculations. This procedure ensures that f ′
c calculated after microphysical processing is

consistent with Pq(qt) and the amount of condensate present in the grid cell at the end of each time

step.200

2.3.2 Cloud Droplet Activation

CCN activation into cloud droplets is parameterized following the approach of Fountoukis and Nenes

(2005) (FN05). FN05 is an analytical solution of the equations of an ascending cloudy parcel using

the method of population splitting (Nenes and Seinfeld, 2003). Sulfates, hydrophilic organics and

sea salt are considered CCN active species. Aerosol number concentrations were derived from the205

predicted mass mixing ratio for each species using size distributions obtained from the literature

(Table 1). Sulfate and organics are considered internally mixed and five separate bins are used

to describe dust. Aerosol composition is parameterized in terms of the hygroscopicity parameter

(Petters and Kreidenweis, 2007): κ was set to 0.65, 0.2 and 1.28 for sulfate, hydrophilic organics,

and sea salt, respectively. The water uptake coefficient was set 1.0 (Raatikainen et al., 2013). In this210

work the adiabatic version of the FN05 parameterization is employed. However FN05 can be readily

extended to include dust activation (Kumar et al., 2009b), entrainment (Barahona and Nenes, 2007),

and giant CCN (Barahona and Nenes, 2009a). The contribution of CCN activation in stratiform

clouds to the droplet number concentration is given by(
dNd

dt

)
ls,act

=
min(Nd,act−Nd,0)

Δt
(12)215

where Nd and Nd,act are the in-cloud preexisting and activated droplet number concentration, re-

spectively.

2.3.3 Ice Nucleation

The ice nucleation parameterization implemented in GEOS-5 was developed by Barahona and Nenes

(2008; 2009a; 2009b) (BN09), and is summarized in Barahona et al. (2010). BN09 is derived from220

the analytical solution of the governing equations of an ascending cloud parcel, and considers the
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dependency of the ice crystal concentration, Nc, on cloud formation conditions, subgrid scale dy-

namics, and aerosol properties. At cirrus levels (T < 235 K) both homogeneous and heterogeneous

ice nucleation, and their competition, are considered. At higher temperatures only heterogeneous ice

nucleation takes place. The homogeneous ice nucleation rate for sulfate solution droplets follows225

Koop et al. (2000). Heterogeneous ice nucleation is described through a generalized ice nucleation

spectrum, Nhet =Nhet(Si,T,μ1...n), where Si is the saturation ratio with respect to ice, and μ1...n

are the moments of the aerosol number distribution. Nhet also depends on the aerosol composition

and in principle can have any functional form (Barahona, 2012; Barahona and Nenes, 2009b).

Heterogeneous ice nucleation in the deposition and immersion modes in cirrus is described using230

the formulation of Phillips et al. (2013) (Ph13), considering dust, black carbon, and soluble organics

as IN precursors. In simplified form, the Ph13 spectrum can be written as,

Nhet =
1
2

∑
x

Nxerfc

⎡
⎣ ln

(
Dg,x

0.1μm

)
√

2σg,x

⎤
⎦{1−exp[−μx(Si,T,s̄p,x)]} (13)

where Nx, Dg,x, σg,x, and s̄p,x are the total number concentration, the geometric mean diameter, the

geometric size dispersion, and the mean particle surface area of the x aerosol species, respectively,235

and μx(Si,T,s̄p,x) is the number of ice germs per particle (Phillips et al., 2013, 2008). The sum-

mation in Eq. (13) is carried out over five lognormal modes for dust, and single lognormal modes

for black carbon and organics (Table 1). Primary biological particles are not predicted by GEOS-5

and are not considered in this work. Since dust and soot aerosol are typically irregular aggregates

rather than spherical particles, s̄p,x was obtained from the mean sphere-equivalent particle volume,240

assuming a bulk surface area density of 10 m2g−1 for dust (Murray et al., 2011) and 50 m2g−1 for

soot (Popovitcheva et al., 2008).

BN09 defines a characteristic ice saturation ratio at which most IN freeze in a polydisperse aerosol

population (Barahona and Nenes, 2009b), Shet, calculated from the nucleation spectrum in the form

(Barahona and Nenes, 2009b),245

Shet = max

[
1+Si,max−Nhet

(
∂Nhet

∂Si

)−1

,1

]
(14)

where Si,max is the maximum saturation ratio reached in a single parcel ascent, calculated according

to BN09. If no IN are present then Shet approaches the saturation threshold for homogeneous freez-

ing, Shom (Barahona and Nenes, 2009b). Shet and Shom represent the minimum saturation ratio

required for cloud formation by heterogeneous and homogeneous freezing, respectively. Thus they250

have the same meaning as the critical saturation ratio of Eq. (6). Scrit is then calculated as,

Scrit = fhetShet +(1−fhet)Shom (15)

where fhet is the fraction of ice crystals produced by heterogeneous ice nucleation (given by the

BN09 parameterization), and Shom is calculated following Koop et al. (2000).
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The contribution of ice nucleation in cirrus to the ice crystal number concentration is given by,255 (
dNc

dt

)
cirrus,nuc

=
min[Nc,nucPq(qt > Scritq

∗
i )−Nc,0]

Δt
(16)

where Nc,nuc is the nucleated ice crystal concentration. The factor Pq(qt > Scritq
∗
i ) accounts for

the the probability of finding an air mass leading to cloud formation within the grid cell. This term

was proposed by Barahona and Nenes (2011) to account for the effect of prior nucleation events on

current cloud formation.260

For the mixed-phase regime (T > 235 K), Eq. (13) is applied directly to find the contribution of

deposition and condensation heterogeneous nucleation to Nc. In this regime cloud droplet freezing

by immersion and contact ice nucleation contribute to the ice crystal population. The tendency in

Nc from immersion freezing of cloud droplets is given by(
dNc

dt

)
imm

=
∑
x

Nxs̄p,xγc
dns,x

dT
exp(−s̄p,xns,x) (17)265

where γc =−wsub
dT
dz is the cooling rate and ns,x the active site surface density for the species “x”.

The latter is calculated according to Niemand et al. (2012) for dust and Murray et al. (2012) for black

carbon.

Contact ice nucleation is parameterized as the product of the collection flux of aerosol particles

by the cloud droplets and the ice nucleation efficiency in contact mode. Young (1974) suggested that270

phoretic effects and Brownian motion are responsible for collection scavenging of ice nuclei. Baker

(1991) however showed that Brownian motion is the dominant factor. Therefore the contribution of

contact ice nucleation to the ice crystal formation tendency can be written as,(
dNc

dt

)
cont

=
∑
x

(
dNx

dt

)
Brw

{1−exp[−s̄p,xns,x(Tcont)]} (18)

where
(

dNx
dt

)
Brw

is the Brownian collection flux of the x aerosol species (Young, 1974). Consis-275

tent with laboratory studies (e.g., Fornea et al., 2009; Ladino et al., 2011) the active site density

in the contact mode is assumed to be the same as for immersion freezing shifted towards higher

temperature, i.e., Tcont ≈T −3 K.

The in-cloud contribution of ice nucleation in mixed-phase clouds to the ice crystal number con-

centration tendency is given by,280

(
dNc

dt

)
mixed,nuc

= min

[(
dNc

dt

)
cont

+
(

dNc

dt

)
imm

+
(

dNc

dt

)
dep

,
Nd

Δt

]
(19)

where the subscripts cont, imm, and dep, refer to contact, immersion, and deposition/condensation

ice nucleation, respectively. The term Nd

Δt is used to limit the nucleated ice crystal concentration to

the existing concentration of cloud droplets.
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2.3.4 Subgrid Scale Dynamics285

Besides information on the aerosol composition and size, parameterization of cloud droplet and

ice crystal formation requires the knowledge of the vertical velocity, wsub, at the spatial scale of

individual parcels (typically under 100 m), which is not resolved by GEOS-5. wsub depends on

radiative cooling (Morrison et al., 2005), turbulence (Golaz et al., 2010), gravity wave dynamics

(e.g., Barahona and Nenes, 2011; Kärcher and Ström, 2003; Jensen et al., 2010; Joos et al., 2008)290

and local convection. To account for these dependencies we employ a semiempirical formulation as

follows.

In situ measurements (e.g., Peng et al., 2005; Bacmeister et al., 1999; Conant et al., 2004) suggest

that wsub is approximately normally distributed. The mean vertical velocity of the distribution is

written as (Morrison et al., 2005)295

w̄ = wls− cp

g

(
∂T

∂t

)
rad

(20)

where wls is the grid-scale vertical velocity, cp the heat capacity of air, g is the acceleration of

gravity, and
(

∂T
∂t

)
rad

is the diabatic heating due to radiative transfer. Variance in wsub for large scale

clouds (i.e., stratus and in situ cirrus) results from subgrid scale eddy motion, σ2
w,turb, and gravity

wave dynamics, σ2
w,gw, i.e.,300

σ2
w = σ2

w,turb +σ2
w,gw (21)

A first order closure is used to diagnose σ2
w,turb (Morrison and Gettelman, 2008),

σ2
w,turb =

KT

lm
(22)

where KT is the mixing coefficient for heat (Louis et al., 1983) and lm is the mixing length. MG08

prescribed a fixed lm = 300 m (Morrison and Gettelman, 2008). To account for the spatial variation305

of lm, the formulation of Blackadar (1962) is used instead, i.e.,

lm =
kz

1+ kz
λm

(23)

where k is the von Kármán constant, z is the altitude and λm is the value of lm in the free troposphere

(Blackadar, 1962). This approach also takes into account the vertical variation of lm within the

planetary boundary layer (PBL). The minimum value of σ2
w,turb is set to 0.01 m2 s−2 within the310

PBL.

Small-scale gravity waves strongly affect the formation of cirrus and mixed-phase clouds (e.g.,

Haag and Kärcher, 2004; Jensen et al., 2010; Joos et al., 2008; Barahona and Nenes, 2011; Dean

et al., 2007). In situ measurements suggest that the dynamics of the upper troposphere are character-

ized by the random superposition of gravity waves from different sources (e.g., Jensen and Pfister,315

2004; Bacmeister et al., 1999; Sato, 1990; Herzog and Vial, 2001). Random wave superposition
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results in a Gaussian distribution of vertical velocities (e.g., Bacmeister et al., 1999; Barahona and

Nenes, 2011). Using this a semiempirical parameterization for σ2
w,gw is derived in the form (Eq. A5),

σ2
w,gw = 0.0169 min

[
4πU |τ0|
ρaLcN

,

(
2πU2

NLc

)2
]

(24)

where τ0 is the surface stress (Lindzen, 1981), U the horizontal wind, ρa the air density, N the Brunt-320

Väisälä frequency, and Lc the wave displacement of the highest frequency waves in the spectrum,

also referred to as the characteristic cirrus scale (here assumed to be 100 m). Equation (24) is

obtained by relating |τ0| to the equivalent perturbation height at the surface. This is scaled to obtain

the maximum wave amplitude at each vertical level (Joos et al., 2008; McFarlane, 1987) and then

used to compute σ2
w,gw (Barahona and Nenes, 2011). This approach parameterizes orographically-325

generated gravity waves. In practice, both the background and the orographic surface stress are used

in Eq. (24) to avoid underestimation of σ2
w,gw in marine regions. The second term in brackets on the

right hand side of Eq. (24) limits σw,gw to account for wave saturation and breaking (Eq. A3). The

derivation of Eq. (24) is detailed in the Appendix A.

The nucleated ice crystal concentration is obtained by averaging over the positive values of wsub,330

Nc,nuc =

∫ wmax

0
Nc,nuc(wsub)φ(w̄,σ2

w)dwsub∫ wmax

0
φ(w̄,σ2

w)dwsub

(25)

where φ(w̄,σ2
w) is the normal distribution and wmax = w̄+4σw. The latter is used as an upper limit

to the integral to avoid numerical instability. For liquid droplet activation Eq. (25) is simplified as

(Peng et al., 2005; Fountoukis and Nenes, 2005),

Nd,act = Nd,act(w̄+0.8σw) (26)335

This approximation is valid for w̄ << σw and may introduce up to 20% non-systematic discrep-

ancy in Nd,act when compared to the direct solution of the integral in Eq. (25) (Morales and Nenes,

2010), however it is justified on computational efficiency. Notice that the same approximation cannot

be used for ice nucleation since the competition between homogeneous and heterogeneous nucle-

ation introduces strong nonlinearity in Nc,nuc(wsub) (Barahona and Nenes, 2009a) and therefore the340

characteristic value of wsub for Nc,nuc generally differs from the average vertical velocity. PDF-

averaging is also applied for Scrit, Sl,max and Si,max. Only activation processes are modified by

subgrid vertical velocity variability, i.e., φ(w̄,σ2
w) is assumed uncorrelated to the subgrid distribu-

tion of condensate.

2.3.5 Preexisting Ice Crystals345

Ice nucleation ice can be inhibited by water vapor deposition onto preexisting ice crystals (i.e., ice

crystals present in the grid cell from previous nucleation events). Their impact on cirrus properties

may be significant at low temperature where ice crystals are small and have low sedimentation rates
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(Barahona and Nenes, 2011). This effect can be parameterized by reducing the vertical velocity for

ice nucleation in cirrus by a factor dependent on the preexisting ice crystal concentration and size350

(Eq. B5), i.e.,

wsub,pre = wsub max
(

1− Ni,preπβcρiAi(Shom−1)
2λi,preαwsubShom

, 0
)

(27)

where Ni,pre is the preexisting ice crystal concentration, c is a shape factor (here assumed equal to

1), ρi the ice crystal density, and Ai, α and β are temperature-dependent parameters (Appendix C).

Equation (27) indicates that water vapor deposition onto preexisting crystals acts against the increase355

in supersaturation from expansion cooling. The derivation of Eq. (27) is detailed in the Appendix B.

The effect of preexisting ice crystals on cirrus properties is analyzed in Section 4.

2.4 Microphysics of convective cumulus

While all the main features of RAS are preserved in the new scheme, the removal of condensate

is reformulated to account for the effect of IN and CCN emissions on the generation of convective360

precipitation. RAS calculates the convective cloud condensate and mass flux at each model level by

averaging over an ensemble of ascending parcels, each one lifted from the the top of the PBL (Molod

et al., 2012; Rienecker et al., 2008). Each ascending parcel is characterized by its detrainment level

and entrainment rate (Moorthi and Suarez, 1992) and saturation adjustment is used to find the amount

of condensate present in each parcel. In the current RAS implementation in GEOS-5 a single parcel365

detrains at each model level so that the tendency of the tracer η due to cloud convective processes is

given by(
∂η

∂t

)
cv

= Dη−gW
∂η

∂p
(28)

where D is the detrainment rate and W the convective mass flux. In the operational GEOS-5, a

prescribed fraction of condensate is assumed to precipitate from each parcel before reaching cloud370

top. The remaining condensate is then linearly partitioned between ice and liquid as a function of T

and detrained at the neutral buoyancy level. In this approximation there is no remaining condensate

in the convective cloud at the end of each time step. Each parcel is assumed to develop independently

and the detrained condensate from different parcels is weighted by the convective mass flux. The

subscript “cp” in the following equations refers to processes occurring within each parcel. A detailed375

description of the GEOS-5 convective scheme is presented elsewhere (Moorthi and Suarez, 1992;

Rienecker et al., 2008).

The balance of a tracer, η, within a convective parcel is written as

1
W

d(ηW )
dt

=
(

dη

dt

)
cp

+λwcp(η′−η) (29)

where
(

dη
dt

)
cp

is the rate of change in η from microphysical processes occurring within convective380

parcels, wcp is the parcel vertical velocity, λ the per-length entrainment rate and η′ the value of η in

the cloud-free environment. Detrainment of condensate is assumed to occur only at cloud top.
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The rate of change in η from microphysical processes occurring within a convective cloud parcel

is given by(
dη

dt

)
cp

=
(

dη

dt

)
source

+
(

dη

dt

)
precip

+
(

dη

dt

)
freezing

(30)385

where the subscript “source” refers to nucleation, condensation and deposition processes, “precip”

to precipitation and “freezing” to phase transformation. Equation (29) is integrated for each par-

cel from cloud base to cloud top at which all remaining condensate detrains into the anvil, i.e.,[
1
W

d(ηW )
dt

]
cloud top

= Dη. The initial condition in Eq. (29) depends on the tracer. At cloud base

the concentration of ice crystals and the ice mass mixing ratio are assumed to be zero, whereas the390

activation of cloud droplets at cloud base is explicitly considered (Section 2.4.2).

Solution of Eq. (29) requires the knowledge of the vertical velocity within each parcel, wcp,

which is also necessary to drive the droplet activation and ice nucleation parameterizations. This

is calculated by solving (Frank and Cohen, 1987),

1
2

dw2
cp

dz
=

g

1+γ

Tv −T ′
v

T ′
v

−λw2
cp−gq cn (31)395

where γ = 0.5 (Sud and Walker, 1999), Tv and T ′
v the virtual temperature of the cloud and the

environment, respectively, and qcn is the mixing ratio of total condensate in the convective parcel.

Equation (31) is forwardly integrated from the level below cloud base to cloud top using wcp,in =

0.8 m s−1 as initial condition (e.g., Guo et al., 2008; Gregory, 2001); the vertical profile wcp is

not very sensitive to this assumption (Sud and Walker, 1999). Notice that wcp,in differs from the400

vertical velocity used for cloud droplet activation. The latter depends on the local buoyancy, i.e.,

wcp,cloudbase = wcp,in + dwcp

dz Δzbase where Δzbase is the model layer thickness at cloud base.

2.4.1 Partitioning of Convective Condensate

Total condensate is partitioned between liquid and ice as follows. Nucleated ice crystals are assumed

to grow by accretion of water vapor in an environment saturated with respect to liquid water. That405

is, the coexistence of liquid water favors a high concentration of water vapor available for deposition

onto the ice crystals and the ice and liquid phases remain in quasi-equilibrium within the convective

parcel. Hydrometeor species are assumed to follow a gamma distribution (Eq. 2). The growth rate of

ice crystals within convective cumulus is given by (Pruppacher and Klett, 1997; Korolev and Mazin,

2003)410 (
dqi

dt

)
dep

=
niπcρiAi(Si,wsat−1)

2λi
(32)

where c is a shape factor (assumed equal to 1), ρi the ice crystal density, and Ai is a temperature-

dependent growth factor (Appendix C). Using Eq. (32), and since qcn = ql +qi, the source term for

liquid water within convective cumulus is given by(
dql

dt

)
cond

=
(

dqcn

dt

)
−

(
dqi

dt

)
dep

(33)415

13



where
(

dqcn
dt

)
is the rate of generation of total condensate calculated by the convective parameteri-

zation.

2.4.2 Droplet Activation and Ice Crystal Nucleation in Convective Cumulus

Explicit activation of CCN into cloud droplets is only considered at cloud base and used as an initial

condition to Eq. (29) (Section 2.4). Entrained aerosols (sulfate, sea salt, and organics) are assumed420

to activate instantaneously as they enter the cloud parcel. Dust and soot IN lead to the heterogeneous

freezing of cloud droplets in the immersion and contact modes, described using Eqs. (17) and (18).

Since soot and dust particles would likely adsorb water within convective parcels (Wiacek et al.,

2010; Kumar et al., 2009a) ice nucleation in the deposition mode within convective cumulus is not

considered. Cloud droplets freeze homogeneously at 235 K. Frozen droplets rapidly quench su-425

persaturation within convective cumulus. Thus the homogeneous nucleation of deliquesced sulfate,

which requires high supersaturation (Si ∼ 145%−170% (Koop et al., 2000)), is not likely to occur

within convective parcels. Therefore homogeneous freezing of interstitial aerosol is not considered

in convective cumulus.

2.4.3 Generation of Convective Precipitation430

The size dispersion of the droplet population, μl, follows the formulation of Liu et al. (2008).

Droplet-to-rain autoconversion is calculated according to Liu et al. (2006) and all autoconverted

water is assumed to be lost as surface precipitation within one time step. Evaporation of convective

precipitation is parameterized according to Bacmeister et al. (1999).

Ice water in convective cumulus is likely to exist as graupel, snow and ice crystals, with different435

size distributions and falling velocities. Following Del Genio et al. (2005) a simplified treatment of

ice precipitation is implemented as follows. Total ice water within convective parcels is assumed to

partition as ice/snow (taken as a a single species) and graupel, and differentiated by their terminal

velocity (Table 2). The fraction of total ice existing as graupel is approximated by (Del Genio et al.,

2005),440

fgr = 0.25{3.0+exp[0.1min(T −273,0)]} (34)

The particle sizes of ice/snow and graupel are assumed to follow an exponential distribution (μg =

μi/s = 0.0) (McFarquhar and Heymsfield, 1997). The number precipitation rate of ice/snow within

convective parcels is given by the number flux across a critical size, Dc,i/s (Seinfeld, 1998),(
dni/s

dt

)
precip,cp

=
ni/sAi(Si,wsat−1)

D2
c,i/s

[1−exp(−λi/sDc,i/s)] (35)445

where ni/s = (1−fgr)ni. The mass precipitation rate of ice/snow is calculated as,(
dqi/s

dt

)
precip,cp

=
qi/sξi/s

ni/s

(
dni/s

dt

)
precip,cp

(36)
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where qi/s = (1−fgr)qi, and ξi/s = 1
6 [(λi/sDc,i/s)3 +3(λi/sDc,i/s)2 +6λi/sDc,i/s +6] is the ratio of

the volume to number fraction above Dc,i/s in the size distribution of ice/snow. The term ξi/s is in-

troduced to account for the preferential precipitation of the largest particles of the population, which450

tends to enhance the mass over the number precipitation rate. The critical size for precipitation,

Dc,i/s, is calculated by equating the hydrometeor terminal velocity, wterm, to wcp (Table 2).

Equations (35) and (36) assume that ice and snow grow mainly by diffusion within the convective

parcel. The same assumption cannot be applied to graupel since it also grows by collection of cloud

droplets. The precipitation rate of graupel is therefore approximated calculated by removing the455

fraction of the size distribution above Dc,g at each model level (Ferrier, 1994),(
dngr

dt

)
precip,cp

=
ngrexp(−λgDc,g)

ΔtL
(37)

where ngr = fgrni is the graupel number mixing ratio and ΔtL = Δzw̄−1
cv is the time spent by the

parcel in a given model layer. Similarly for qgr,(
dqgr

dt

)
precip,cp

=
qgrexp(−λgDc,g)[(λgDc,g)3 +3(λgDc,g)2 +6λgDc,g +6]

6ΔtL
(38)460

where qgr = fgrqi is the graupel mass mixing ratio

The total mass precipitation rate for ice within convective parcels is given by,(
dqi

dt

)
precip,cp

=
(

dqi/s

dt

)
precip,cp

+
(

dqgr

dt

)
precip,cp

(39)

Similarly for the ice crystal number concentration,(
dni

dt

)
precip,cp

=
(

dni/s

dt

)
precip,cp

+
(

dngr

dt

)
precip,cp

(40)465

Equations (39) and (40) are used into Eq. (30), wich then is used to solve Eqs. (28) and (29).

3 Model Evaluation

Model evaluation is carried out by comparing cloud properties against satellite retrievals and

in situ observations. Satellite data sets included level 3 products from the NASA MODIS

(http://modis.gsfc.nasa.gov/) combined TERRA and AQUA data product (Platnick et al., 2003), and470

the ISCCP (http://isccp.giss.nasa.gov/) (Rossow and Schiffer, 1999) and CloudSat (Li et al., 2012,

2013) projects. When possible, the CFMIP Observation Simulator Package (COSP) (Bodas-Salcedo

et al., 2011) was used to compare model output against satellite retrievals. Global cloud radiative

properties were obtained from the CERES Energy Balanced and Filled (EBAF) level 4 data product

(http://eosweb.larc.nasa.gov/PRODOCS/ceres/) (Loeb et al., 2009) and the NASA Earth Radiation475

Experiment (ERBE Barkstrom, 1984). Total precipitation was obtained from the Global Precipita-

tion Climatology Project data set (GPCP) (Huffman et al., 1997) and the CPC merged analysis of
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precipitation (CMAP) (Xie and Arkin, 1997). Runs were performed for a period of 10 years starting

on January 1st 2001 with an spin-up time of one year using a c48 cubed-sphere grid (about ∼ 2◦

spatial resolution) and 72 vertical levels. Sensitivity studies (Section 4) were performed running the480

model for two years at the same resolution. Test runs showed that two years were enough to elucidate

the first order effect of variation in microphysical parameters on cloud properties. All simulations

were forced with observed sea surface temperatures (Reynolds et al., 2002). Initial conditions were

obtained from the MERRA reanalysis (Rienecker et al., 2011). The aerosol concentration was cal-

culated interactively using the GOCART model (Colarco et al., 2010) with emissions as described485

in Diehl et al. (2012). Results obtained with the operational version of GEOS-5 and using the new

microphysics are referred to as the CTL and NEW runs, respectively.

3.1 Cloud Fraction

The parameterization of fc in GEOS-5 was modified to account for the effect of microphysical

processing on Pq(qt) (Section 2.3.1) and allow supersaturation with respect to the ice phase. Figure490

1 shows the effect of these modifications on the low (CLDLO), middle (CLDMD), and high (CLDHI)

cloud fraction in GEOS-5. In general the CTL and NEW simulations present similar distributions

of cloud fraction. However in NEW, fc tends to be higher and in better agreement with ISCCP

retrievals. The new cloud fraction scheme resulted in higher CLDLO in the remote Atlantic and

Pacific oceans and reduced the cloud bias over South America and Asia. Still CLDLO associated495

with the low level stratocumulus decks in the west coast of North, South America and South Africa is

underpredicted in the NEW simulation. This feature is common in climate models (Kay et al., 2012);

in GEOS-5 it is likely caused by the absence of an explicit shallow cumulus parameterization. The

overprediction of CLDLO in the high latitudes of NH in CTL is also significantly reduced in the

NEW simulation. Overall, the global mean bias in CLDLO is significantly lower in NEW (−3%)500

than in CTL (−5%).

The global mean bias in CLDMD is also lower in NEW (−9%) than in CTL (−15%). The overes-

timation of CLDMD in the low and midlatitudes of SH and NH in CTL is largely removed in NEW,

which results from a more realistic distribution of ice water content in NEW than in CTL (Section

3.6). The underestimation in CLDMD in the high latitudes of SH and NH is also smaller in NEW505

than in CTL, particularly over land. However CLDMD in these regions is still about 10% lower in

NEW than the ISCCP retrieval. The CTL and the NEW simulations present similar distributions of

high level clouds (CLDHI). In general CLDHI tends to be overestimated in the marine high latitudes

and underestimated over the continents. The NEW simulation also tends to underpredict CLDHI

over the Tropical Warm Pool. The global mean bias in CLDHI is about 1% and 4% the CTL and510

NEW run, respectively.
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3.2 Supersaturation over Ice

Two mechanisms lead to ice supersaturation in the new microphysics. Both fc and qi are produced

only when Si > Scrit (Eqs. 6 and 7). Ice nucleation is also restricted to supersaturated regions (Eq.

16). Both mechanisms are controlled in part by Scrit which provides an internal link between ice515

nucleation, fc and qi.

The global distribution of Scrit for T < 235 K (Fig. 2 left panel) presents two characteris-

tic modes, showing regions of predominance of heterogeneous (Scrit ∼ 120%) and homogeneous

(Scrit ∼ 140%) ice nucleation. The mean value of Scrit in the upper troposphere is about 144%,

and Scrit typically ranges between 120% and 150%, which agrees with values commonly used in520

GCM studies (e.g., Liu et al., 2007; Salzmann et al., 2010). However Scrit is highly variable around

the globe as it depends on wsub, T , and the concentration of IN in the upper troposphere. Figure 2

(right panel) shows that values of Scrit as low 105% and as high as 160% are not uncommon. Low

Scrit is associated with regions of high concentration of active IN (e.g., dust). These are often lo-

cated around T ∼ 230−240 K where deposition/condensation IN are active and abundant enough to525

impact supersaturation (Section 3.5). For lower T , the concentration of active IN is too low to sub-

stantially decrease supersaturation, and Scrit increases towards the homogeneous freezing threshold

(Fig. 2). This behavior suggest that no single value of Scrit can represent all the characteristic values

of critical relative humidity for cirrus formation around the globe.

The distribution of clear sky saturation ratio, Si,c = (qv −fcq
∗)/(1.0−fc), is shown in Fig. 3.530

In-cloud Si is assumed to be 100%. In reality supersaturation relaxation may be slow in cirrus

clouds particularly at low T (Krämer et al., 2009; Barahona and Nenes, 2011). However it is ex-

pected that for the conditions of Fig. 3 most supersaturation is relaxed inside clouds over the time

step of the simulation (∼ 1800 s) (Barahona and Nenes, 2008). Figure 3 also shows data from the

AIRS (Gettelman et al., 2006) and MOZAIC (Gierens et al., 1999) projects. The uncertainty in535

the retrieval increases with Si,c. However both MOZAIC and AIRS data show an exponential de-

crease in the frequency of supersaturation, P (Si,c), with increasing Si,c. GEOS-5 also shows this

exponential decrease and is in agreement with AIRS and MOZAIC data. The peak P (Si,c) in the

model is shifted towards Si,c ∼ 100% since retrievals tend to avoid zones with Si,c∼ 100% near the

cloud edges (Gettelman and Kinnison, 2007). The frequency of Si,c > 101% in GEOS-5 distributes540

almost symmetrically around the Tropics (Fig. 3, right panel), with an slightly higher probability

of supersaturation at in SH than in NH. This is in part due to lower IN concentrations in SH (Fig.

7), although differences in the dynamics of SH and NH also play a significant role. In agreement

with AIRS data, GEOS-5 predicts about 10% supersaturation frequency in the upper Tropical levels.

GEOS-5 seems to slightly overpredict P (Si,c) above 300 hpa in the high latitudes of the NH and SH545

and near the TTL, however the uncertainty of the retrieval in these regions is also high (Gettelman

and Kinnison, 2007).
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3.3 Subgrid Scale Vertical Velocity

The nucleation of ice crystals and cloud droplets is strongly influenced by wsub. φ(w̄,σ2
w) in stra-

tocumulus and anvils is mainly determined by σw whereas w̄ is typically small (∼ 10−2 m s−1). For550

convective clouds wcp is explicitly calculated by solving Eq. (31). In general the eddy contribution

to σ2
w is significant near the surface and negligible above 500 hpa. At 900 hPa, where mostly liquid

clouds are formed, σw ranges between 0.1 and 0.7 m s−1 and is typically lower over the ocean than

over land (Fig. 4). High σw is however found in the storm track regions of the Southern and Northern

hemispheres. At this vertical level σw is the lowest in the Arctic region (∼ 0.1 m s−1). The range of555

σw shown in Fig. 4 is in good agreement with in situ measurements of vertical velocity at cloud base

in marine stratocumulus (Peng et al., 2005; Guo et al., 2008), and continental regions (Fountoukis

et al., 2007; Tonttila et al., 2011), showing σw mostly between 0.2 and 1 m s−1. However global

measurements of σw have not been reported. Compared to similar schemes (e.g., Golaz et al., 2010)

Eq. (22) results in higher velocities within the PBL since the characteristic length decreases near the560

surface, consistent with the vertical momentum balance within the PBL (Blackadar, 1962). Thus,

σ2
w rarely hits the prescribed minimum (∼ 0.01 m s−1) within the PBL .

Gravity wave motion dominates the global distribution of σw at the 500 hPa and 150 hPa vertical

levels, being typically larger over land than over ocean (Fig. 4). Air flowing over orographic fea-

tures produces high frequency waves that propagate to the free troposphere (Bacmeister et al., 1999;565

Herzog and Vial, 2001). Thus σw is the highest over the mountain ranges of Asia, South America,

and the Antarctic. At 500 hPa, σw is about 0.1 m s−1 over land and may reach up to 0.5 m s−1

over mountain ranges. These values are in good agreement with in situ measurements (Gayet et al.,

2004). A similar distribution of σw is found at 150 hPa, with values over land slightly higher than

at 500 hPa. Over the ocean, σw is typically larger at 150 hPa than at 500 hPa, particularly over570

the Tropics, since gravity waves in these regions can reach larger amplitudes before breaking. Fig-

ure 4 shows that σw in the upper troposphere varies by up to three orders of magnitude around the

globe. Such variability has important implications for the effect of IN emissions on cloud formation

(Section 3.5).

3.4 Cloud Droplet Number Concentration575

Comparison of cloud droplet number concentration against satellite retrievals is typically challeng-

ing. Retrieval algorithms generally introduce assumptions on the droplet size distribution that may

bias Nd. To compare satellite retrievals and model data over the same basis we take advantage of

the COSP output to obtain a “model retrieved” column integrated droplet concentration, Nd,cum, in

the form (Han et al., 1998),580

Nd,cum =
τ

2πR2
eff,liq(1−b)(2−b)

(41)
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where τ is the liquid cloud optical depth and b = 0.193 (Han et al., 1998). To apply Eq. (41), Reff,liq

and τ are obtained either from the GEOS-5 COSP output or the MODIS retrieval. This procedure

does not aim to produce an accurate retrieval of Nd,cum but rather to equally compare GEOS-5 and

MODIS data. Equation (41) is applied between 60S and 60N where the MODIS retrieval is more585

reliable (Platnick et al., 2003).

Figure 5 shows the global distribution of Nd,cum from GEOS-5 and MODIS. GEOS-5 is able

to capture the high Nd,cum found in regions of high sulfate emissions i.e., Europe, Central and

South East Asia and the East Coast of North America. There is also agreement between MODIS

and GEOS-5 in regions with high biomass burning emissions like Subsaharian Africa and South590

America. However the model tends to slightly underpredict Nd,cum in the remote Atlantic and

Pacific Oceans. There is also underprediction of Nd,cum off the west coasts of North and South

America and Africa. This is due to underprediction of shallow stratocumulus in GEOS-5 (Fig. 1)

and because wsub tends to be small in these regions (Fig. 4). The global mean Nd,cum in GEOS-5

(1.68 cm−2) is in agreement with MODIS results (1.96 cm−2). The influence of the CCN activation595

parameterization on Nd,cum is studied in Section 4.

3.5 Ice Crystal Number Concentration

At any given T , Nc varies by up to four orders of magnitude, although mostly within a factor of ten

(Fig. 6, a). The mean Nc peaks around 200 L−1 at 225 K, decreasing to ∼ 20 L−1 at 190 K, and

below ∼ 1 L−1 at 180 K. For T > 245 K Nc remains mostly below ∼ 10 L−1. Global mean Nc is600

around 66 L−1 for all clouds and around 166 L−1 for cirrus (T < 235 K). Figure 6 shows agreement

of GEOS-5 values with in situ measurements of Nc over the whole T interval (Krämer et al., 2009;

Gultepe and Isaac, 1996). There is good agreement of GEOS-5 with field campaign data at T < 200

K where most models show a large positive bias (e.g., Barahona et al., 2010; Salzmann et al., 2010;

Gettelman et al., 2012). This results from the proper consideration of the effect of prior nucleation605

events on ice crystal nucleation (Section 3.5). Nc is also influenced by the presence of preexisting

ice crystals; their effect is analyzed in Section 4.

The relative contribution of different mechanisms to the source of Nc is shown in Fig. 6. To

facilitate comparison against in situ measurements of IN and Nc, integrated variables, instead of

number tendencies, are used. Thus, the ice crystal concentration from ice nucleation in the deposition610

and condensation modes, Ndep, is calculated using Eq. (13) and the BN09 parameterization. Nc

from immersion freeezing, Nimm, is calculated by integration of Eq. (17) over the time scale defined

by γc. The concentration of detrained ice crystals, Nc,cv, is given by the ice crystal concentration at

cloud top calculated by Eq. (29).

Ndep varies mostly within 0.1 and 50 L−1, and is the largest around 240 K where the aerosol con-615

centration is large enough to result in significant IN concentration (Fig. 6, b). There is however large

variability in Ndep around the globe. Most deposition IN come from dust although the concentration
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of black carbon IN may be significant reaching 2 L−1 at T ∼ 230 K (not shown). A few deposition

IN (∼ 1 L−1) are found at T as high as 260 K mostly in regions of large dust concentration.

Nimm reaches up to 40 L−1 around 240 K but decreases rapidly for lower T where it is prevented620

by the homogeneous freezing of cloud droplets (Fig. 6, c). In agreement with in situ observations of

mixed-phase clouds (e.g., DeMott et al., 2010) immersion freezing IN are scarce above 250 K, with

typical concentrations below 0.1 L−1. Dust is the most important source of immersion IN, whereas

black carbon IN typically contribute less than 2 L−1 to Nc. Contact freezing IN are not explicitly

shown in Fig. 6 but they follow a similar tendency as immersion freezing IN, although with lower625

concentration.

Nc,cv remains below 50 L−1 for T > 240 K, characteristic of heterogeneous ice nucleation. For

T > 250 K, Nc,cv reaches up to 10 L−1 mostly from immersion and contact freezing of supercooled

droplets within the convective cumulus (Fig. 6, d). Homogeneous freezing of cloud droplets is

evident by the strong increase in Nc,cv around T ∼ 240 K which in some instances may reach up to630

10 cm−3. Such very high Nc,cv is responsible for the highest values of Nc in Fig. 6. Along with

immersion freezing, detrainment from convective cumulus determines Nc for T > 240 K.

The predominance of heterogeneous ice nucleation in cirrus is analyzed in Fig. 7. Globally about

70% of the production of ice crystals in cirrus proceeds by homogeneous freezing with a clear con-

trast between the Northern (NH) and the Southern (SH) Hemispheres. Homogeneous freezing is635

most prevalent in SH and only leeward of South America and Africa the contribution of heteroge-

neous freezing is significant (∼ 30%). In contrast, most of NH is influenced by IN emissions which

in some cases dominate crystal production. Part of the contrast between NH and SH is explained by

the greater abundance of dust in NH. However comparison of Figs. (4) and (7) also reveals a marked

effect of σw on Nc. Low σw tends to enhance the effect of IN on Nc because of the greater residence640

time of the heterogeneously-frozen ice crystals in each parcel and the lower rate of increase of super-

saturation (Barahona and Nenes, 2009a). Thus heterogeneous freezing tends to dominate ice crystal

production in regions of low σw like Sub-Saharan Africa, the Arctic, and the west coast of North

America, even though these regions are not characterized by high emission rates of IN. This result

is also consistent with the study of Cziczo et al. (2013) who found predominance of heterogeneous645

ice nucleation in these regions. Globally however homogeneous ice nucleation dominates ice crystal

production. This suggests that variability in σw plays a significant role in defining the effect of IN

emissions on cirrus formation.

3.6 Cloud Liquid and Ice Water

The implementation of the new microphysics resulted in significant improvement of the represen-650

tation of ice and liquid water content in GEOS-5. Figure 8 shows the zonal mean ice mass mixing

ratio, qi, from the NEW and CTL simulation compared to the CloudSat retrieval for non-convective,

non-precipitating ice (Li et al., 2012). The global distribution of qi in the NEW simulation is in bet-
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ter agreement with the satellite retrieval than that obtained in CTL. The excessive freezing around

T = 235 K, characterized by the bulls-eye pattern around 600 hPa in the CTL run, is not present655

in the NEW simulation. In absolute terms, qi in the NEW and CTL runs is generally lower than

CloudSat data although mostly within the intrinsic error of the retrieval, about a factor of two (Li

et al., 2012; Eliasson et al., 2011). Including snow in the comparison (Fig. 8) still results in lower

ice + snow concentration than in CloudSat, although within the error of the retrieval.

Figure 9 shows the zonal mean liquid mass mixing ratio ql from GEOS-5 for the CTL and NEW660

runs compared against the CloudSat retrieval for non-convective, non-precipitating liquid water (Li

et al., 2013). There is far lower ql in the NEW than in the CTL run, particularly over the Tropics and

the Subtropics of the NH. Above 900 hPa, the spatial distribution of ql in the NEW run is in better

agreement than CTL. In absolute terms ql in NEW is closer to CloudSat than in CTL. However this

must be taken with caution as CloudSat may not retrieve liquid water close to the ground (Devasthale665

and Thomas, 2012). The NEW and CTL simulations however show that most liquid water is held

below the 850 hPa level in GEOS-5. The bottom panels of Fig. 9 also suggest that the rain mass

mixing ratio is lower in NEW than in the CTL simulation and CloudSat. Still, the spatial distribution

of the concentration of liquid and rain from NEW and from the CloudSat retrieval show similar

characteristics.670

The spatial distribution of Liquid Water Path (LWP) (Fig. 10) in the NEW simulation is similar

to that observed by CloudSat. Figure 10 shows “raw”‘ output from the model since CloudSat LWP

is not yet generated by COSP and some uncertainty may be introduced in the sampling of the model

results. In general LWP is larger in the NEW simulation that in CloudSat, particularly over marine

regions. Comparison against other retrievals reveals uncertainty in experimental observations of675

LWP. Annual average LWP from MODIS is 144 g m−2, about twice as much as in GEOS-5 COSP

output (60 g m−2) and much larger than the CloudSat retrieval. MODIS however tends to predict

higher LWP in Polar regions than in the Tropics pointing to an artifact of the retrieval (Platnick et al.,

2003). SSMI data (Spencer et al., 1989) is also typically used for model evaluation although it is

restricted to oceanic regions. Annual mean LWP from SSMI is about 84 g m−2 which is higher than680

predicted by GEOS-5 over the ocean (∼ 48 g m−2).

Figure 10 shows the annual mean IWP (non-precipitating, non-convective) from GEOS-5 and

CloudSat (Li et al., 2012). In general there is agreement in IWP between CloudSat and GEOS-5

both in magnitude and spatial distribution. There is also uncertainty in IWP obtained by different

retrievals, however a recent intercomparison showed agreement between the ISCCP and CloudSat685

retrieved IWP (Eliasson et al., 2011). GEOS-5 is able to capture the high IWP observed in the

Tropical Warm Pool, Central Asia, and over the mountain Ranges of Africa, and North and South

America. The high IWP of the latter regions results in part from strong ice crystal production over

mountain ranges (Section 3.5). GEOS-5 however underestimates IWP in the Tropical Western Pa-

cific Ocean.The spatial distribution of total water path (liquid + ice) is similar as obtained with690
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CloudSat, although the global mean TWP is higher in GEOS-5 (∼ 64 g m−2) than in the retrieval

(∼ 49 g m−2) due to the larger LWP in GEOS-5.

3.7 Supercooled Cloud Fraction

Figure 11 shows the supercooled cloud fraction (e.g., the fraction of cloud condensate present as

liquid, SCF = 1− fice) in mixed-phase clouds for the CTL and NEW simulations. In the CTL695

simulation the total condensate is linearly partitioned into liquid and ice between 235 K and 270 K

(Bacmeister et al., 2006). In the NEW simulation partitioning of the condensate is carried out taking

into account the activity and concentration of IN and the Bergeron-Findeisen process. In CTL most

values of SCF below 260 K follow the prescribed linear tendency. Variability in SCF increases

strongly above 260 K due to the freezing of condensate at 273 K and ice-enhanced precipitation700

(Fig. 11). The tendency of SCF with T in NEW shows different features than in CTL following

a sigmoidal instead of a linear tendency. This behavior has been observed in satellited retrievals

and field campaigns (Choi et al., 2010; Hu et al., 2010) and is characteristic of immersion freezing

mediated mainly by dust (e.g., Murray et al., 2011; Marcolli et al., 2007). The region of maximum

SCF frequency in Fig. 11 however expands about 10 K, which results from variation in particle size705

and concentration, the presence of black carbon IN, enhanced precipitation in mixed-phase clouds,

and variation in σw. There is also a higher frequency of SCF > 0.4 for T < 255 K in the NEW than

in the CTL simulation which results from a higher fraction of supercooled liquid in the convective

detrainment in NEW than in CTL.

Compared with CALIOP, SCF in NEW is shifted by about 6 K towards higher T , which implies710

that clouds tend to glaciate at higher T in the model than observed by the satellite. This would

indicate higher IN activity (i.e., higher dust concentration or more active dust) in GEOS-5 than

implied by the CALIOP data. This however must be taken with caution since CALIOP is sensitive

mostly to cloud-top properties. Thus SCF may be biased low in deep convective clouds where most

of the supercooled liquid is below cloud top (Hu et al., 2010). The influence of these factors on SCF715

requires more investigation and will be undertaken in a future study. Still the sigmoidal increase of

SCF with T in both GEOS-5 and the satellite retrieval indicates that SCF is significantly influenced

by the presence of IN.

3.8 Cloud Droplet and Ice Crystal Effective Radii

The annual mean droplet effective radius Reff,liq from the NEW simulation (14.3 μm) is in agree-720

ment with MODIS retrievals (14.8 μm) (Fig. 12). This is higher than the prescribed mean for the

CTL run and simulated by other models also using the MG08 stratiform microphysics (∼ 9−11 μm)

(Gettelman et al., 2008; Salzmann et al., 2010) but similar to the one obtained in Sud et al. (2013) in

GEOS-5. The results presented in Fig. 12 benefit from using the COSP package which accounts for

the preferential cloud-top sampling of MODIS (Bodas-Salcedo et al., 2011). Other studies (Gettel-725
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man et al., 2008; Salzmann et al., 2010) however did not use COSP for comparison. In agreement

with the MODIS retrieval the spatial distribution of Reff,liq in the NEW run shows a clear ocean-

land contrast (Fig. 12). Reff,liq is overestimated in the west coasts of South America, Africa and to

a lesser extent, North America, due to low Nd over these regions. Over the land Reff,liq is underes-

timated in South Central Asia, Europe and the West Coast of North America, likely due to the high730

concentration of cloud droplets predicted by GEOS-5 in these regions (Section 3.4).

The global distribution of ice effective radius, Reff,ice, for the NEW run is presented in Fig. 13

along with MODIS retrievals. The global mean value of Reff,ice in the NEW simulation (26 μm ,

from COSP output) is in good agreement with the satellite (24.2 μm). GEOS-5 is able to reproduce

the low Reff,ice seen by MODIS over most of the large mountain ranges, e.g., over the Andean and735

Himalayan regions, although it tends to underestimate Reff,ice over north east Asia. Low Reff,ice is

caused by strong homogeneous freezing events with Nc > 1 cm−3 in high orographic uplift (Fig. 7),

although local convection may also have an effect on Reff,ice as detrainment from deep convection

tends to increase Nc (Section 3.5). There is some contrast in Reff,ice between land and ocean in the

MODIS retrievals which is captured by GEOS-5. However the model tends to overestimate Reff,ice740

in the subtropical continental regions of NH and SH, which may be caused by underestimation of

σw leading to low Nc.

There may be some uncertainty in the retrieval of Reff,ice, particularly for optically thick clouds

(Chiriaco et al., 2007). To further corroborate the GEOS-5 results, in situ observations of the volu-

metric ice crystal radius, Rvol,ice =
(

3qi
4πNcρi

)1/3

, are used. Figure 14 shows Rvol,ice as a function745

of T along with a composite of in situ data from several field campaigns (Krämer et al., 2009;

McFarquhar and Heymsfield, 1997). There is agreement between the field data and the model, par-

ticularly for T < 230 K where both show a decrease in Rvol,ice with decreasing T . Around T ∼ 230

K the model tends to predict slightly higher Rvol,ice than the observations, although mostly within

the spread of the data. The discrepancy may also be a result of crystal shattering in ice crystal750

probes which tends to increase measured Nc decreasing Rvol,ice (Krämer et al., 2009). The smooth

transition in Rvol,ice at 235 K indicates that both homogeneous and heterogeneous ice nucleation

significantly contribute to ice crystal formation at this temperature (Section 3.5). In agreement with

observations (McFarquhar and Heymsfield, 1997) Rvol,ice increases steadily for T > 235 K, which

results from increasing vapor deposition rates and decreasing Nc as T increases (Section 3.5).755

3.9 Annual Mean Diagnostics

Table 4 and Fig. 15 show the summary of the annual mean cloud properties analyzed in this work.

Annual mean LWP is 37.3 g m−2, and 60 g m−2 if the MODIS COSP simulator is used. LWP in

NEW is higher than the CloudSat retrieval (23.0 g m−2) (Li et al., 2013) mostly from higher LWP

in the midlatitudes of the SH, and lower than MODIS retrievals (∼ 100 g m−2). Ocean-only LWP760

is also lower than SSMI output by about a factor of two (not shown). LWP in GEOS-5 refers only
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to non-convective (anvil and stratiform) clouds and is likely that the discrepancy with SSMI and

MODIS originates from the consideration of convective clouds in the retrievals. IWP in NEW (27.1

g m−2) is in better agreement with CloudSat (25.8 g m−2) (Li et al., 2012) although GEOS-5 tends

to overestimate IWP in the midlatitudes of SH and NH. Including snow in the comparison does not765

affect IWP in the Tropics but results in larger subtropical IWP in NEW than in CloudSat. Global

mean LWP in CTL is higher (60.0 g m−2) and IWP slightly lower (19.0 g m−2) than in NEW.

The prescribed Reff,liq and Reff,ice in CTL are generally smaller than those retrieved by MODIS

with a global mean bias of about −5 μm and −4 μm for Reff,liq and Reff,ice, respectively. Reff,liq and

Reff,ice in NEW are closer to MODIS with a global bias of about −0.5 μm and 2 μm, respectively770

(Table 4), well within the intrinsic error of the retrieval (King et al., 2003). Zonal mean Reff,liq is

however overestimated in the Northern Hemisphere from underestimation of Nd in oceanic regions

(Section 3.4).

Global mean cloud fraction in the NEW simulation is higher than in CTL but still lower than

ISSCP retrievals (Rossow and Schiffer, 1999). The higher fc in NEW results from higher cloud775

coverage over continental regions (Section 3.1). There is good agreement between NEW and ISCCP

cloud fraction in the continental midlatitudes and most of the underestimation in NEW originates

in marine regions. However in these regions both the NEW and CTL simulations show agreement

with the MODIS retrieval. The reason for the better agreement of GEOS-5 with MODIS than with

ISCCP in these regions is however not clear but may be related to differences in the the cloud masks780

of ISCCP and MODIS (Pincus et al., 2012).

Global annual mean precipitation, Ptot, is lower in the NEW (2.72 mm d−1) than in the CTL

(2.85 mm d−1) simulation and in better agreement with GPCP (Huffman et al., 1997) and CMAP

(Xie and Arkin, 1997) observations (∼ 2.6 mm d−1), although both simulations tend to overestimate

Ptot in the Tropics. In SH the NEW simulation tends to predict Ptot higher than CMAP and lower785

than GPCP whereas CTL is in better agreement with GPCP data. In NH, Ptot in the NEW and CTL

simulations is closer to GPCP than to CMAP data, although in NEW it tends to be lower than the

GPCP observations.

The global top of the atmosphere (TOA) net radiative balance is about + 0.95 W m−2 in the

NEW simulation. The slight radiative imbalance in NEW results in part from the negative bias in790

stratocumulus cloud coverage in the NEW simulation (Section 3.1). The liquid cloud optical depth

in NEW however agrees with MODIS data (Fig. 15) particularly over the Tropics. In CTL liquid

clouds tend to be optically much thicker than MODIS observations (Fig. 15) which results from

larger LWP and smaller Reff,liq than the observations (Sections 3.6 and 3.8). The higher optical

depth in CTL leads to a more negative SWCF (−52.1 W m−2) than in CERES and to a higher net795

radiative imbalance −2.4 W m−2. Long wave cloud effect (LWCF) is similar in the CTL and NEW

runs (∼ 25.0 W m−2) and in agreement with CERES data (26.2 W m−2). Compared to MODIS ice

cloud optical depth is however overestimated in CTL and underestimated in NEW. In NEW the low
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bias in ice optical depth is compensated by a positive bias in the high level cloud fraction (Section

3.1).800

4 Sensitivity Studies

Tables 3 and 4 present a summary of the sensitivity of GEOS-5 to different microphysical param-

eters. To study the sensitivity of cloud properties to the description of CCN activation, the param-

eterization of Abdul-Razzak and Ghan (2000) (hereafter, ARG) was implemented. ARG is based

on a fit to the numerical solution of the equations of an ascending parcel written in terms of dimen-805

sionless parameters. Compared to the NEW run, the usage of ARG resulted in slightly higher Nd

than with the FN05 formulation particularly over marine regions (run ARGACT, Fig. 5). The ARG

parameterization also predicts higher droplet concentration in regions of high aerosol emissions like

South East Asia and Southern Africa. Global mean Reff,liq was lower in ARGACT than in NEW by

about 0.7 μm leading to about 2 W m−2 more negative SWCF. LWP and cloud fraction remained810

almost the same as in NEW suggesting that the change in SWCF was driven by modification of

cloud albedo.

The sensitivity of cloud properties to the characteristic cirrus scale, Lc, was also investigated. Lc

is associated with the wave length of the highest frequency waves leading to cloud formation (Eq.

24), although it is considered a free parameter. Increasing Lc from 100 m to 400 m reduced global815

Nc by about a factor of two (run LC400). The global mean Reff,ice increased by about 3 μm and

LWCF decreased by 2 W m−2. The higher Lc led to smaller σw (Eq. 24) decreasing the rate of

ice crystal formation. Global mean σw for Lc = 400 m is about 0.07 m s−1 and 0.11 m s−1 at

500 hPa and 150 hPa, respectively, about half the obtained in the NEW simulation (Fig. 4). These

values are still within the observed values in field campaigns (e.g., Gayet et al., 2004), and more820

observations are needed to better constraint Lc. Table 4 however shows that GEOS-5 results are

robust to moderate changes in σw.

The effect of the dispersion in the ice crystal size distribution, μi, on ice cloud properties (Table

4) was analyzed by setting μi = 0.0 (run MUIZERO) instead of using a temperature dependent

parameterization for μi (Section 2.3). This led to about a factor of two lower IWP and Reff,ice than825

in NEW, which resulted from an increase in autoconversion and accretion of ice by snow at low

T (not shown). Despite the lower IWP, the lower ice crystal size increased the ice cloud optical

depth and resulted in slightly higher LWCF and SWCF than in the NEW simulation. Because of this

compensating effect the radiative properties of ice clouds are robust to moderate changes in the ice

crystal size distribution. Decreasing the critical size for ice autoconversion from 400 μm to 200 μm830

(run DCS200) also increased ice autoconversion leading to lower IWP than in NEW. Reff,ice was

also reduced although to a lower extent than in MUIZERO. Thus the net radiative effect of reducing

Dcs was a decrease of about ∼ 6 W m−2 in LWCF.
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Several studies were performed to investigate the sensitivity of GEOS-5 to the description of

heterogeneous ice nucleation. In NOBC and NOGLASS the effect of black carbon and glassy IN,835

respectively, was switched off. These runs suggested that black carbon and glassy IN only have a

subtle effect on global climate (Table 4), although their local effects may be significant. In particular

black carbon IN tend to increase LWCF in regions of high aerosol emissions like East Asia and the

East Coast of North America. In the same regions glassy IN tend to reduce Nc at low T (Figure 16).

The global TOA radiative imbalance due to black carbon and glassy IN amounts to −0.05 W m−2840

and −0.18 W m−2, respectively. Although these values are comparable to other published studies

(Gettelman et al., 2012) they must be taken with caution since they are based on limited results.

A comprehensive description of the aerosol indirect effect in GEOS-5 will be addressed in future

studies.

In the PDA08 run the Phillips et al. (2008) (hereafter Ph08) ice nucleation spectrum was used.845

Ph08 was employed in previous studies to study the effect to the ice nucleation spectrum on Nc

(Barahona et al., 2010; Morales Betancourt et al., 2012; Liu et al., 2012). The main difference

beween Ph13 and Ph08 is that Ph08 accounts for the effect of organic material acting as IN (although

their effect may be overestimated in Ph08, Phillips et al. (2013)). Using the Ph08 parameterization

reduced Nc increasing Reff,ice by about 1 μm, slightly decreasing LWCF. This resulted in part from850

the effect of organic IN inhibiting homogeneous freezing in cirrus clouds. Other cloud properties

remained similar as in NEW.

The effect of preexisting ice crystals on ice crystal formation was analyzed in NOPREEX where

it was assumed that Ni,pre = 0. For this run Nc was about twice as in NEW, with the greater increase

occurring between 200 K and 240 K (Fig.16), and mostly in the Tropics (not shown) indicating that855

the presence of ice crystals from convective detrainment tends to inhibit new ice nucleation events.

Mean Reff,ice was reduced by about 6 μm increasing LWCF by 5 W m−2.

In NOCNV the generation of precipitation in cumulus convection was described by a single-

moment approach (Bacmeister et al., 2006). Some studies (e.g., Gettelman et al., 2008; Salzmann

et al., 2010) did not consider explicitly the freezing and activation of aerosol particles in convec-860

tive cumulus. Thus it is important to study how this assumption would affect GEOS-5 results. In

NOCNV the contribution of convective detrainment to ice crystal and droplet number concentration

was approximated by assuming a fixed droplet size of 10 μm for droplets and using the correlation

of McFarquhar and Heymsfield (1997) to obtain the ice crystal size as a function of T . Compared

to NEW, the single-moment approach resulted in enhanced precipitation rates, particularly over the865

Tropical Warm Pool. SWCF and LWCF were lower than in NEW by about 3 W m−2, which was in

part the result of a lower detrainment flux of condensate in the Tropical upper troposphere. Reff,liq

decreased by about of 1 μm due to an increase in droplet number concentration. Mean Reff,ice only

changed by about 0.5 μm, however Nc was slightly increased, particularly at low T (Fig.16).

Finally it is important to analyze the effect of microphysical parameters on Nc at low T . Figure 16870
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shows the temperature dependency of Nc for the runs of Table 4. All curves of Fig. 16 show the same

characteristics, increasing Nc with decreasing T to a maximum around 210 K and then decreasing to

values typically below 10 L−1 at 185 K. The only exception to the latter is the NOCNV run in which

mean Nc is about 140 L−1 at 185 K, resulting from the lower detrained Nc acting as preexisting ice

crystals at low T . The maximum Nc is around 300 L−1 for most runs and only for the NOPREEX875

run it increases up to 800 L−1. The fact that in all runs Nc decreases for T below 200 K indicates

that as the T decreases Nc becomes more dependent on Scrit (Section 3.2). This indicates that parcel

history plays a primary role in determining Nc at low T whereas preexisting ice crystals and IN only

play a secondary role.

5 Summary and Conclusions880

A new cloud microphysics scheme was developed for the the NASA GEOS-5 global atmospheric

model. The main features of the new microphysics are:

– A comprehensive two-moment microphysics description for stratiform clouds (Morrison and

Gettelman, 2008).

– Consistent coupling of the cloud fraction and stratiform condensation with the microphysics.885

The stratiform condensation scheme was modified to allow supersaturation in ice clouds.

– A two-moment microphysics scheme embedded within the RAS convective parameterization.

The new scheme explicitly treats the formation of droplets and ice crystals, the partitioning

of condensate between ice and liquid, and the generation of precipitation within convective

cumulus.890

– A comprehensive description of cloud droplet activation and ice nucleation in stratiform and

convective clouds, linked to the aerosol physicochemical properties. The description of ice

formation considers homogeneous freezing of cloud droplets and interstitial aerosol as well

as heterogeneous ice nucleation on ice nuclei. Competition between homogeneous and het-

erogeneous ice nucleation, and between different ice nuclei is explicitly treated. Immersion,895

contact, condensation and deposition ice nucleation modes are considered.

– Explicit calculation of the critical saturation ratio for ice formation considering aerosol prop-

erties, temperature and subgrid scale dynamics.

– Explicit parameterization of the effect of preexisting ice crystals on ice nucleation.

– Explicit parameterization of the distribution of subgrid scale vertical velocity in stratiform900

clouds, accounting for the effect turbulence and gravity wave motion on the vertical velocity

variance. A new parameterization in terms of large scale variables was developed for the latter.
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The new microphysics was evaluated against satellite retrievals and field campaign data. Usage

of the COSP satellite simulator greatly facilitated the comparison against satellite observations, re-

ducing the uncertainty in the sampling of the model results. In general cloud microphysical fields905

like ice water, liquid water content and droplet and ice crystal size were in much better agreement

with observations than obtained with the operational version of GEOS-5. The model performance

in reproducing the observed total cloud fraction and longwave and shortwave cloud forcings is also

improved and is in reasonable agreement with satellite observations.

In the new microphysics ice and cloud droplet nucleation are tightly linked to the evolution of910

the cloud properties. Cloud droplet number impacts the formation of precipitation. Precipitation

decreases total water which in turn feeds back into the cloud fraction through modification of Pq(qt)

(Section 2.3.1). The link between Nc, fc, and qi is stronger since the production of condensate is

controlled in part by Scrit which depends on the presence of IN (Eq. 15). The linkage between cloud

micro and macro physical variables in the model emphasizes the internal consistency of the new915

cloud scheme.

A new cloud coverage scheme was developed to allow supersaturation with respect to the ice

phase. The frequency and spatial distribution of supersaturation simulated by the model was in good

agreement with satellite and in situ observations. It was shown that supersaturation is controlled in

part by ice crystal nucleation and the value of Scrit. The latter dictates the minimum water vapor920

threshold required for cloud formation. Scrit is highly variable over the globe, and dependent on

aerosol concentration and temperature. Thus models that assume a single threshold for ice cloud

formation are inherently biased.

The variation of supercooled cloud fraction with temperature in the new microphysics followed

a sigmoidal tendency. This is in agreement with CALIOP data (Choi et al., 2010) and differs from925

the typical linear increase of SCF with T assumed in most GCMs. There are no temperature-based

constraints to the occurrence of the Bergeron-Findeisen process nor to the partition of total con-

densate between ice and liquid in the new microphysics. The sigmoidal tendency in SCF resulted

from explicit consideration of homogeneous, immersion and contact freezing in the model. This

suggests that rather than temperature alone, the presence of IN greatly influences the frequency of930

supercooled liquid in mixed-phase clouds.

A new approach was proposed to parameterize the distribution of subgrid scale vertical velocity in

cirrus and stratocumulus which takes into account turbulence and gravity wave motion. Although no

studies have been reported on the global distribution of σw the parameterization results were within

reported values in field campaigns. Since the parameterization proposed here focuses on surface935

and orographic stresses, which are higher over the land, σw may be underestimated in the upper

troposphere in oceanic regions. Still the ability to predict σw as a function of large scale variables

points in the right direction to reduce one of the main sources of uncertainty in the modeling of the

effect of aerosol emissions on climate. It was also shown that the variability in σw is a determining
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factor defining the effect of IN emissions on cirrus formation.940

The simulated ice crystal concentration was in agreement with field campaign data, even at very

low T where most models tend to overestimate Nc (e.g., Barahona et al., 2010; Salzmann et al.,

2010; Hendricks et al., 2011). In GEOS-5 the decrease of Nc with decreasing T results from an

increase in Scrit (Fig. 2) which limits Pq(qt > Scritq
∗
i ) at low T decreasing the probability of ho-

mogeneous freezing events. The term Pq(qt > Scritq
∗
i ) in Eq. (16) provides a link between current945

cloud formation and prior ice nucleation events (Barahona and Nenes, 2011). This suggests that

a statistical rather than a single-parcel approach (e.g., Jensen et al., 2012; Spichtinger and Cziczo,

2010) is required for the correct modeling of low temperature cirrus.

A new parameterization of the effect of preexisting ice crystals on ice cloud formation was devel-

oped. It was shown that their effect is more pronounced for T around 200 K, typically reducing Nc.950

However preexisting ice crystals alone can not explain the low ice crystal concentration at low T .

The effect of organic glassy IN on cloud formation was also analyzed and it was found that it tends

to reduce Nc at low temperature. Although these factors alone cannot explain the tendency of Nc at

T < 190 K, they are still necessary to reproduce the observed Nc in the upper troposphere. In fact it

was found the observed values of ice crystal concentration in the upper troposphere result from the955

combination of several factors: parcel history, IN concentration, convective detrainment and subgrid

dynamics.

Effective cloud droplet size simulated with GEOS-5 was in agreement with the MODIS retrieval.

There was however a slight underestimation in Reff,liq over the land and overestimation over the

Tropical marine regions. This points to the need for a more sophisticated description of aerosol960

microphysics in GEOS-5. Sensible assumptions were made regarding the aerosol size distribution,

however there is a high variability in the aerosol properties around the globe which may affect

CCN activation. The inclusion of a more comprehensive aerosol microphysics in GEOS-5 will be

addressed in a future study. The simulated cloud droplet number concentration also showed some

sensitivity to the parameterization of CCN activation, which in turn influences the cloud albedo.965

There was good agreement in the global mean ice effective radius between GEOS-5 and the

MODIS retrieval. The decrease in Rvol,ice as T decreases, a common feature of in situ observa-

tions (Krämer et al., 2009) was also captured by GEOS-5. The model was able to capture key

features of the spatial distribution of Reff,ice, as for example the predominance of low Reff,ice near

mountain ranges. This was a result of the explicit consideration of ice nucleation and of the spa-970

tial variation of σw,gw. Reff,ice was however overestimated in marine regions, particularly in the

Southern Hemisphere. The parameterization of σw,gw developed in this work may underestimate σw

over the ocean. Other IN sources like biological particles (Burrows et al., 2013) and sea salt (Wise

et al., 2012) were not considered in this study but may enhance ice nucleation in marine environ-

ments. Some uncertainty may be introduced by the single-moment approach used for the aerosol975

microphysics in GEOS-5 ice nucleation, although ice nucleation is less dependent on aerosol size

29



than CCN activation. Mixing of dust with sulfate may lead to IN deactivation and is currently not

modeled by GEOS-5. The role of the uncertainty in the satellite retrieval must also be taken into

account. All of these effects require further investigation. Nevertheless, the approach proposed here

results in a realistic and reasonable spatial distribution of Reff,ice.980

It was shown that the cloud radiative fields modeled in GEOS-5 with new microphysics are in

good agreement with observations, although local biases may be significant. GEOS-5 tends to un-

derestimate the optical depth of persistent stratocumulus decks which leads to a negative radiative

bias in the Western Pacific. Reducing such bias requires an explicit representation of shallow cumu-

lus condensation in GEOS-5. The long-term and large-scale climatic response of GEOS-5 with the985

new microphysics will be analyzed in a future study.

A simple approach was assumed to describe the cloud microphysics in convective clouds. The

description of precipitation within convective cores is highly complex due to the interplay of several

clouds species (e.g., graupel, hail, rain, ice and snow). Some authors have developed more compre-

hensive microphysical packages for convective clouds including processes of autoconversion, ag-990

gregation, collection and accretion (e.g., Song and Zhang, 2011; Sud and Walker, 1999; Lohmann,

2008). To be effective, a detailed description of microphysics in convective clouds requires prog-

nostic prediction of the vertical profiles of rain and snow which is not implemented in most GCMs.

Also collection and aggregation rates depend on the vertical profiles of rain and snow which are not

known in advance. Thus the advantages of a complex representation of the microphysics of convec-995

tive cores must be weighted against the uncertainty introduced in accommodating such descriptions

within the diagnostic integration schemes of the convective parameterizations in GCMs.

The model results were quite robust to variation in microphysical parameters. The largest differ-

ences from the base configuration were found for a decrease in the size dispersion parameter of the

ice crystal size distribution and in the critical size for ice autoconversion. Both changes lead to a re-1000

duction in Reff,ice and IWP and modified the long wave cloud forcing. The high sensitivity of Reff,ice

and IWP to the value of μi suggests that more attention must be put on its correct parameterization

in GCMs.

The implementation of the comprehensive microphysics developed in this work resulted in a more

realistic simulation of cloud properties in GEOS-5. Mounting evidence suggests that the explicit1005

description of processes of droplet and ice crystal nucleation and precipitation is necessary for the

correct representation of clouds in Earth system models. The new microphysics would likely result in

improved and more realistic climate simulations in GEOS-5. The new parameterizations developed

here may also help to improve our understanding of the role of microphysics and aerosol emissions

on the evolution of clouds. Within the larger picture, the further development of the microphysics1010

GEOS-5 will help to understand the role of clouds on climate and eventually reduce the uncertainty

in their prediction.
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Appendix A Parameterization of σw,gw

Parameterizations of the subgrid vertical velocity from gravity wave motion consider either the dis-

placement of a single wave from orographic uplift (Joos et al., 2008; Dean et al., 2007) or the1015

spectrum of velocities resulting from the superposition of waves from different sources (Barahona

and Nenes, 2011; Jensen and Pfister, 2004). The characteristic scale of gravity wave motion leading

to the formation of clouds is typically smaller than the scale of the GCM grid cell. Thus a spec-

trum of vertical velocities rather than a single wave may be a more realistic representation of the

subgrid dynamics in the upper troposphere. Still surface perturbations are likely to determine the1020

maximum wsub in the spectrum (Joos et al., 2010; Barahona and Nenes, 2011). Using this concept

a semi-empirical parameterization for σw,gw can be developed as follows.

The mean vertical momentum flux at the surface (McFarlane, 1987) is given by,

τ =
1
2
kρaUsNsδh

2
s (A1)

where δhs is the vertical displacement at the surface caused by the orographic perturbation, Ns the1025

Brunt-Väisälä frequency at the surface and Us the surface wind (taken as the geometrical mean

between the meridional and zonal components), and k is the horizontal wave number. Equat-

ing τ to the mean surface stress, τ0, and scaling δh according to McFarlane (1987) i.e, δh =

δhs [ρaUsNs/ρaUN ]1/2 , the mean vertical wave displacement, δh, at any height can be written

as1030

δh2 = min
(

2|τ0|
kρaUN

,
U

N

)
(A2)

where U
N is the saturation wave amplitude (Dean et al., 2007). The maximum vertical velocity in the

gravity wave spectrum is related to δh by (Joos et al., 2008)

wmax = kUδh (A3)

In a spectrum of randomly superimposed gravity waves, wmax can be empirically related to σw,gw1035

by (Barahona and Nenes, 2011)

σw,gw ≈ 0.133wmax (A4)

making k = 2π
Lc

and combining Eqs. (A2) to (A4), we obtain.

σ2
w,gw = 0.0169min

[
4πU |τ0|
ρaLcN

,

(
2πU2

NLc

)2
]

(A5)

where Lc is the characteristic horizontal wave displacement of the highest frequency waves in the1040

spectrum, typically between 50 m and 500 m (Bacmeister et al., 1999), although considered a free

parameter.

31



Appendix B Parameterization of the Effect of Preexisting Crystals on Ice Nucleation

Water vapor deposition onto ice crystals left from previous nucleation events decreases supersatura-

tion and may reduce Nc, particularly at low temperature (Barahona and Nenes, 2011). To account1045

for this effect the local rate of change of Si in a cloudy parcel with preexisting crystals is written in

the form (Barahona and Nenes, 2011),

dSi

dt
= αwsubSi−β

dqi,nuc

dt
−β

dqi,pre

dt
(B1)

where α and β are temperature-dependent parameters (Appendix C), and dqi,nuc
dt and dqi,pre

dt are the

local rates of ice crystal growth of recently nucleated and preexisting ice crystals, respectively. The1050

latter is given by,

dqi,pre

dt
=

Ni,preπβcρiAi(Si−1)
2λi,pre

(B2)

where it was assumed that the size of preexisting ice crystal follows a gamma distribution (Eq. 2).

Introducing Eq. (B2) into Eq. (B1) we obtain,

dSi

dt
= αwsubSi−β

dqi,nuc

dt
−β

Ni,preπβcρiAi(Si−1)
2λi,pre

(B3)1055

Ice crystal nucleation in cirrus occurs over small Si intervals (Barahona and Nenes, 2008; Kärcher

and Lohmann, 2002). Therefore to a good approximation the size of preexisting ice crystals can be

considered constant during ice nucleation. With this assumption, Eq. (B3) can be reorganized as,

dSi

dt
= αwsubSi

[
1− Ni,preπβcρiAi(Shom−1)

2λi,preαwsubShom

]
−β

dqi,nuc

dt
(B4)

where it was assumed that Si−1
Si

≈ Shom−1
Shom

. If Ni,pre = 0 then Eq. (B4) reduces to the saturation1060

balance of a parcel with no preexisting crystals present (Barahona and Nenes, 2008). Thus the effect

of preexisting crystals on ice nucleation can be accounted for by redefining the cloud scale vertical

velocity in the form,

wsub,pre = wsub max
[
1− Ni,preπβcρiAi(Shom−1)

2λi,preαwsubShom
, 0

]
(B5)

Equation (B5) shows that the effect of water vapor deposition onto preexisting crystals can be un-1065

derstood as a reduction in the rate of increase of supersaturation by expansion cooling. Since wsub

is typically an input to ice cloud formation parameterizations, Eq. (B5) also provides a simple way

of accounting for the effect of preexisting ice crystals on ice cloud formation, independently of the

ice nucleation parameterization employed.
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Appendix C List of Symbols and Acronyms1070

γ Virtual mass coefficient

γc Cooling rate

η Cloud tracer

ΔHs Enthalpy of sublimation of ice

Δqc Change in total condensate due to the cloud microphysics

Δt Model time step

ΔtL Average time of a convective parcel within a model layer

φ(w̄,σ2
w) Subgrid distribution of vertical velocity

κ Hygroscopicity parameter

λ Entrainment rate

λm Value of lm in the free troposphere

λo,y Slope parameter of ny(D)

μy Dispersion of ny(D)

ρi Ice density

σg,x Geometric size dispersion of the x species

σ2
w,turb Variance in wsub due to turbulence

σ2
w,gw Variance in wsub due to gravity wave dynamics

σw Standard deviation of wsub

τ0 Surface stress

Ai

[
ρiΔH2

s

kaRvT 2 + ρiRvT
ps,wDw

]−1

CCN Cloud condensation nuclei

cp Specific heat capacity of air

D Convective detrainment rate

Dcs Critical size for ice-snow autoconversion

Dc,y Critical size for precipitation of the y cloud species

Dg,x Geometric mean diameter of the x species

Dw Water vapor diffusivity in air

fc Total cloud fraction

f ′
c Cloud fraction modified by the cloud microphysics

fgr Fraction of ice existing as graupel

fhet Fraction of ice crystals produced by heterogeneous ice nucleation

fice Mass fraction of ice in the total condensate

fcn Detrained anvil cloud fraction

g Acceleration of gravity

IN Ice nuclei

IWC Ice water content

IWP Ice water path
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ka Thermal conductivity of air

KT Mixing coefficient for heat

Lc Characteristic wave displacement in cirrus

lm Mixing length

LWC Liquid water content

LWCF Longwave cloud forcing

LWP Liquid water path

Mw,Ma Molar masses of water and air, respectively

N Brunt-Väisälä frequency

Nc,cv Ice crystal concentration within convective cumulus

Nc,nuc Ice crystal concentration nucleated in cirrus

Nd,act Activated cloud droplet number concentration

Nd,cum Column integrated droplet number concentration

nd, Nd Grid mean and in-cloud droplet number concentration, respectively

nd, Nc Grid mean and in-cloud ice crystal number concentration, respectively

Ndep Ice crystal concentration produced by deposition and condensation nucleation

ngr Graupel number concentration

Nhet Ice nucleation spectrum

Nimm Ice crystal concentration produced by immersion freezing

No,y Intercept parameter of ny(D)

ns,x Immersion active site surface density for the x species

Nx Aerosol number concentration of the x species

ny(D) Size distribution of the y species

p Pressure

Pq(qt) Probability distribution of total cloud condensate

ps,w, ps,i Liquid water and ice saturation vapor pressure, respectively

Ptot Total precipitation

q∗ Weighted saturation mixing ratio between liquid and ice

qc Total condensate mixing ratio

qc,det Detrained condensate mixing ratio

qcn Mixing ratio of total condensate in a convective parcel

qgr Graupel mass mixing ratio within a convective cumulus

qi Ice water mixing ratio

ql Liquid water mixing ratio

qmx,qmin Upper and lower limits of the total water distribution, respectively

q∗l , q∗i Saturation specific humidities for liquid and ice, respectively

qt Total water mixing ratio, (qv +qc)

qv Water vapor mixing ratio
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R Universal gas constant

Reff,liq Cloud droplet effective radius

Reff,ice Ice crystal effective radius

RH Ambient relative humidity

Rv R/Ma

Rvol,ice Volumetric ice crystal radius,
(

3qi
4πNcρi

)1/3

Si,c Clear sky saturation ratio

SCF Supercooled cloud fraction

Scrit Critical saturation ratio

Si Saturation ratio with respect to ice

Si,max Maximum water vapor supersaturation with respect to ice

Sl,max Maximum water vapor supersaturation with respect to water

s̄p,x Mean particle surface area of the x species

Sisat
w Value of Si at water saturation

SWCF Shortwave cloud forcing

t Time

T Temperature

Tv and T ′
v Virtual temperature of the cloud and the environment, respectively

TWP Total water path

U Horizontal wind

w̄ Mean vertical velocity

wls Grid-scale vertical velocity

wsub Subgrid scale vertical velocity

wterm Hydrometeor terminal velocity

wcp Cumulus vertical velocity

W Convective mass flux

z Altitude
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Table 1. Lognormal size distribution parameters used in this study (Lance et al., 2004). D̄g (μm) and σg are

the geometric mean diameter and dispersion, respectively. Ni/Na is the particle number fraction in mode i. The

“polluted” size distribution parameters for sulfate and organics are used when the total aerosol mass exceeds

5.0 μg m−3.

Aerosol species D̄g σg Ni/Na

Dust1 1.46 2.0 1.0

Dust2 2.8 2.0 1.0

Dust3 4.8 2.0 1.0

Dust4 9.0 2.0 1.0

Dust5 16.0 2.0 1.0

Black Carbon 0.024 2.20 1.0

Seal Salt [0.02,0.092,0.58] [1.47,2.0,2.0] [0.56,0.43,7.6×10−3]

Sulfate and Organics

- Clean [0.016,0.067,0.93] [1.6,2.1,2.2] [0.55,0.44,4.1×10−2]

- Polluted [0.014,0.054,0.86] [1.8,2.16,2.21] [0.77,0.23,3.6×10−3]

45



Table 2. Parameters of the terminal velocity relation wterm = aDb
y(1000/p)0.4 (SI units) for convective ice

species.

Species a b Reference

Ice 2exp[4×10−4(T −273.0)] 0.244−4.9×10−3(T −273.0) Heymsfield et al. (2007)

Graupel 19.3 0.37 Locatelli and Hobbs (1974)
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Table 3. Description of sensitivity runs performed with GEOS-5 using the new microphysics.

Run Description

NOCNV Single moment microphysics within convective clouds

NOBC Black carbon not acting as IN

LC400 Lc =400 m

PDA08 Usage of the Phillips (2008) heterogeneous ice nucleation spectrum

MUIZERO Prescribed constant μi =0.0

ARGACT Usage of the Abdul-Razzak and Ghan (2000) activation parameterization

NOGLASS Glassy organics not considered as IN

NOPREEX Preexisting ice crystals not considered

DCS200 Dcs =200 μm

47



Ta
bl

e
4.

A
nn

ua
lm

ea
n

m
od

el
re

su
lts

an
d

ob
se

rv
at

io
ns

.
T

he
ex

pe
ri

m
en

ta
ld

at
a

se
ts

ar
e

de
sc

ri
be

d
in

Se
ct

io
n

3.
C

T
L

an
d

N
E

W
re

fe
r

to
ru

ns
w

ith
th

e
op

er
at

io
na

lv
er

si
on

of

G
E

O
S-

5
an

d
w

ith
th

e
im

pl
em

en
ta

tio
n

of
th

e
ne

w
m

ic
ro

ph
ys

ic
s,

re
sp

ec
tiv

el
y.

Se
ns

iti
vi

ty
st

ud
ie

s
ar

e
de

sc
ri

be
d

in
Ta

bl
e

3
an

d
Se

ct
io

n
4.

Si
m

ul
at

io
n

C
T

L
N

E
W

A
R

G
A

C
T

N
O

B
C

N
O

G
L

A
SS

PD
A

08
N

O
PR

E
E

X
L

C
40

0
N

O
C

N
V

M
U

IZ
E

R
O

D
C

S2
00

O
B

S

P
to

t
(m

m
d−

1
)

2.
85

2.
72

2.
72

2.
71

2.
72

2.
73

2.
66

2.
77

2.
90

2.
70

2.
83

2.
68

(G
PC

P)
2.

60

(C
M

A
P)

LW
P

(g
m

−
2

)
60

.0
37

.3
38

.0
37

.6
37

.5
37

.1
37

.3
37

.2
36

.1
36

.5
35

.3
23

.0
(C

lo
ud

Sa
t)

,

10
9.

8
(M

O
D

IS
),

88
.4

(S
SM

I,
oc

ea
n)

IW
P

(g
m

−
2

)
19

.0
27

.1
27

.3
27

.0
26

.9
27

.3
32

.8
21

.3
25

.2
10

.3
16

.1
25

.8
(C

lo
ud

Sa
t)

T
W

P
(g

m
−

2
)

79
.0

64
.4

65
.3

64
.6

64
.4

64
.4

70
.1

58
.6

61
.3

46
.8

51
.4

48
.8

(C
lo

ud
Sa

t)

f
c

(%
)

46
.0

56
.0

56
.8

56
.3

55
.8

55
.2

58
.3

54
.2

51
.0

56
.8

50
.0

52
(M

O
D

IS
)

62
(I

S-

C
C

P)

N
d

,c
u
m

(c
m

−
2
)

1.
68

1.
85

1.
67

1.
68

1.
70

1.
66

1.
55

2.
29

1.
65

2.
33

1.
96

(M
O

D
IS

)

N
c

(L
−

1
)

66
65

64
67

55
13

5
38

74
60

62

N
c

(L
−

1
)

(c
ir

ru
s)

16
6

16
3

16
0

16
8

13
9

35
9

91
18

3
15

4
15

8

R
e
ff

,l
iq

(μ
m

)
10

.2
14

.2
13

.5
14

.3
14

.3
14

.3
14

.6
14

.6
13

.2
13

.7
13

.0
14

.8
(M

O
D

IS
)

R
e
ff

,i
c
e

(μ
m

)
20

.8
26

.2
26

.0
26

.0
26

.2
27

.2
23

.2
29

.3
25

.5
12

.5
23

.6
24

.2
(M

O
D

IS
)

-S
W

C
F

(W
m

−
2

)
52

.1
49

.5
52

.0
50

.3
49

.7
49

.5
53

.2
46

.7
45

.0
49

.7
44

.6
47

.2
(C

E
R

E
S)

51
.8

(E
R

B
E

)

LW
C

F
(W

m
−

2
)

25
.2

26
.6

27
.3

27
.2

26
.2

25
.8

31
.2

23
.2

22
.2

26
.9

20
.8

26
.2

(C
E

R
E

S)
30

.6
7

(E
R

B
E

)

O
L

R
(W

m
−

2
)

23
8.

9
23

8.
3

23
7.

3
23

7.
5

23
8.

2
23

8.
9

23
3.

3
24

1.
4

24
3.

0
23

7.
0

24
4.

5
23

9.
8

(C
E

R
E

S)
24

0.
2

(E
R

B
E

)

O
SR

(W
m

−
2

)
23

6.
5

23
9.

3
23

6.
7

23
8.

4
23

8.
9

23
9.

2
23

5.
6

24
2.

0
24

3.
8

23
9.

2
24

4.
2

24
0.

6
(C

E
R

E
S)

25
5.

7

(E
R

B
E

)

N
et

TO
A

(W
m

−
2

)
-2

.4
0.

95
-0

.5
2

0.
90

0.
77

0.
32

2.
24

0.
58

0.
75

2.
08

-0
.2

8
0.

75
(C

E
R

E
S)

48



Fig. 1. Annual mean differences in low (CLDLO), middle (CLDMD) and high (CLDHI) level cloud frac-

tion between GEOS-5 and ISCCP (Rossow and Schiffer, 1999) for the CTL and NEW runs using the COSP

simulator.
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Fig. 2. Annual global frequency distribution of (left) and zonal mean (right) of the critical saturation ratio,

Scrit(%), for the cirrus regime (T < 235 K).
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Fig. 3. Global frequency distribution of clear sky saturation ratio with respect to ice from instantaneous GEOS-

5 output using the new microphysics (left panel, black dots). Blue and red shades correspond to the frequency

distributions from AIRS satellite retrievals (Gettelman et al., 2006) and the MOZAIC data set (Gierens et al.,

1999), respectively. Uncertainty in the observations was calculated as one standard deviation around the mean

value within 2◦×2◦ grid cell and introducing a 10% perturbation in Si along the x-axis. The center and right

panels show the zonal mean frequency (%) of supersaturation from GEOS-5 and AIRS, respectively.
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Fig. 4. Annual mean σw (m s−1) from GEOS-5.
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Fig. 5. Annual vertically integrated droplet number concentration (106 cm−2) from GEOS-5 (NEW) and the

MODIS retrieval calculated using Eq. (41). Also shown are results obtained using the Abdul-Razzak and Ghan

(2000) CCN activation parameterization (ARGACT).
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Fig. 6. Global frequency of in-cloud ice crystal number concentration as a function of temperature from instan-

taneous GEOS-5 output. (a) Ice crystal concentration, Nc. Solid lines represent the 25% and 75% quantiles

from the field campaign data analysis of Krämer et al. (2009). Solid-dotted lines represent the typical range of

mean Nc found in mixed-phase clouds (Gultepe and Isaac, 1996). (b) Ice crystal concentration from deposi-

tion/condensation ice nucleation, Ndep. (c) Ice crystal concentration from immersion ice nucleation, Nimm. (d)

Ice crystal concentration from convective cumulus detrainment, Ncnv.
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Fig. 7. Annual mean ice crystal concentration nucleated in cirrus (T < 235K) weighted by cloud fraction (left

panel). Also shown are the weighted average (center panel) and zonal mean (right panel) fraction of ice crystal

production by homogeneous freezing in cirrus.
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Fig. 8. Zonal mean non-convective ice water mass mixing ratio (mg kg−1) (upper panels) and total ice conden-

sate (ice and snow, bottom panels) for non-convective clouds from the CTL and NEW runs and the CloudSat

retrieval (Li et al., 2012).
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Fig. 9. Zonal mean non-convective liquid water mass mixing ratio (mg kg−1) (upper panels) and total liquid

condensate (water and rain, bottom panels) for non-convective clouds from the CTL and NEW runs and the

CloudSat retrieval (Li et al., 2013).
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Fig. 10. Liquid (LWP), ice (IWP), and total (TWP) water path (g m−2) for non-convective, non-precipitating

clouds from GEOS-5 output using the new microphysics and from the CloudSat retrieval (Li et al., 2012, 2013).
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Fig. 11. Global frequency of supercooled cloud fraction (SCF) from GEOS-5 for the CTL and NEW runs. The

most frequent SCF value for each temperature is marked (*). The solid lines represent the range of SCF (mean

plus and less one standard deviation) from CALIOP data (Choi et al., 2010).
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Fig. 12. Liquid cloud effective radius (μm) from GEOS-5 using COSP and from the MODIS retrieval.
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Fig. 13. Ice cloud effective radius (μm) from GEOS-5 using COSP and from the MODIS retrieval.
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Fig. 14. Global frequency of ice volumetric radius as a function of temperature from GEOS-5. Solid lines

represent the 25% and 75% quantiles from the field campaign analysis of Krämer et al. (2009). Filled circles

were calculated using the correlation obtained by McFarquhar and Heymsfield (1997) from field measurements

in mixed-phase and cirrus clouds.
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Fig. 15. Annual zonal means from the GEOS-5 model for the CTL (blue lines) and the NEW (red lines) runs

compared against different observations (black lines). (a, b) Liquid (Reff,liq) and ice (Reff,ice) effective radius

from COSP output against MODIS. (c, d) Shortwave (SWCF) and longwave (LWCF) cloud forcing against

CERES-EBAF retrievals (Loeb et al., 2009). (e) Liquid water path against CloudSat (black lines) and MODIS

(black circles) retrievals. (f) Non-convective, non-precipitable ice water path against CloudSat retrievals (Li

et al., 2012, 2013). Also shown is the total (ice and snow) non-convective ice water path (red circles) from

GEOS-5 using the new microphysics. (g) Total cloud fraction from COSP output against MODIS (black lines)

and ISCCP (black circles). (h) Total precipitation against GPCP data (Huffman et al., 1997). Also shown are

data from the CMAP dataset (Xie and Arkin, 1997) (black circles). (i, j) Liquid and ice optical depth (COD)

from COSP output against MODIS retrievals.
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Fig. 16. Annual mean ice crystal concentration as a function of temperature for the different runs of Table 4.
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