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[1] Retrievals of sulfur dioxide (SO2) from space-based spectrometers are in a relatively
early stage of development. Factors such as interference between ozone and SO2 in the
retrieval algorithms often lead to errors in the retrieved values. Measurements from the
Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY), and Global Ozone Monitoring Experiment-2
(GOME-2) satellite sensors, averaged over a period of several years, were used to identify
locations with elevated SO2 values and estimate their emission levels. About 30 such
locations, detectable by all three sensors and linked to volcanic and anthropogenic sources,
were found after applying low and high spatial frequency filtration designed to reduce noise
and bias and to enhance weak signals to SO2 data from each instrument. Quantitatively, the
mean amount of SO2 in the vicinity of the sources, estimated from the three instruments, is
in general agreement. However, its better spatial resolution makes it possible for OMI to
detect smaller sources and with additional detail as compared to the other two instruments.
Over some regions of China, SCIAMACHY and GOME-2 data show mean SO2 values that
are almost 1.5 times higher than those from OMI, but the suggested spatial filtration
technique largely reconciles these differences.
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1. Introduction

[2] Sulfur dioxide (SO2) plays an important role in the
Earth atmosphere. It forms sulfate aerosols that influence
weather and climate [Intergovernmental Panel on Climate
Change, 2001], leads to acid deposition through formation
of sulfuric acid (H2SO4) [e.g., Hutchinson and Whitby,
1977], and poses a direct hazard to public health [e.g., Pope
and Dockery, 2006; Longo et al., 2010]. Satellite SO2

observations have been used to calculate volcanic SO2 bud-
gets and to monitor plumes from volcanic eruptions [e.g.,
Krueger et al., 2000; Carn et al., 2003; Rix et al., 2012]. It
was also demonstrated that satellite instruments can detect
SO2 signals from anthropogenic sources [e.g., Eisinger and
Burrows, 1998; Thomas et al., 2005; Carn et al., 2007;
Georgoulias et al., 2009; de Foy et al., 2009; Lee et al.,
2011; Nowlan et al., 2011; McLinden et al., 2012] and even
monitor changes in emission from these sources [Fioletov
et al., 2011]. Likewise, satellite SO2 data were employed to
study the evolution of emissions from China [Witte et al.,
2009; Li et al., 2010a, 2010b; Jiang et al., 2012].
[3] SO2 can be retrieved from satellite measurements in the

thermal infrared (IR) and ultraviolet (UV) parts of the
spectrum. The former type of measurements employed, for
example, by Infrared Atmospheric Sounding Interferometer
(IASI) instrument, can be used to trace SO2 from volcanic
eruptions [Karagulian et al., 2010; Clarisse et al., 2012]
and transcontinental transport of SO2 pollutions from China
[Clarisse et al., 2011]. Measurements in IR are based on
the temperature contrast between the surface and air, and
therefore they have reduced sensitivity to the boundary layer.
The UV-based measurements are sensitive enough to detect
boundary-layer SO2 [e.g., Krotkov et al., 2006] and therefore
are better suited for monitoring of anthropogenic SO2

sources and non-eruptive gaseous volcanic emissions.
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[4] Solar backscattered UV radiances in SO2 absorption
wavelengths shorter than 320 nm are also strongly affected
by absorption by stratospheric ozone. While the difference
in spectral features of ozone and SO2 absorption in the UV
makes SO2 measurement possible, the total vertical column
density (VCD) of SO2, even over very large anthropogenic
sources, is only on the order of 1–2 Dobson units (DU, where
1DU is equal to 2.69 · 1026molecules km�2), whereas typical
total column ozone values range between 250 and 400DU.
Given that absolute values of ozone and SO2 absorption
coefficients are comparable, small uncertainties in the ozone
retrieval may have a significant impact on SO2 estimates.
Furthermore, instrument artifacts may also introduce spectral
features that resemble the SO2 absorption signal, resulting in
biases in the derived SO2 products, especially if the retrieval
is performed using only a small number of wavelengths as in
the Ozone Monitoring Instrument (OMI) algorithm [Krotkov
et al., 2006]. Both instrument characterizations and satellite
SO2 retrieval algorithms have been improved by the
developers, and therefore we can expect a more accurate
SO2 with less biases in future data products. In this study
we demonstrate that the presently publicly available satellite
data products can be enhanced to identify and extract weak
SO2 signals.
[5] Examples of the impact of ozone can be seen in the

mean SO2 distribution derived from the Ozone Monitoring
Instrument (OMI) measurements near 30°N and 30°S, where
an abrupt change of 0.5DU occurs [Lee et al., 2009]. This
step-like change is related to an algorithmic switch from
tropical to midlatitudinal a priori ozone profiles at these
latitudes. Similar problems resulting from the interference
between ozone and SO2 retrievals are known for other satellite
instruments/algorithms [e.g., Nowlan et al., 2011] demonstrat-
ing that fluctuations in ozone distribution may affect retrieved
SO2, yielding local biases. Fioletov et al. [2011] noted that
elevated SO2 levels near point sources occurred over an area
with a diameter less than 100km even for industrial sources with
very large emissions. Fluctuations in stratospheric ozone are
characterized by much larger distances, 1000–2000km [Liu
et al., 2009]. Therefore, spatial filtration can be used to isolate
small-scale fluctuations caused by local SO2 emission sources.
[6] The past decade has seen three satellite UV instruments

capable of detecting near-surface SO2. The Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY), 2002–2012, onboard the ENVISAT satellite
has a 30× 60 km2 pixel size but relatively poor spatial cover-
age as it requires approximately 6 days for the acquisition
of a contiguous global map. The Global Ozone Monitoring
Experiment-2 (GOME-2) instrument, 2006 to present, on
MetOp-A [Callies et al., 2000] provides almost daily global
coverage but has even larger pixel size of 40× 80 km2. OMI,
2004 to present, on NASA’s Aura spacecraft [Levelt et al.,
2006] provides the best horizontal resolution (13 × 24 km2

footprint at nadir) among instruments in its class and near-
global daily coverage. Satellite data products used in this study
are discussed in section 2.
[7] Even with the higher spatial resolution provided by

OMI, most anthropogenic sources produce increased SO2

concentrations that are detectable only within the colocated
space of just one or two ground pixels. Instead of an analysis
of individual events, this study employs a pixel-averaging
technique in which a large number of individual observations

are used in an attempt to quantify the SO2 spatial distribu-
tions near larger SO2 emissions sources [Fioletov et al.,
2011]. Spatial filtration of satellite measurements of
atmospheric pollutants has been used, for example, to detect
NO2 emissions from ships or “ship tracks” [Beirle et al.,
2004]. In this study, a similar technique was used to remove
local biases and detect point sources of SO2 emissions. The
data analysis procedures for single emission sources are
described in section 3 along with several case studies.
[8] Elevated SO2 levels over China related to the industrial

activity is one of the most prominent features of global
satellite SO2 maps (see, e.g., Figure 1 or Lee et al. [2009]).
Asian emissions of several pollutants, including SO2, have
grown substantially over the last two decades [Streets and
Waldhoff, 2000] and represent a significant problem for air qual-
ity in China [Zhang et al., 2012]. Asian emissions of SO2 also
have a direct impact on regional air quality in North America
[e.g., Park et al., 2004; Heald et al., 2006]. In particular,
vanDonkelaar et al. [2008] found that more than half of the
sulfate measured in the lower troposphere over the Canadian
province of British Columbia is due to East Asian sources. A
second spatial filtration technique, appropriate for regions of
elevated SO2, was used to study SO2 over China with its very
large number of individual sources (section 4).

2. Data

[9] All three instruments used in this study are nadir-
viewing spectrometers that measure backscattered radiation
in the near UV, the region used to retrieve SO2 (roughly 310–
330nm) from Sun-synchronous, low-Earth orbits. Differences
are found in their overpass times, spatial and spectral resolu-
tions, sampling, and SO2 retrieval algorithms. In the case of
GOME-2, two different data products based on the same
measurements but processed with different algorithms were in-
cluded in the analysis to see what impact a difference in algo-
rithms may have on presented results, bringing the number of
data products discussed in this study to 4.

2.1. GOME-2 German Aerospace Center SO2

Data Product

[10] GOME-2 on MetOp-A is a scanning spectrometer
with a spectral coverage of 240–790 nm and a spectral (full
width at half maximum) resolution between 0.26 nm and
0.51 nm. The measurements are taken at around 9:30 local
solar time and are available from January 2007. The
operational GOME-2 total column SO2 product version 4.6
is produced by the German Aerospace Center (DLR) in the
framework of EUMETSAT’s Satellite Application Facility
on Ozone and Atmospheric Chemistry Monitoring (O3M-
SAF). Slant column densities of SO2 are determined using
the Differential Optical Absorption Spectroscopy (DOAS)
method [Platt, 1994] in the wavelength region between 315
and 326 nm. Input parameters for the DOAS fit include the
absorption cross section of SO2 and the absorption cross
sections of interfering gases, ozone and NO2. A further
correction is made in the DOAS fit to account for the ring
effect (rotational Raman scattering). An additional empirical
interference correction is applied to the SO2 slant column
values to reduce the interference from ozone absorption
[Valks and Loyola, 2008; Rix et al., 2012]. Level 2 data avail-
able from http:// atmos.eoc.dlr.de/gome2 is used. We will
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refer to this data set as to the GOME-2 DLR data product. It
should be also noted that the upcoming GOME-2 DLR ver-
sion 4.7 data product [Theys et al., 2013] will have smaller
biases in background SO2 values compared to the version
4.6 used in this sturdy.

2.2. GOME-2 Smithsonian Astrophysical Observatory
SO2 Data Product

[11] Another SO2 data product based on GOME-2 mea-
surements is developed by the Harvard-Smithsonian Center

for Astrophysics, Cambridge, Massachusetts, U.S. [Nowlan
et al., 2011]. It uses an optimal estimation approach and
combines a full radiative transfer calculation and trace gas
climatologies to directly retrieve the vertical column density
of SO2 simultaneously with ozone profile, implicitly includ-
ing the effects of albedo, clouds, ozone, and SO2 profiles,
and wavelength-dependent air mass factor in the retrieval in
the spectral range of 312–330 nm. At the time of this study,
data for the period 2007–2010 were available. We will refer
to this data set as the GOME-2 Smithsonian Astrophysical

Figure 1. Mean column SO2 from OMI, SCIAMACHY, and GOME-2 (DLR and SAO versions) data in
Dobson units (DU). Note that SCIAMACHY data have a larger bias in 2010 than in other years and for this
reason the period was limited to 2005–2009.
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Observatory (SAO) data product. Data can be requested
from http://www.cfa.harvard.edu/atmosphere/.

2.3. SCIAMACHY SO2 Data Product

[12] The SCIAMACHY instrument onboard EnviSat mea-
sures backscattered radiances between 240 and 2380 nm
[Bovensmann et al., 1999]. The Level 2 data product devel-
oped by Belgian Institute for Space Aeronomy and available
from http://www.sciamachy.org is used in this study.
Similarly to GOME-2 DLR data product, the retrieval of
the SO2 slant column is done from the spectrum in the
wavelength range 315–326 nm using the DOAS technique.
The measurements are taken at 10:00 local time. While
SCIAMACHY was launched in 2002, these SO2 data are
available from January 2004 to April 2012. It should be noted
that other SCIAMACHY SO2 data products exist [e.g., Lee
et al., 2008].

2.4. OMI SO2 Data Product

[13] The Dutch-Finnish-built Ozone Monitoring Instrument
(OMI) [Levelt et al., 2006] has been observing aerosols and
trace gases, including SO2, from the NASA EOS Aura satel-
lite platform since 2004 [Schoeberl et al., 2006]. The OMI
Band residual Difference (BRD) algorithm makes use of
precomputed ozone, Lambertian effective reflectivity, and
calibrated residuals at four wavelengths centered on SO2

absorption bands: 310.8 nm, 311.9 nm, 313.2 nm, and
314.4 nm [Krotkov et al., 2006]. OMI measures 60 cross-
track positions (pixels), and the pixel size varies depending
on the track position from 13 × 24 km2 at nadir to about
28 × 150 km2 at the outermost swath angle. Data from the
first and last 10 track positions were excluded from the anal-
ysis. Thus, only pixels with the across-track pixel width
from 24 km to about 40 km were used. The local equator
crossing time of Aura is 13:45. Beginning in 2007, some
cross track positions corresponding to particular rows in
CCD detector were affected by field-of-view blockage and
scattered light (called “row anomaly,” see http://www.knmi.
nl/omi/research/product/rowanomaly-background.php), and
these affected pixels were excluded from the analysis. This
study focuses on anthropogenic pollution sources that emit
SO2 to the planetary boundary layer (PBL), and therefore
a data product specifically designed to represent boundary-
layer SO2 was used [Krotkov et al., 2006]. The data are
available from NASA Goddard Earth Sciences Data and
Information Services Center: http://disc.sci.gsfc.nasa.gov/
Aura/OMI/omso2_v003.shtml. Daily SO2 and cloud com-
posite images for predefined volcanic regions, eastern
China, and Norilsk, Russia are available from http://so2.
gsfc.nasa.gov.

2.5. Air Mass Factor

[14] The quantity that results from the spectral analysis in
each of the datasets described above (except for the
GOME-2 SAO product) is the slant column density (SCD),
which represents a measure of the total absorption by SO2

in the measured spectra. In order to convert SCD into the
vertical column density (VCD, i.e., total number of mole-
cules in a vertical atmospheric column), the average path of
the sunlight through the atmosphere needs to be accounted
for. This is done by applying an appropriate column air mass
factor (AMF) [Lee et al., 2009] as follows: VCD=SCD/AMF.

For SO2, the AMF is strongly dependent on measurement
geometry, surface albedo, clouds, aerosols, ozone, and the
shape of the vertical SO2 profile in the atmosphere. Due to the
strong wavelength dependence in ozone absorption and
Rayleigh scattering, the AMF is also strongly dependent on
the wavelength within the fitting window. In the operational
OMI SO2 boundary layer product a spatially and temporally in-
variant AMF of 0.36 was used, appropriate for summertime
conditions in the eastern U.S. and chosen to represent SO2 from
anthropogenic pollution sources. This constant AMF is also
reasonable for the majority of industrial sources located at low
elevations in Europe, North America, and China [Krotkov
et al., 2008; Lee et al., 2011].
[15] Clearly, detailed AMFs based on local conditions,

including a realistic representation of aerosols (which are
likely elevated near large pollution sources), are necessary
to establish a quantitative link or to expand the analysis to
other regions. An alternative is to use model-based estimates
of AMFs [e.g., Lee et al., 2011], but this too has shortcom-
ings. If a certain source is not included in the emission
inventory used by a model (examples of which are shown
below), the AMF values will likely be overestimated since
the model would underestimate the fraction of the column
in the boundary layer. Moreover, it is unclear if estimates,
obtained from the current generation of global air quality
model simulations at ~200 km resolution, are representative
within several kilometers of the emission site. Based on
these considerations, the invariant AMF is applied to the
SCIAMACHY and GOME-2 slant column densities.
[16] The choice of OMI wavelengths (310–315 nm) in the

BRD algorithm optimizes the instrument sensitivity to weak
SO2 signals in the boundary layer, at the expense of smaller
signal-to-noise ratio and reduced UV penetration (smaller
AMF). The SCIAMACHY and GOME-2 algorithms are
focused on strong volcanic signals and use the DOAS
technique at slightly longer wavelengths. In the spectral
region 310–330 nm used in the satellite retrievals, the AMF
itself increases with wavelength. The difference in the
spectral intervals between BRD and DOAS algorithms intro-
duces about 20% bias if the OMI global constant AMF= 0.36
is used. To account for this, AMF=0.36 was used for OMI
and AMF= 0.43 was used for SCIAMACHY and GOME-2
data products. Unlike the other products which determine a
SCD, the SAO algorithm obtains the VCD directly. To facil-
itate comparisons with the other products, the SAO-VCDs
are converted to SCDs using the AMFs included with the
data product and then AMF= 0.43 was applied to obtain
VCD. This approach means it is likely that some input infor-
mation used in the direct inversion (such as the Goddard
Earth Observing System Global 3-D Chemical transport
model (GEOS-CHEM) profiles) is not completely eliminated
from the SCD by the application of the AMF calculated at a
single wavelength.
[17] Thus, all VCD satellite data sets discussed here were

based on constant AMFs (0.36 for OMI and 0.43 for the two
other instruments). For the purposes of data comparisons of
the three instruments and for studying long-term evolution
of SO2 near large sources, the assumption of a constant
AMF is acceptable. Once the information presented here is
incorporated into emission inventories, however, the use
of site-specific AMFs based on model profiles would become
the favored approach.
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2.6. Data Filtering

[18] To avoid issues related to the data quality and differ-
ences in observation conditions between different satellites,
data were filtered based on consistent criteria. Only clear-
sky data, defined as having a cloud radiative fraction less
than 20%, were used. To exclude cases of transient volcanic
SO2, the range of analyzed values were limited to a maxi-
mum of 15DU. Furthermore, to avoid uncertainties related
to seasonal dependence of various factors, such as difference
in solar zenith angles between the satellites, variable surface
albedo (snow), higher ozone optical depth, etc., winter data
were excluded from some analyses as discussed in the text.
In addition, measurements taken at the solar zenith angles
greater than 60° were excluded from the analysis. It appears
that measurements from all three instruments after 2010 have
been affected by various instrumental degradation problems
resulting in higher noise and more frequent erroneous values.
For this reason, the main results presented here are based on
data for the period up to and including 2010.

2.7. Global SO2 Distribution

[19] The mean, long-term distribution of SO2 over the
globe estimated using the four satellite data products is
shown in Figure 1. Calculations were performed on a 1° by
1° grid using a constant AMF value (0.36 for OMI and
0.43 for the two other instruments). Some features are com-
mon on all maps, e.g., elevated SO2 over China as well as
over several active volcanoes, etc. However, the “back-
ground” levels, i.e., values over the areas with no obvious
SO2 sources, can be very different. For example, OMI and
GOME-2 DLR show mean values of about 1DU over the
Northern Atlantic, north of 60°, while SCIAMACHY mean
values are negative (about�1DU). At northern midlatitudes,
SCIAMACHY data show elevated VCDs, by about 0.5DU,
and GOME-2 DLR mean values are even higher, while
OMI data do not show any large biases there (except over
China). Systematic errors in retrieved background SO2

resulting from imperfect instrument calibration as well as
from, for example, forward model simplifications were sub-
stantially suppressed in the present OMI algorithm by empir-
ical residual corrections [Yang et al., 2007]. Nonetheless,
Figure 1 shows that some large-scale biases, likely caused
by the interference between ozone and SO2 retrievals, remain
in OMI. The GOME-2 SAO product is produced from
radiances corrected for a latitude-dependent SO2 offset using
slant columns derived from VCD retrievals over the clean
Pacific [Nowlan et al., 2011]. The GOME-2 SAO data
product demonstrates smaller biases than the GOME-2
DLR, although SO2 values over northern midlatitudes, e.g.,
over Canada, appear to be somewhat elevated. All of this
suggests that there are artificial local biases in all satellite data
sets that should be removed before the data are used for
practical applications.

3. Point Emission Sources: Spatial Smoothing and
Local Bias Correction

[20] The pixel-averaging or oversampling approach was
applied to analyze the long-term mean spatial SO2 distribu-
tion near an identified source [Fioletov et al., 2011; Streets
et al., 2013]. For this, a geographical grid is established
around the source and the average of all satellite pixels

centered within a several kilometer radius from each grid
point is calculated. Thus, this procedure provides a detailed
“subpixel-resolution” spatial distribution of long-term mean
SO2 value in the vicinity of the source. The choice of averag-
ing radius determines the degree of smoothing: averaging
with a large radius reduces the noise, but it also reduces the
spatial resolution. Due to relatively small OMI pixel size, re-
liable estimates can often be obtained for smoothing radiuses
of 18 km and even smaller. For much larger SCIAMACHY
and GOME-2 pixels, larger radiuses (50 km or more) are
required. Spatial smoothing with a 60 km radius was applied
to all four satellite data sets for the sake of consistency.
[21] As discussed in section 2, there are substantial local

biases in the satellite data. This is further illustrated in
Figure 2, where SO2 data (smoothed with a 60 km radius)
near two sources, a cluster of power plants in South Africa
and the Mount Etna volcano, Italy, are shown. As the original
data demonstrate, local biases magnitude can be comparable
with the mean SO2 values for some data products. Since
these biases appear as large-scale patterns, they can be
removed with a spatial high-pass filter. To accomplish this,
SO2 values from pixels centered between 250 km and
300 km from the source location were averaged and this
average value (or local bias) was subtracted from all mea-
surements near the source. It was also found that these local
biases vary from month to month, thereby necessitating
monthly local bias correction. Mean SO2 values around
similar sources corrected in this manner are very similar as
illustrated by Figure 2.
[22] Smoothed in the same way (with 60 km radius) and

with the local bias removed, data from the four data products
show much better agreement in SO2 distributions in the
vicinity of the point sources than noncorrected data.
Moreover, they also show similar temporal changes in SO2

values as illustrated by Figure 3 where data for two volcanic
sources, Anatahan and Kilauea, are shown. Recall that
contributions from explosive volcanic emissions were
largely removed by the 15DU cutoff limit imposed on the
data. Each sensor shows a decrease in average SO2 by a fac-
tor of 2–3 between 2005–2007 and 2008–2010 for Anatahan
volcano, while values near Kilauea increased threefold. This
increase in emissions from Kilauea in 2008 led to health
problems in the Hawaiian population [Longo et al., 2010].
[23] Anthropogenic sources also can produce high long-

term mean SO2 values detectable by all three satellite
instruments. Copper and nickel smelters at Norilsk in
northern Russia (70°N, 88°E), shown in Figure 1, comprise
probably the largest industrial SO2 “point” source. Its
reported emission level was about 2000 kT yr�1 in the late
2000s [Norilsk Nickel, 2009]. Independent estimates based
on aircraft measurements in 2010 estimate its annual emis-
sions at about 1000 kT yr�1 [Walter et al., 2012]. With the lo-
cal bias removed, all three satellite instruments (and four data
products) reported mean average values of 2–2.5DU at
Norilsk for summer months (May–August). A cluster of 10
coal-burning power plants near Johannesburg in South
Africa with production of more than 1000MW each form
another “hot spot” of elevated SO2 values likewise seen in
data from all four satellite data products (Figure 1).
[24] Another example of an industrial SO2 source, Cantarell

and Ku-Maloob-Zaap Oil Fields in the Gulf of Mexico,
is illustrated by Figure 4. This is one of Mexico’s largest
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oil-producing regions with more than 200 oil wells in oper-
ation [Aquino et al., 2005; Feller, 2012]. According to
Figure 4, all four data sets demonstrate a substantial increase
in SO2 signal in recent years. The oil production from the
Cantarell field is declining, and in order to compensate for
this decline production from Ku-Maloob-Zaap is increasing.
However, oil in the Ku-Maloob-Zaap is heavier, i.e., with
higher sulfur content, than in the Cantarell field [Talwani,
2011] and thus probably yield a higher SO2 output in recent
years, consistent with that seen by the satellites. Little infor-
mation is available about SO2 emissions from that region.
In the late 1990s, SO2 emission levels were estimated to
be about 180 kT yr�1, and at that time 77% of emissions
were coming from the Cantarell field [Villasenor et al.,
2003]. From the late 1990s to the mid-2000s, the oil produc-
tion from the Cantarell field nearly doubled and then started
to decline. If the emission to production ratio remained

constant during that time, SO2 emissions were about
350 kT yr�1 in 2005–2007. This case represents an example
of a large and growing SO2 source not included in the most
recent emissions inventories according to the Emissions of
atmospheric Compounds & Compilation of Ancillary Data
(http://eccad.sedoo.fr/eccad_extract_interface/ JSF/page_login.
jsf) and the widely used EDGAR v4.2 database [Janssens-
Maenhout et al., 2011].
[25] The secondary maximum in the southwest corner on

the map in Figure 4 is likely related to the Gas Processing
Centers’ gas sweetening and sulfur recovery plant at Nuevo
Pemex and other oil and gas exploration mining and refin-
ery-related sources in the Tabasco State [Valdés-Manzanilla
et al., 2008].
[26] The elevated SO2 levels discussed in the examples

above are well above the noise level. Figure 4 shows the ratios
between the mean values and the standard errors of the means,

Figure 2. Mean SO2 values (in DU) over a cluster of power plants near Johannesburg, South Africa, and
the Mount Etna volcano, Italy, estimated for four data products. Data are smoothed using the averaging ra-
dius of 60 km as described in the text. Original data as well as data with the local bias removed are shown.
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a quantity referred to as the signal-to-noise ratio (SNR) and
calculated assuming that all measurement errors are indepen-
dent. Even relatively weak signals in SCIAMACHY and
GOME-2 DLR data in 2005–2007 are above the 5-sigma
limit, while the SNR is greater than 20 for OMI data. While
there could be some correlation between individual measure-
ments, the probability that such an anomaly in the vicinity of
a major SO2 emission source is a random event is negligible.
It should also be noted that while both GOME-2 data prod-
ucts are based on the same measurements, SAO shows less
scattering and therefore higher SNR than DLR. The lower
noise in the GOME-2 SAO product is likely due to the use
of a larger fitting window that includes a strong SO2 spectral
feature which peaks near 313 nm.
[27] While all three instruments are able to detect large SO2

sources, OMI’s better spatial resolution and measurement
density gives it an advantage when smaller sources are ana-
lyzed or when multiple sources are located in close

proximity. Figure 5 shows 2005–2007 average (winter
months excluded) SO2 values over the eastern U.S. estimated
using OMI and SCIAMACHY data as well as the SNR. If the
data are smoothed using a 60 km radius, i.e., as in Figures 2
and 3, OMI data show elevated SO2 levels that are statisti-
cally significant. SCIAMACHY data also demonstrated
some signs of higher SO2, albeit with a tenuous SNR.
However, when less smoothing is applied, OMI data reveal
multiple individual sources in the area (see Fioletov et al.
[2011] for more information), while SCIAMACHY data
become too noisy.
[28] The SNR is governed by the magnitude of the mean

values, the number of data points, and the standard deviation
of individual SO2 measurements. The latter is influenced by
both instrumental noise, retrieval quality, and SO2 variabil-
ity. The larger pixel sizes of SCIAMACHY and GOME-2
instruments (compared to OMI) result in fewer measure-
ments over the same area. It also means that relatively small

Figure 3. Mean SO2 distribution over Anatahan and Kilauea volcanoes in DU smoothed using the
averaging radius of 60 km for two time intervals. All four data products can successfully track changes
in emissions from individual volcanoes. Note that a cutoff limit of 15DU was used to remove impacts of
large eruptions.
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sources that produce elevated SO2 values over the area of a
few kilometers produce smaller mean values compared to
OMI. In the same time, the standard deviations of OMI SO2

values are even lower than those for the two other instru-
ments. As a result, many sources that are clearly visible from
OMI data do not produce a statistically significant SNR in
SCIAMACHY and GOME-2 data. As an example, Figure 6
shows SO2 values over power plants at Megalopolis,
Greece, one of the largest SO2 emission sources in Europe.
Annual mean (winter months excluded) values averaged
using a 60 km radius are shown. No signal appears in
SCIAMACHY and GOME-2 DLR data, while OMI data
not only show significantly elevated SO2 values in the
vicinity of the power plants but also demonstrate year-to-
year changes in the SO2 levels (not shown). GOME-2 SAO

data also clearly show significantly elevated values over
Megalopolis in 2007 and some indications of elevated values
in 2008–2010.
[29] According to the European Pollutant Release and

Transfer Register (http://prtr.ec.europa.eu/), emissions from
Megalopolis were 250 kTyr�1 in 2007 and on average
150 kTyr�1 in 2008–2010. In Fioletov et al. [2011] it was
demonstrated that sources emitting 70 kTyr�1 can be seen by
OMI under optimal conditions. While the source detectability
depends on many factors including the number of clear sky
days, wind speed, albedo, etc., this example illustrates the
difference between OMI and the other two instruments.
[30] A list of natural and anthropogenic SO2 hot spots iden-

tified in each of SCIAMACHY and GOME-2 data products
is in Table 1, and the map of their location is shown in

Figure 4. Mean SO2 distribution over Cantarell and Ku-Maloob-Zaap Oil Fields, Gulf of Mexico, for
2005–2007 and 2008–2010. Data are smoothed using the averaging radius of 60 km. SO2 values in DU
and the ratios between the mean SO2 and the standard error of the mean are shown.
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Figure 7 with a focus on individual or multiple sources
located in close proximity. This list was compiled by first
examining global OMI data for 2005–2007 to identify
potential hot spots and then determining if they were also
detectable in SCIAMACHY and GOME-2 (DLR and
SAO) averages above the 5-sigma level. While about 200
locations of elevated SO2 were identified from OMI data
(they are a subject of a separate study), only about 30 of

them produce significant long-term average values from
SCIAMACHY and GOME-2 DLR data in either or both
of the 2005–2007 and 2008–2010 periods. Explosive volca-
nic sources that produced high SO2 levels over a short time,
but not in the long-term averages, are not included in
Table 1. Also, some of the sources are masked by possible
artifacts in satellite data and are not included. While there
are many large sources of SO2 in China, only two clearly

Figure 5. Mean SO2 over the eastern U.S. from OMI and SCIAMACHY data. (top) SO2 values in DU
and (bottom) the ratios between the mean SO2 and the standard error of the mean are shown.
Calculations were done using 60 km, 30 km, and 20 km averaging radiuses.
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meet the criteria above and an analysis of the elevated SO2

in China on a regional scale is discussed in section 4.
Although both SCIAMACHY and GOME-2 (DLR and
SAO) data show elevated SO2 values over the eastern U.
S., their resolution is insufficient to identify individual
sources (Figure 5) and so they are excluded from Table 1.
As Figures 4 and 6 show, GOME-2 SAO data product ex-
hibits a better SNR and therefore there are some sources
with long-term averages below the noise level in
SCIAMACHY and GOME-2 DLR data sets but above it
in GOME-2 SAO data sets. The number of such sources
is, however, not very large, about a dozen. Therefore, we fo-
cus this study on the sources listed in Table 1, i.e., on those
detectable from all four data products.

3.1. Estimation of SO2 Emissions

[31] An estimate of the annual SO2 emissions over two
periods, 2005–2007 and 2008–2010, was performed for
each of the sources listed in Table 1 using a simple
mass-balance approach, E=m/τ, where E is the emission
rate, m is the SO2 mass, and τ is the SO2 removal rate
or effective lifetime (resulting from the combination from
physical removal and dispersion). The first step involved
calculating the steady state, total SO2 mass (or number
of molecules) resulting from that source using the two-
dimensional (2-D) Gaussian fitting procedure from Fioletov
et al. [2011]. All satellite SO2 measurements (SATSO2 ) within
the prescribed time window and radius were fit to SATSO2 ¼ a
�f x; yð Þ where

Figure 6. Mean SO2 distribution over Megalopolis power plants, Greece, in DU. Averages for 2007 and
for 2008–2010 are shown. Data are smoothed using the averaging radius of 60 km. (left) SO2 values in DU
and (right) the ratios between the mean SO2 and the standard error of the mean are shown. No statistically
significant signal appears in SCIAMACHY and GOME-2 DLR data, while OMI and GOME-2 SAO data
show significantly elevated SO2 values in the vicinity of the power plants.
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and x and y refer to the coordinates of the pixel center. Note
that individual VCDs and not the smoothed data described in
section 3 (and presented in Figures 2–6, for example), were
used for the fit. The elliptical shape of the SO2 distribution
near the source is determined by parameters σx, σy, and ρ.
The parameters μx and μy were included since the position
of the fit maximum may be different from the position of
the emissions source due to, for example, prevailing winds
or if the source is composed of two closely located power

plants. Since ∫
∞

�∞
∫
∞

�∞
f x; yð Þdxdy ¼ 1 , the parameter a

represents the total observed number of SO2 molecules near
the source. If SATSO2 is in DU, i.e., in 2.69 · 1026molecules
km�2, and σx, σy are in kilometers, then a is in 2.69 · 1026mole-
cules and related to the total mass by m=a ·M/NA, where M is
molecular weight of SO2 and NA is Avogadro’s number. The
fitting was done using satellite pixels centered within 200 km
from the source. This 200km radius is larger than the 40 and
60km used by Fioletov et al. [2011], as the sources discussed
here are larger, and therefore they produce elevated SO2 levels
at greater distances.

[32] Figure 8 shows scatter plots of total amount of SO2

near the sources from the four satellite data products for
2005–2007 and 2008–2010 periods expressed as total
number of molecules. The correlation coefficients between
estimates from SCIAMACHY and OMI, GOME-2 DLR
and OMI, and GOME-2 SAO and OMI are 0.91, 0.88, and
0.94, respectively, and the slopes of the regression lines are
0.73 ± 0.07 (95% confidence limits), 0.83 ± 0.09, and
0.91 ± 0.07, respectively. This shows a good quantitative
agreement between SO2 estimates from the three instruments
when local biases are removed. Since the values based on
OMI, SCIAMACHY, and GOME-2 data in Figure 8 are in
general agreement, they can be considered as independent
estimates of total mass that can be averaged to obtain a more
accurate emission value.
[33] The mass at each location, averaged over the four

products, was converted into an emission rate through an
empirical relationship. Using emissions data from the largest
U.S. individual sources, Fioletov et al. [2011] found a
correlation of 0.93 between OMI SO2 integrated around the
source and the annual SO2 emission rate for the sources

f x; yð Þ ¼ 1

2πσxσy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp � 1

2 1� ρ2ð Þ
x� μxð Þ2
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þ
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� �2
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�
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Table 1. List of Continuously Emitting Sources That Are Identifiable in OMI, SCIAMACHY, and GOME-2 SO2 Data Sets
a

# Latitude Longitude Source Type Source or Region Name Country
Emissions
2005–2007

Emissions
2008–2010

1 69.36 88.13 Smelter Norilsk Russia 2650 ± 610b 2270 ± 960b

2 46.83 74.94 Smelter Balqash Kazakhstan 620 ± 170 650 ± 120
3 44.67 23.41 Power Plants Rovinary, Turceni, Isalnita Romania 870 ± 130b 740 ± 130b

4 42.15 25.91 Power Plants Marica Bulgaria 600 ± 120
5 39.44 106.72 Multiple sources Shizuishan China 850 ± 410 860 ± 270
6 37.73 15.00 Volcano Mt. Etna Italy 940 ± 220b 1020 ± 190b

7 34.08 139.53 Volcano Miyake-jima Japan 830 ± 300b 650 ± 260
8 29.98 55.86 Smelter Sarcheshmeh Iran 500 450 ± 90
9 29.22 50.32 Oil industry Khark Island Iran
10 23.12 113.25 Multiple sources Guangdong China 1830 ± 240 1420 ± 170
11 20.63 39.56 Oil industry Shoaiba Saudi Arabia 1830 ± 340 1750 ± 90
12 20.05 �99.28 Industrial and Volcano Tula, Popocatepetl Mexico
13 19.48 �155.61 Volcano Kilauea, Hawaii U.S. 1490 ± 510 5850 ± 860
14 19.40 �92.24 Oil industry Oil fields in Gulf of Mexico Mexico 530 ± 180b 740 ± 240b

15 19.08 �104.28 Power Plant Manzanillo Mexico 640 ± 110 640 ± 110
16 16.72 �62.18 Volcano Soufrière Hills Montserrat (UK) 530 ± 150b 570 ± 90b

17 16.35 145.67 Volcano Anatahan Northern Mariana Islands 1280 ± 220b 490 ± 90
18 13.26 123.69 Volcano Mayon Philippines 680 ± 170 570 ± 240
19 1.68 127.88 Volcano Dukono Indonesia 670 ± 180 890 ± 170b

20 �1.41 29.20 Volcano Nyiragongo Democratic Republic of Congo 3020 ± 480b 2100 ± 320b

21 �4.08 145.04 Volcano Manam Papua New Guinea 1920 ± 640b 990 ± 320
22 �4.12 152.20 Volcano Turvurvur/Rabaul Papua New Guinea
23 �6.09 155.23 Volcano Bagana Papua New Guinea 2220 ± 460b 2040 ± 550b

24 �7.94 112.95 Volcano East Java Indonesia 2120 ± 390 1930 ± 390b

25 �8.27 123.51 Volcano Lewotolo Indonesia 1140 ± 170 850 ± 310
26 �16.25 168.12 Volcano Ambrym Vanuatu 3590 ± 390b 4460 ± 460b

27 �17.63 �71.34 Smelter and volcano Ilo, Ubinas Peru 3950 ± 430b 1860
28 �26.57 29.17 Power Plants South Africa 1920 ± 730 1960 ± 790

aEmission estimated are given in kT(SO2) per year. Note that fitting is done considering measurements within radius of 200 km and may contain more than
one source. If estimates from more than one source are available, the standard deviation of the available estimates is given after the “±” sign.

bEstimates where reduction of the fitting radius from 200 to 100 km resulted in more than 25% difference in estimated emissions possibly indicating
multiple sources.
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greater than 70 kT yr�1 and suggested a linear relationship
between OMI SO2 integrated around the source and the an-
nual SO2 emission rate reported by the U.S. power plants.
Since the same technique as in Fioletov et al. [2011] was
used here to calculate SO2 integrated around the source from
satellite data, we applied that linear relationship from
Fioletov et al. [2011] to estimate the emission rates for all
sources listed in Table 1.
[34] Table 1 lists the emission estimates for 2005–2007

and 2008–2010 that provide quantitative characteristics of
the changes in SO2 signals illustrated by Figures 3 and 4.
Note that on occasion the nonlinear fit 1 does not always con-
verge, and estimates for some of the sources are missing.
This occurs primarily when multiple sources are located
within the fitting area. If data from more than one data prod-
uct produce a reliable fit, estimates for individual data prod-
ucts are averaged and the mean value and the standard
deviation are reported in Table 1.
[35] The slope of the used linear emission-mass relation

suggested by Fioletov et al. [2011] (5 h) can be interpreted
as the effective SO2 summer (May–August) lifetime. A value
of τ = 5 h is on the low side as compared to other estimates as,
for example, Lee et al. [2011] suggested a summer lifetime
(not effective) closer to 13 h using the GEOS-CHEM model
and about 19 ± 7 h from in situ data. Observed SO2 lifetimes
over China were even longer, between 1 and 5 days in the
PBL and lower free troposphere. [Dickerson et al., 2007;
He et al., 2012; Li et al., 2010a, 2010b]. On the other hand,
the Fioletov et al. [2011] result is more representative of
the true (not effective) in-plume lifetime which can be as
short as 2.6 h under scattered clouds [Zhou et al., 2012]. It
is important to note that τ estimated with the method
presented here indirectly accounts for combined processes
of SO2 dispersion, dry and wet deposition, and chemical
conversion to sulfate aerosols, but it does not account for
residual SO2 below satellite detection limit. Thus, it may
underestimate integrated SO2 and, therefore, the estimated
lifetime. The results from Fioletov et al. [2011] are based
on data over the eastern U.S., but, if τ over a particular source
differs, this would create an additional error in the emission
estimates. This is especially relevant for volcanic sources that
emit SO2 into free troposphere. There are also seasonal and
latitudinal variations of τ. Recall, however, that most sources
discussed here are located between 30°S and 30°N, and that
winter data were excluded from the analysis for the

remaining sites. Thus, for the data analyzed here, it is reason-
able to assume that the τ is constant outside winter [see Lee
et al., 2011, Figure 2].
[36] It can also be seen from Table 1 that all sources are

fairly large, 300 kT yr�1 or more. This, in addition to the ex-
amples such as Megalopolis, suggests that SCIAMACHY
and GOME-2 DLR instruments are able to detect sources
that are 4–5 times larger than the 70 kTyr�1 limit for sources
seen by OMI. Of course, the exact emission levels are
subject of more accurate estimates of AMF and τ, but these
factors affect OMI, SCIAMACHY, and GOME-2 data in
the same way.
[37] An error budget for these emission estimates was

constructed, and the results are summarized in Table 2.
They are subject to uncertainties from three primary sources.
The first is the use of a constant AMF. Monthly SO2 AMFs
from Lee et al. [2009], calculated based on vertical profiles
from the GEOS-CHEM model [Bey et al., 2001], were
sampled at the locations in Table 1 and then averaged to
obtain annual values using the same seasonal and solar zenith
angle (SZA) criteria as the satellite data. The result is two
groupings of AMFs: one of smaller values which reflect
locations of elevated a priori SO2 in the boundary layer and
a second group of larger AMFs more representative of
background SO2 profile, suggesting that these are locations
for which emissions were underestimated (or zero) in the
GEOS-CHEM simulation. The second grouping is made up
primarily of volcanic sources but also two to three anthropo-
genic sources. The average departure of the first grouping
from the Lee et al. [2009] eastern U.S. summer AMF, which
should be representative of all locations, is 25%. This is taken
as the variability of the AMFs. There is also an uncertainty in
these AMFs from uncertainties in input parameters such as
profile shape, surface albedo, cloud fraction, and others. A
value of 30% for near-cloud-free conditions is also taken
from Lee et al. [2009].
[38] The second source of error is from the estimate of the

total SO2 mass as determined from the Gaussian fit. This is
quantified considering the statistical uncertainty, which
describes how well a 2-D Gaussian model describes the
distribution, and the sensitivity of the fit to some of the
chosen parameters such as fit radius. The statistical error
component is typically 10% for OMI and 25% for the two
other instruments. Thus, the combined uncertainty should
be no larger than 10%. Also contributing is the chosen fitting
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Figure 7. Map of SO2 sources listed in Table 1.
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Table 2. Uncertainty Budget for Emissions Estimate

Error Category Source Magnitude Note

Slant column density - Assumed small due to bias correction and averaging
Air mass factor Variability 25% Derived from Lee et al. [2009]

Uncertainty 30% Taken from Lee et al. [2009]
Mass Gaussian fit 10% Statistical error from Gaussian fit

Fit radius 25% From sensitivity study. Could be high if multiple sources
Lifetime Uncertainty in slope 10% Estimated from Fioletov et al. [2011]

Variability 30% Estimated from Lee et al. [2011]
Total 57%

Figure 8. Scatter plots of mean SO2 integrated near the sources (Table 1 and Figure 7) from OMI,
SCIAMACHY, and GOME-2 using the best fit by 2-D Gaussian function. Values on the axis are given
in number of molecules and in emission rates estimated for SO2 effective lifetime of 5 h assuming a con-
stant emission rate throughout the year. The estimates for 2005–2007 (blue) and 2008–2010 (red) are
shown. The error bars show the 95% confidence intervals. The correlation coefficient (R) and the slope
of the linear fit (S) are shown in the upper left corner of each plot.
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radius, R. The 2-D Gaussian fit should not depend on the
fitting radius R if R is large enough. The 2-D Gaussian
function is intended to describe distribution around a single
source. For many locations listed in Table 1, there is more
than one source within a 200 km radius of the fitting area,
and that may yield an unreliable fit. For some of the very
large single sources, elevated SO2 values are observed even
outside of 200 km area, and reduction of the fitting radius
yields underestimation of the emissions. The best area for
fitting can be determined on a case-by-case basis by removing
regions of secondary sources and including the entire area of
elevated SO2 values from primary sources. For this study,
however, the primary intent was to show that all four data
products produce similar results. Therefore, we included the im-
pact of the selection of the fitting radius as an additional uncer-
tainty factor in Table 2. Themean change in the emission values
for sources listed in Table 1 from a reduction of the fitting radius
from 200km to 100km is 25%. Estimates where such reduction
resulted in more than 25% difference are marked by the
superscripted b in Table 1.
[39] The final source of uncertainty is from the slope of the

linear relationship between integrated SO2 and emission in-
ventories (which can be interpreted as the SO2 removal rate).
It is important to note that this is the SO2 removal rate
obtained using well-characterized emission inventories and
OMI-derived values of SO2 mass [Fioletov et al., 2011].
Any systematic errors in the determination of SO2 (including
absorption cross-section, aerosols, etc.) would also affect the
mass estimates in the same way at the locations of interest in
this study and thus tend to cancel. In essence the Fioletov
et al. [2011] relationship represents a “calibration” of OMI.
As a result this uncertainty can be thought of as a combina-
tion of the statistical uncertainty of the linear fit, which is
small (<10%), and the variability in the SO2 removal rate
among the different locations which is assumed to be
primarily a function of latitude and season. The restriction
of measurements to SZA of 60° or smaller minimizes the
seasonal variation. Using results from Lee et al. [2011,
Figure 2], a value of 30% seems reasonable. The overall
balance of the various error contributions to the uncertainties
of estimated emissions is given in Table 2. The uncertainties
are rather large, totaling 57%, but mostly systematic, and
some of them can be reduced by more accurate model-based
AMF estimates or better fitting. There are, however, some
sources of uncertainty that are not addressed in Table 2.
Parameterization (1) works well for sites where local wind
speed is relatively low (with average speed below 5m/s),
but SO2 is dispersed more rapidly when the wind speed is
high and that is not well captured by parameterization (1).
It was also assumed that the emissions are constant through-
out the year. For example, seasonal variations in emissions
and cloud cover can potentially yield a bias in the estimates.
However, relative differences in emissions between two
time periods at the same location or among difference
sources but located at similar conditions should be
more reliable.

4. SO2 Observations Over China

[40] Elevated SO2 values over China are apparent in satel-
lite data from all four data products (Figure 1), although the
absolute values from OMI are very different from these from

SCIAMACHY and GOME-2 (see also Lee et al. [2009,
Figure 1]). Figure 9 shows maps of SO2 over major industrial
regions of China from all four data sets smoothed by a 60 km
radius window for different time intervals. Data for
December–February were excluded from the analysis in
order to avoid problems related to the difference in zenith
angles between the satellites and to the difference in snow
albedo. In addition, SO2 values over China in winter are
higher than in other seasons due to longer SO2 lifetime in
winter and possibly due to larger emissions from sources in
northern China required for winter heating. SO2 values over
China in spring, summer, and fall are more uniform, and
these three seasons were combined together.
[41] The local biases discussed previously are also apparent

in Figure 9. For example, negative SO2 values are seen over
eastern Mongolia in OMI data, as is the 0.5DU step at 30°N
over the East China Sea (seen also in Figure 1) related to the
change of ozone a priori vertical profiles. SCIAMACHY data
show SO2 values of 0.5–0.7DU over areas with no known
SO2 sources in Mongolia in 2008–2010 averages, while
GOME-2 data show elevated values over the same areas in
2007. Moreover, the highest SO2 from OMI are only about
70% of that of SCIAMACHY and GOME-2 over the same
regions. All of these suggest that some filtering procedure
should be applied before comparison of SO2 values from the
three satellites.
[42] The local bias correction described in section 3 is only

appropriate for local sources that create elevated SO2 levels
over a limited area and thus can be estimated by averaging
data from a “clean” ring located between 250 and 300 km
from the source. This is not the case for industrial areas in
China, where multiple sources yield high SO2 levels over
vast areas. Therefore, a different approach was used. As
before, we assume that the local bias is constant within a
circle with radius R. If we also assume that the measurements
have no noise, then the lowest value within that area is the
best representation of clean conditions and therefore that
value can be used as an estimate of the local bias. In the
presence of noise, however, the minimum value will be
smaller than the local bias and the difference depends on
the noise distribution. This provides some direction: the
low end of the SO2 distribution in the area can provide
information about the local bias.
[43] The observed values (Z) in the analyzed area can be

written in the form Z=M+X+Y, where: M is a constant
local bias, X is the noise that is normally distributed with
known variance σ2 and zero mean, and Y is the true SO2

value. We can assume that Y is always positive
(P(Y< 0) = 0), where P is probability. Also, we can assume
that there is a clean “area” P(Y= 0) = b, where b> 0 but
unknown and that X and Y are independent. Instead of the
minimum values, the estimates are based on tenth percentiles
since they can be estimated more accurately than extreme
values. We used p10(Z)� p10(X) as an estimate for M where
p10(X) and p10(Z) are the tenth percentiles of X and Z, respec-
tively. If b = 1, i.e., Y≡ 0, then the only difference between X
and Z distributions is the difference in mean value (0 and M,
respectively), i.e., p10(Z) = p10(X) +M. If, for example,
b = 0.2, i.e., there is a clean spot that covers only 20% of
the area, and Y is very large otherwise, then p10(Z) =M, be-
cause the median value over that clean spot corresponds to
tenth percentiles of Z. Thus, for the range of b values between
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0.2 and 1, p10(Z)� p10(X) always lies between M and
M� p10(X). For the normal distribution p10(X) =�1.3σ, that
means the accuracy of the estimate of M from Z depends on
the standard deviation of X.

[44] Information about the statistical characteristics of X
can be obtained from measurements over areas with no
SO2 sources, for example, over the Pacific. All calculations
were done on a monthly basis. A 0.1° by 0.1° grid was

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 DU

Figure 9. Average SO2 in DU over major industrial regions of China from OMI, SCIAMACHY, and
GOME-2 (DLR and SAO) data smoothed by 60 km radius window for different time intervals. Data for
December–February were excluded from the analysis.
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established, and for each grid point all pixels from a partic-
ular month centered within a radius r were averaged. Then,
statistical characteristics of the obtained averages were
calculated for 5° by 5° cells. Standard deviations calculated
for clean cells were used then as values for σ. Values of

σ increase slightly with latitude, and so a linear dependence
of σ was assumed. For r = 60 km (as was used for Figure 9),
the values of σ are typically between 0.05 DU and 0.1 DU
for OMI and between 0.07 DU and 0.13DU for the two
other instruments. OMI values increased slightly with time

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 DU

Figure 10. The same as Figure 9, but with the local bias removed by the filtration procedure described in
the text.
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because of reduced sampling due to the row anomaly.
Thus, the p10(X) value was typically less than 0.2 DU
suggesting the uncertainty in the estimates of M is
noticeably less than the 0.5–0.7 DU biases discussed in
the beginning of this section.

[45] The value of R needs to be determined in order to
apply the suggested filtration procedure. The larger the R
value, the more likely that we can find a spot with no SO2,
but then it is less likely that the local bias is indeed uniform
within the area. However, R values should not be above

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 DU

Figure 11. The difference between data shown in Figures 9 and 10, i.e., the estimated local biases in
satellite data in DU.
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~1000 km; otherwise inhomogeneity in ozone distribution
could interfere with SO2 retrievals, thus assuring that bias
will vary within R. A value of 700 km was used for
Figures 10 and 11. The selection of the parameters for the
filtration procedure R, r, as well as the use of tenth percentile
are rather subjective, and more validation should be done in
order to find the “optimal” values, but as our main goal here
is to show that data from different satellite instruments pro-
duce similar results if they are processed in the same way,
this lies beyond the scope of this work.
[46] The corrected data are shown in Figure 10, and the

background values or the difference between the original
and corrected data are in Figure 11. The filtration procedure
largely removes the differences between the four data prod-
ucts. The corrected data also show a decline in SO2 between
2005–2008 and 2007–2010 reported in the literature [Li
et al., 2010a, 2010b]. This is further illustrated in
Figure 12, which shows the annual mean values calculated
from all SO2 measurements (with data filtering applied as de-
scribed in section 2) over an area (34°N–38°N, 112°E–118°
E) with some of the highest SO2 levels in China. While four
data sets show a maximum in 2007, the absolute values are
very different, with 1.7DU from OMI and about 2.5DU

from SCIAMACHY and GOME-2. This difference is largely
caused by difference and variations of background levels.
They are relatively small for OMI, but they are as large as
0.7DU for the two other instruments.
[47] The patterns and absolute levels of the background

values (Figure 11) are nearly identical for the two intervals
for OMI but different for the three other data products.
Large negative values in GOME-2 DLR background values
are located in the areas of high elevation (Tibet) and are likely
related to the problems in the retrieval algorithm since other
satellite data sets do not display the same behavior. The
OMI background values (Figure 11) show a clear step change
at 30°N related to the change of a priori ozone profiles in the
current SO2 algorithm. If a priori ozone profiles have such
large impact on background levels, it can be expected that ac-
tual variation in the vertical ozone distribution also affect the
retrieved SO2. China is located in the region of a very strong
latitudinal gradient in total ozone, particularly in spring [e.g.,
Fioletov, 2008], and therefore there is a large variability in
the ozone distribution. Difference in the ozone profile sensi-
tivity of the retrieval algorithms between OMI and the two
other instruments may explain the observed difference in
the background values between them. However, we were
not able to establish a link between ozone variations and
background SO2. Figure 11 also shows that significant longi-
tudinal structure exists in these biases, confirming the suspi-
cion from Lee et al. [2009] that a simple latitude-based bias
correction may be insufficient.

5. Summary and Discussion

[48] Averaging a large number of individual satellite pixels
together with a local bias correction (i.e., low and high spatial
frequency filtration) was applied to OMI, SCIAMACHY,
and GOME-2 satellite SO2 measurements to detect and study
long-term changes in natural and anthropogenic SO2 sources.
About 30 continuously emitting, localized sources, detect-
able by all three instruments, were found. Some of these
sources, e.g., Norilsk, Russia, were previously detected in
satellite data; the others, e.g., the oil fields in the Gulf of
Mexico, were reported from satellite SO2 measurements for
the first time. Moreover, detailed or recent emission informa-
tion is not always available for some of these sources.
Therefore, their detection and estimate of their emissions rep-
resents a significant practical application of satellite
SO2 measurements.
[49] All four data products also demonstrate high regional

SO2 values over industrial regions of China. However these
large values are partially caused by local biases. A spatial fil-
tration procedure was developed to separate background SO2

that is largely artificial from small-scale local SO2 enhance-
ments caused by pollutions. The observed SO2 values were
then corrected by removal of the background levels. The
corrected SO2 values show very similar patterns and absolute
values for all four data products, while the removed back-
ground levels and patterns are very different.
[50] The influence of ozone variations of SO2 retrievals

and changes in instrument characteristics cause local biases
in the retrieved SO2 values from satellite instruments. Such
local biases persist over vast (on a scale of thousands of
kilometers) areas; therefore, great care should be taken before
these data are utilized, for example, by assimilation in air
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quality forecast models. Even the largest individual sources pro-
duce elevated long-term SO2 values on a local scale of just sev-
eral tens of kilometers. Therefore, even over regional polluted
area with many sources (e.g., eastern China) there will be some
relatively clean locations where pollution levels are close to
background. This difference in scale between pollution sources
and the background can be exploited in order to make use of
spatial filtering to isolate and better quantify point sources.
[51] The validity of this approach is demonstrated by the

good quantitative agreement between SO2 estimates from
the three instruments when local biases are removed. The
correlation coefficients between estimates of total amount
of SO2 near the sources from SCIAMACHY and OMI,
GOME-2 DLR and OMI, and GOME-2 SAO and OMI are
0.91, 0.88, and 0.94, respectively, and the slopes of the re-
gression lines are 0.73 ± 0.07 (95% confidence limits),
0.83 ± 0.09, and 0.91 ± 0.07, respectively.
[52] A better spatial resolution (i.e., smaller pixel size) and

sampling makes OMI better suited for detecting SO2 sources
compared to the two other instruments. While OMI can
detect sources that emit 70 kT yr�1 or more, the sensitivity
limit of SCIAMACHY and GOME-2 DLR is likely above
the 300 kT yr�1 level. Thus, this comparison suggests it is
the 4–5 times better spatial resolution that gives OMI this
advantage, although other factors such as the signal-to-noise
ratio and higher sampling also contribute to a better OMI
performance. This further suggests that the Tropospheric
Monitoring Instrument (TROPOMI), the next generation of
polar-orbiting atmospheric composition instruments (http://
www.tropomi.eu/TROPOMI/Instrument.html), with pixels
size of 7 × 7 km2 at nadir [Veefkind et al., 2012], i.e., with
~8 times smaller pixel size than that for OMI, should be able
to detect sources that emit 10 kT yr�1 or even less, although
this would also depend on other instrument characteristics
such as the signal-to-noise ratio. This limit could be even
lower for future geostationary satellite instruments such as
Geostationary Coastal and Air Pollution Events UV imaging
spectrometer [Fishman et al., 2012] due to their much more
frequent observations. For example, the recently selected
geostationary mission, Tropospheric Emissions: Monitoring
of Pollution (TEMPO), will take measurements hourly at a
spatial resolution of ~2.0 km× 4.5 km at the center of
continental U.S. beginning no later than 2020 (http://www.
cfa.harvard.edu/atmosphere/TEMPO/).
[53] It should be noted that SCIAMACHY and GOME-2

DLR algorithms are largely designed to detect volcanic plumes
in near real time, for example, to provide data to the Support to
Aviation Control Service (SACS) hosted by the Belgian
Institute for Space Aeronomy (http://sacs.aeronomie.be). The
more complex and sophisticated but computationally expensive
GOME-2 SAO algorithm processes data “off-line.” It has a
better SNR than GOME-2 DLR and therefore suggests the
smaller SO2 emission sources can be monitored. Nevertheless,
the majority of individual sources detectable from OMI data
are below the detectability limit when GOME-2 SAO data
product is used. It is also expected that more sophisticated
algorithms [Yang et al., 2010] can be used to process OMI data
in the future that can further improve the SO2 emission
monitoring capabilities of the OMI instrument.
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