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ABSTRACT

Gamma-ray binaries are stellar systems for which the spectral energy distribution (discounting the thermal stellar
emission) peaks at high energies. Detected from radio to TeV gamma rays, the γ -ray binary LS I + 61◦303 is highly
variable across all frequencies. One aspect of this system’s variability is the modulation of its emission with the
timescale set by the ∼26.4960 day orbital period. Here we show that, during the time of our observations, the γ -ray
emission of LS I + 61◦303 also presents a sinusoidal variability consistent with the previously known superorbital
period of 1667 days. This modulation is more prominently seen at orbital phases around apastron, whereas it does
not introduce a visible change close to periastron. It is also found in the appearance and disappearance of variability
at the orbital period in the power spectrum of the data. This behavior could be explained by a quasi-cyclical
evolution of the equatorial outflow of the Be companion star, whose features influence the conditions for generating
gamma rays. These findings open the possibility to use γ -ray observations to study the outflows of massive stars in
eccentric binary systems.
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1. INTRODUCTION

LS I + 61◦303 is one of the few X-ray binaries that have been
detected from radio to TeV gamma rays (see Albert et al. 2006
and references therein). It is perhaps the most intriguing one
due to the high variability and richness of its phenomenology
at all frequencies. LS I + 61◦303 consists of a Be star of
approximately 10 solar masses and a compact object. Be stars
are rapidly rotating B-type stars showing hydrogen Balmer lines
in emission in the stellar spectrum, and which lose mass to an
equatorial circumstellar disk. The nature of the compact object
in LS I + 61◦303 has been much debated over the past few
years: pulsar wind interaction (see, e.g., Maraschi & Treves
1981; Dubus 2006; Zamanov et al. 2001; Torres et al. 2012) and
microquasar jets (see Bosch-Ramon & Khangulyan 2009 for a
review) have been proposed as the origin of the non-thermal
emission. The recent detection of two short (<0.1 s), highly
luminous (>1037 erg s−1), thermal flares (Papitto et al. 2012)
have given support to the hypothesis that the compact object
in LS I + 61◦303 is a neutron star, for only highly magnetized
neutron stars have been found to behave in this way.

The flux of LS I + 61◦303 is seen to be modulated by
the orbital period of 26.4960 days (Gregory 2002) at most
wavelengths, including at high energies (Torres et al. 2010;
Zhang et al. 2010; Abdo et al. 2009; Albert et al. 2008). Orbital
modulation of the GeV flux can be understood as a consequence
of changing conditions for generation and absorption of gamma

57 Resident at Naval Research Laboratory, Washington, DC 20375, USA.
58 Royal Swedish Academy of Sciences Research Fellow, funded by a grant
from the K. A. Wallenberg Foundation.
59 NASA Postdoctoral Program Fellow, USA.
60 Funded by a Marie Curie IOF, FP7/2007-2013, grant agreement
No. 275861.
61 National Research Council Research Associate.
62 Funded by contract ERC-StG-259391 from the European Community.

rays, which are mostly determined by the orbital geometry;
e.g., the viewing angle to the observer and the position of the
compact object with respect to the stellar companion. Unless
other physical conditions change, we do not expect long-term
variability of the emission level at a fixed orbital configuration.
In order to investigate LS I + 61◦303’s variability, we analyzed
Fermi-Large Area Telescope (LAT) data from the beginning of
scientific operations on 2008 August 4 until 2013 March 24. We
report on the results in this Letter.

2. DATA ANALYSIS

We used the LAT Science Tools package (v9r30), which is
available from the Fermi Science Support Center, as is the LAT
data, together with the P7v6 version of the instrument response
functions. Only events passing the Pass 7 “Source” class cuts are
used in the analysis. All gamma rays with energies >100 MeV
within a circular region of interest (ROI) of 10◦ radius centered
on LS I + 61◦303 were extracted. To reduce the contamination
from Earth’s upper atmosphere time intervals when the Earth
limb was in the field of view were excluded, specifically when
the rocking angle of the LAT was greater than 52◦ or when
parts of the ROI were observed at zenith angles >100◦. The
γ -ray flux of LS I + 61◦303 plotted in the light curves of this
work are calculated by performing the binned or the unbinned
maximum likelihood method, depending on the statistics, by
means of the Science Tool gtlike. The spectral–spatial model
constructed to perform the likelihood analysis includes all the
sources of the second Fermi-LAT point-source catalog (Nolan
et al. 2012; hereafter 2FGL) within 15◦ of LS I + 61◦303. The
spectral parameters were fixed to the catalog values, except
for the sources within 3◦ of LS I + 61◦303. For these latter
sources, the flux normalization was left free. LS I + 61◦303 was
modeled with an exponentially cut off power-law spectral shape.
All its spectral parameters were allowed to vary (see Hadasch
et al. 2012 for further details). The models adopted for the
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Figure 1. Gamma-ray flux from LS I + 61◦303 folded on the orbital period. The data are repeated over two cycles for clarity. Photons with energies above 100 MeV,
as measured by Fermi-LAT, are considered. The measurements cover the period from 2008 August 4 to 2013 March 24, from the top left panel to the bottom right.
Each panel spans an equal interval of 169.2 days. The position of periastron and apastron are marked with dashed vertical lines (the ephemeris of Aragona et al. 2009
is used). The two background colors correspond to the periastron (orbital phases 0.0–0.5) and apastron (orbital phases 0.5–1.0) regions of the orbit.

(A color version of this figure is available in the online journal.)

Galactic diffuse emission (gal_2yearp7v6_v0.fits) and isotropic
backgrounds (iso_p7v6source.txt) were those recommended by
the LAT team.63

Systematic errors mainly originate in the uncertainties in the
effective area of the LAT, as well as in the Galactic diffuse
emission model. The current estimate of the uncertainties of
the effective area is 10% at 100 MeV, decreasing to 5%
at 560 MeV and increasing to 10% at 10 GeV and above.
We assume linear extrapolations, in log space, between the
quoted energies. The systematic effect is estimated by repeating
the likelihood analysis using modified instrument response
functions that bracket the “P7SOURCE_V6” effective areas.64

Specifically, they are a set of instrument response functions
in which the effective area has been modified considering its

63 A description of these models is available from the Fermi Science Support
Center: http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html.
64 The released Pass 7 Instrument Response Functions are documented here:
http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm.

uncertainty as a function of energy in order to maximally affect
a specific spectral parameter. In order to conservatively take
into account the effect due to the uncertainties of the Galactic
diffuse emission model, the likelihood fits are repeated changing
the normalization of the Galactic diffuse model artificially by
±6%. We have found flux systematic errors (for energies above
100 MeV) on the order of 9%, similar to the ones reported in
Hadasch et al. (2012).

3. RESULTS

Figure 1 shows the orbitally folded light curve of LS I
+ 61◦303 from 2008 August 4 to 2013 March 24. It shows a
trend for the maximum of the γ -ray emission to appear near
periastron (phases around 0.3), as in Hadasch et al. (2012), and
significant γ -ray flux variability at fixed orbital phases.

We explore the possibility that the observed long-term
γ -ray variability could be related to the superorbital period of
1667 ± 8 days as reported in radio and optical frequencies

3
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Figure 2. Long-term evolution of the average γ -ray flux (above 100 MeV) from
LS I + 61◦303 (blue points, left y-axis scale). The superorbital phase is shown
in the top axis. The right y-axis scale and the black dashed points show the long-
term evolution of the power at the orbital period found in the Lomb–Scargle
periodogram.

(A color version of this figure is available in the online journal.)

(Gregory 2002). A variability signature with this period was
also found along several years of X-ray observations (Li et al.
2012; Chernyakova et al. 2012). Figure 2 shows the long-term
evolution of the average γ -ray flux; we use the superorbital pe-
riod of Gregory (2002) to translate time to superorbital phase.
The probability that this evolution is a random result out of a
uniform distribution is <1.1 × 10−12 (χ2, ndf = 75.8, 9).

To check for a possible long-term modulation of the γ -ray
flux at any orbital configuration, we have separated the data
in orbital bins, and plotted the fluxes against the superorbital
phase, as shown in Figure 3. The black line in each of the panels
of Figure 3 represents a sinusoidal function fit to the data points.
The period of this function has been kept (in all panels) at the
value of the superorbital period found in radio (1667 days).
Thus, the function we use to fit the data has three parameters:
average flux level, amplitude, and phase. We have also fitted a
constant line for comparison.

Table 1 shows the quality of the fitting results corresponding
to Figure 3. It has the following columns: the system’s orbital
phase, the corresponding χ2 and degrees of freedom (dof) as
well as the probability that the data are described by either
a constant or a sinusoidally varying flux, and finally the
probability that the improvement found when fitting a sinusoid
instead of a constant is produced by chance. To obtain the latter,
we consider the likelihood ratio test (Mattox et al. 1996). The test
is performed by computing the ratio 2×Δlog(likelihood) for the
two hypotheses (constant and sinusoidal) and assuming that, for
a chance coincidence, the ratios are χ2-distributed according
to the difference in the dof between the two hypotheses.
Thus, if the hypothesis of a constant is true, the likelihood
ratio R = −2 ln(L(constant)/L(sine)) is approximately χ2-
distributed with 2 dof. The probability that one hypothesis is
preferred over the other is defined as P = ∫ Rmeas

0 p(χ2)dχ2

where p(χ2) is the χ2 probability density function and Rmeas the
measured value of R. The constant hypothesis will be rejected
(and the sinusoidal will be accepted) if P is greater than the
confidence level, which is set to 95%. In Table 1, the last column
states the probability that the fit improvement (of a sine over a
constant) is happening by chance (thus, 1 − P ).

Table 1 also shows the sinusoidal fit parameters correspond-
ing to the right-hand panels of Figure 3. The functional form of
the fit is F0 + A × sin((t − T0)/T − φ) × 2π ). Here, T0 and T
are the zero time (T0 = MJD 43366.275) and the period (always
kept fixed at 1667 days in all panels) of the superorbit, respec-
tively (both as in Gregory 2002), t is the time, F0 is the average
flux level, A is the amplitude, and φ represents the phase shift
in the superorbit. The choice of a sinusoidal function for fitting
the data is not based on any a priori physical expectation; the
superorbital variability could be periodic but have a different
shape. However, any periodic function could be described by a
series of sines. Thus, fitting with just one sinusoidal function as
done above is motivated by the relatively low number of data
points.

No strong variability is found at orbital phases 0.0–0.5, while
it is clearly present in the range 0.5–1.0. Concurrently, data at
the orbital phases 0.0–0.5 are not significantly better represented
by a sine than by a constant. However, this is not the case
for the data at the orbital phases 0.5 to 1.0. The probability
that the sinusoidal fit improvement occurs by chance is less
than 1.0 × 10−7 at orbital phases 0.5–0.6, 0.6–0.7, 0.8–0.9, and
0.9–1.0; and 1.4 × 10−5 at orbital phases 0.7–0.8. Whereas the
sinusoidal variation is always a better fit in this part of the orbit,
the amplitude of the fit is maximal in orbital phases before and
after the apastron.

In order to test for the appearance/disappearance of the or-
bital signature in gamma rays, we subdivided the data into the
same time intervals of Figure 1 and applied the Lomb–Scargle
periodogram technique (Lomb 1976; Scargle 1982) to each of
them. To calculate the power spectrum the event selection was
restricted to a ROI of 3◦ radius centered on LS I + 61◦303. The
selected events were used to create a light curve of weighted
counts over exposure with equally spaced time bins of 2.4 hr
width. The weight associated to each event corresponds to the
probability that the γ -ray was emitted by LS I + 61◦303, rather
than by nearby sources or has a diffuse origin. The weights are
calculated using the Science Tool gtsrcprob, adopting the best
spectral–spatial models obtained by the binned likelihood fits
described in the previous section. Before calculating the power
spectrum, we also applied to the light curve the exposure weight-
ing described in Corbet et al. (2007). Figure 4 shows the power
spectra calculated in each of the time intervals. The vertical line
marks the orbital period (as in Gregory 2002). The y-axis in
the periodograms is given in average power units, which con-
verts the original spectrum in units of (photons cm−2 s−1)2 by
normalizing it with the average of the power over all the fre-
quencies 〈P 〉. In this way, the units are directly linked to the
significance of the peak, which for a peak of power P̄ is com-
puted as Prob(P > P̄ ) = exp (−P̄ /〈P 〉) (Scargle 1982). These
average power values are plotted in Figure 2. A significant peak
is detected at the orbital period, but not in all time intervals. Note
that in some of the panels of Figure 4 there appears to be a shift
of the 26.5 day peak, even though it is within the fundamental
frequency (1/Tobs) of the orbital period. A claim that the period
shift of these peaks is significant would then imply a severe over-
sampling of the Fourier resolution, which for the duration of this
dataset is 3.84 days. The shifted peaks are not significant either
in the single-trial (looking for an specific frequency) or in the
all-trials probability analysis of these power spectra. Thus, we
have now found that along the time covered by our observations,
the power spectrum peak at the orbital period is significant only
at superorbital phases ∼0.5–1.0. At other superorbital phases,
the peak is absent or has a significance less than 3σ .
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Figure 3. Evolution of the γ -ray flux (above 100 MeV) from LS I + 61◦303 at fixed orbital phases as a function of the superorbital phase. The data points are repeated
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data are compatible with no superorbital variability beyond 3σ .). The right panels, instead, are regions close to apastron. The black line in each of the panels is a
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(A color version of this figure is available in the online journal.)

4. DISCUSSION

Over the last two decades, systematic monitoring of many
Be X-ray systems allowed the discovery of many cases of
superorbital cycles (see, e.g., Alcock et al. 2001; Rajoelimanana
et al. 2011). Thus, in order to connect the discovered γ -ray
observational pattern to conditions that vary over the superorbit,
a quasi-cyclical expansion and shrinking of the circumstellar
disk of a Be star may offer an alternative (e.g., Negueruela
et al. 2001). The sizes of the stellar disks of Be stars are
hypothesized to correlate with the equivalent width (EW) of the
Hα emission line (e.g., Grundstrom et al. 2006). In the longest
running campaign observing LS I + 61◦303 the maximum
of the Hα EW has been found in a broad region around
superorbital phase 0.2 (see Zamanov et al. 1999; Zamanov
& Martı́ 2000 and references therein). Thus, the X-ray (Li
et al. 2012) as well as the γ -ray emission are enhanced at
superorbital phases where maximal values of the Hα EW have
been measured. Concurrently, the power spectrum peak at the
orbital period is less significant. This suggests that the disk

may play a role in modulating both the gamma and the X-ray
signals.

From the results in Figure 3, one may conclude that in
the periastron region, when the emission from the system is
subject to essentially no superorbital variability, the conditions
for the generation of gamma rays in the GeV range must not
significantly change. We can thus assume that the compact
object could be inside or severely affected by the Be disk matter
when it is closer to the companion star (i.e., at orbital phases
0.0–0.5), for all superorbital phases. If this is the case, even when
the EW of the Hα line (and thus the radius within which the disk
influences) changes by a factor of a few along the superorbital
period,65 this does not necessarily imply a significant change
in the γ -ray modulation above the sensitivity of Fermi-LAT

65 The mass-loss rate variations from the Be star in LS I + 61◦303 were
estimated as the ratio between maximal and minimal values of its radio
emission (a factor of ∼5 was determined by Gregory et al. 1989; Gregory &
Neish 2002) or its Hα measurements, which span factors of ∼1.5–5 (Zamanov
et al. 1999, 2007; Grundstrom et al. 2007; Mc Swain et al. 2010).
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Figure 4. Periodogram of the γ -ray data for different time intervals. The dashed line marks the orbital period of LS I + 61◦303.

(A color version of this figure is available in the online journal.)

Table 1
Quality of the Fitting Results Corresponding to Figure 3 (Top Panel) and Sinusoidal Fitting Parameters for the Flux Near Apastron (Bottom Panel)

Orbital χ2, ndf Constant Fit χ2, ndf Sine Fit Prob. Improvement
Phase (constant) Probability (sine) Probability by Chance

0.0–0.1 10, 9 3.2 × 10−1 10, 7 1.9 × 10−1 1.0
0.1–0.2 13, 9 1.8 × 10−1 12, 7 1.1 × 10−1 1.0
0.2–0.3 27, 9 1.4 × 10−3 26, 7 5.0 × 10−4 0.7
0.3–0.4 13, 9 1.6 × 10−1 8, 7 3.6 × 10−1 7.0 × 10−2

0.4–0.5 15, 9 9.9 × 10−2 6, 7 5.4 × 10−1 1.2 × 10−2

0.5–0.6 84, 9 2.8 × 10−14 23, 7 2.0 × 10−3 <1.0 × 10−7

0.6–0.7 50, 9 8.1 × 10−8 10, 7 2.2 × 10−1 <1.0 × 10−7

0.7–0.8 41, 9 6.1 × 10−6 18, 7 1.0 × 10−2 1.4 × 10−5

0.8–0.9 100, 9 2.4 × 10−17 8, 7 3.0 × 10−1 <1.0 × 10−7

0.9–1.0 50, 9 9.1 × 10−8 10, 7 2.2 × 10−1 <1.0 × 10−7

Orbital F0 A φ

Phase (10−6 photons cm−2 s−1) (10−6 photons cm−2 s−1)

0.5–0.6 1.00 ± 0.03 0.25 ± 0.03 0.87 ± 0.03
0.6–0.7 0.85 ± 0.02 0.20 ± 0.03 0.90 ± 0.02
0.7–0.8 0.78 ± 0.02 0.15 ± 0.03 0.79 ± 0.03
0.8–0.9 0.72 ± 0.03 0.26 ± 0.03 0.92 ± 0.03
0.9–1.0 0.73 ± 0.02 0.17 ± 0.03 0.02 ± 0.04

when the compact object is near periastron. However, in a two-
component model typically assumed for Be stellar winds (an
equatorial wind generating the disk, and a polar outflow), the
conditions in the apastron region (e.g., the pressure exerted by

the wind, or the mass gravitationally captured by the compact
object) could change by more than three orders of magnitude
if one or the other component dominates (see, e.g., Gregory
& Neish 2002 and references therein). In such a case, it is

6
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reasonable to suppose that the GeV emission would be affected
at an observable level.

We note from Figure 3 that between the orbital phase ranges
0.9–1.0 and 0.0–0.1 there is a significant change of the long-
term behavior of the γ -ray emission. Closer to periastron the
flux evolution flattens. We can then estimate the radius at which
the matter in the disk of the Be star produces a stable influence
with time by computing the system separation at orbital phase
∼0.1. Using the ephemeris given by Aragona et al. (2009), we
obtain a separation of ∼9Rs , where Rs is the stellar radius of
the Be star. On the other hand, from the fact that the maximal
amplitude of the superorbital variability is before and after the
apastron of the system, the system separation at orbital phases
0.7 and 0.9 (∼13Rs) could also have a physical meaning. It is
a qualitative upper limit to the influence of the matter in the
equatorial outflow when maximally enhanced by the long-term
change of the stellar mass-loss rate.

The ratio between what appears to be the maximal and
the stable radii of influence of the disk matter is consistent
with a possible increase of the EW of the Hα line. Outer
radii of disks in binaries are expected to be truncated by the
gravitational influence of their compact companions; at the
periastron distances in systems of high eccentricity, and by
resonances between the orbital period and the disk gas rotational
periods in the low-eccentricity systems (Okazaki & Negueruela
2001). LS I + 61◦303 is a system between these two cases. The
effects of the Be star’s rotation, which have only recently started
to be taken into account, may modify this conclusion, predicting
disk sizes in excess of 10 Rs (Lee 2013). Assuming the relation
between disk size and the EW of the Hα by (Grundstrom et al.
2006), and not taking into account rotation effects, typical values
of the EW of LS I + 61◦303 would lead to an estimation of the
disk radius of the order of the periastron distance (Grundstrom
et al. 2007). Simulations indicate that tidal pulls at periastron
can lead to the development of large spiral waves in the disk
that can extend far beyond the truncation radius and out to the
vicinity of the companion (see, e.g., Okazaki & Negueruela
2001), promoting accretion (Grundstrom et al. 2007). The
γ -ray data apparently provide a window to infer the extent of
these waves.

Depending on the period and dipolar magnetic field, a highly
magnetized neutron star can transition between states along the
orbital evolution of LS I + 61◦303, changing its behavior from
propeller (near periastron) to ejector (near apastron) along each
orbit (Zamanov et al. 2001; Torres et al. 2012; Papitto et al.
2012). These changes of state can be affected by the superorbital
variability, since for a larger disk-influence radius, the system
will remain in the same environment for a longer time (Papitto
et al. 2012). The orbital variability is consequently reduced,
leading to the disappearance of the orbital peak in the power
spectrum (Torres et al. 2012). The data presented in this report

will put the details of this model to the test while opening the
γ -ray window for studying the disks of Be binaries.
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