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Abstract. A stereo correlation method on the object domain is proposed to generate 
the accurate and dense Digital Elevation Models (DEMs) from lunar orbital imagery. 
The NASA Ames Intelligent Robotics Group (IRG) aims to produce high-quality 
terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data. In 
particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), 
to automatically generate DEMs from consecutive AMC image pairs. Given camera 
parameters of an image pair from bundle adjustment in ASP, a correlation window is 
defined on the terrain with the predefined surface normal of a post rather than image 
domain. The squared error of back-projected images on the local terrain is minimized 
with respect to the post elevation. This single dimensional optimization is solved 
efficiently and improves the accuracy of the elevation estimate. 

1. Introduction 

Topographical maps are an essential tool for scientists interested in exploring and learning 
more about planetary bodies like the moon or mars. These maps allow scientists do 
everything from identifying geological phenomena to identifying potential landing sites for 
probes or spacecraft. 

Satellites and other spacecraft that visit planetary bodies of interest are usually equipped 
with a variety of sensors, some of which can be used to recover the topography of the 
planetary surface. LiDAR (Light Detection And Ranging) sensors give sparse (but highly 
accurate) measurements at periodic points called “posts.” Raw images that are captured as 
the satellite orbits the planetary body can also be processed to create highly detailed 
topographical maps. By registering and aligning these two data sets, maps can be created 
that are both dense and accurate. 

Given two images of the same scene taken from slightly different perspectives, the 
relative shift of objects from frame to frame (known as “disparity”) is related to distance of 
the object: far objects appear to move less than close objects. This phenomenon should be 
familiar, since the human brain uses this relationship to create depth perception from the 
differences in perspective seen by both eyes. Similarly, depth information from orbital 
imagery can be recovered in areas where the images overlap by matching points in the 
images that correspond to the same 3D location and measuring their disparity. By using the 
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The Ames Stereo Pipeline (ASP) is the stereogrammetric platform that was designed to 
process stereo imagery captured by NASA spacecraft and produce cartographic products 
since the majority of the AMC images have stereo companions [10][18]. The entire stereo 
correlation process, from an image pair to DEM, can be viewed as a multistage pipeline 
(Figure 2). At the first step, preprocessing includes the registration to align image pairs and 
filtering to enhance the images for better matching. Triangulation is used at the last step to 
generate a DEM from the correspondences. 
 

2.1. Bundle Adjustment 
Before stereo correlation is performed, Bundle Adjustment (BA) corrects the 

three-dimensional postures of cameras and the locations of the objects simultaneously to 
minimize the error between the estimated location of the objects and their actual location in 
the images. Camera position and orientation errors affect the accuracy of DEMs produced 
by the ASP. If they are not corrected, these uncertainties will result in systematic errors in 
the overall position and slope of the DEMs. BA ensures that observations in multiple 
different images of a single ground feature are self-consistent. 

In BA the position and orientation of each camera station are determined jointly with the 
3D position of a set of image tie-points points chosen in the overlapping regions between 
images. Tie-points are automatically extracted using the SURF robust feature extraction 
algorithm [14]. Outliers are rejected using the random sample consensus (RANSAC) 
method [15]. The BA in ASP determines the best camera parameters that minimize the 
reprojection error [16]. The Levenberg-Marquardt algorithm is used to optimize the cost 
funciton [17]. 

 

Figure 2: Dataflow of the Ames Stereo 
Pipeline. Preprocessing includes the 
registration and filtering of the image pair. 
A stereo correlator (disparity initialization 
and sub-pixel refinement) constructs the 
disparity map based on normalized cross 
correlation. DEMs are generated by a 
triangulation method in which corrected 
camera poses are used by bundle 
adjustment. 
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representation. To model lunar reflectance, we propose to use a linear reflectance 
approximation. The statistical behavior of the photons is model by the normal distribution 
to derive the cost function that compares the two view windows. The proposed method will 
replace the pair-wise sub-pixel refinement and triangulation currently used in ASP. 

A linear approximation of the lunar terrain and reflectance simplifies the correlation 
function. The lunar surface is smooth, but not flat (Figure 5a) and has its own reflectance 
(Figure 5c). The terrain is assumed to be locally planar because the correlation patches are 
determined to be small enough to cover the planar region (Figure 5b). Similarly, the lunar 
reflectance is assumed to be locally linear because geometric and photometric changes are 
small enough to form a linear relationship (Figure 5d). 
A planar approximation of the terrain provides a homography representation of two-view 
correspondences. Suppose we have a textured plane that approximates the local terrain 
(Figure 7). Let π  be the surface plane with the normal vector n

 

 and distance d  from the 
origin, i.e., : T dπ =n x . Let I  be the orbital image and f  be the orthographic image of 
I  onto π . The surface albedo having linear relationship with I , i.e., ( ) ( )f b cI= +z z  
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(c) Lunar reflectance (d) Linear reflectance 

Figure 5: Linear Approximation of Lunar Terrain and Reflectance. (a) Smooth local 
terrain in a small field of view is approximated by (b) planar one. (c) The lunar 
reflectance model is approximated by a linear function. (d) The linear reflectance is a
linear function of surface albedo (A). 
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where ( ) ( )i i i if b c I= +z z , b  and c  are coefficient vectors of linear reflectance, and 
( )*g〈•〉 = •τ τ  is the local Gaussian convolution operator. The optimizer of (1) may not 

exist in a closed form, but some parameters are simply optimized from the other parameters. 
To minimize the squared error, we propose to employ an alternating optimization scheme. 
First, we solve for b  and c  because there is a closed-form solution given d  in (1). Then 
we solve for d  in (1), while keeping surface albedo constant with the solutions from 
(1).The initialized disparity maps from ASP can be used to calculate the initial value of d . 

4. Experimental Results 

The orthographic stereo correlator is implemented based on the NASA Vision Workbench 
(VW). The NASA VW is a general purpose image processing and computer vision library 
developed by the IRG at the NASA Ames Research Center. The linear reflectance 
coefficients are estimated in the nested optimization process. Since this is a single 
dimensional optimization with respect to the elevation, we adopted a hybrid golden section 
and parabolic interpolation method. Figure 6 shows an image pair from Apollo metric 
images. A Gaussian window with scaling factor 5 is used for correlation window by 33*33 
pixels. Back-projected images are generated from an image pair with bicubic interpolation. 
The surface normal is determined by the radial direction of the local terrain because the 
lunar terrain is smooth enough. 
Figure 8a shows a stereo DEM constructed from integer disparity map. We can observe the 
pixel locking effect in the initial DEM with many holes. With this initial DEM, a refined 
DEM is reconstructed in Figure 8b. As you can see in the figure, the refined DEM gets rid 
of pixel locking artifact completely. There are small bumps and holes because the initial 
DEM has the large error and optimizer falls in local minima. Even though the surface 
normal is assumed roughly to have the radial direction of each post, the reconstructed 
terrain is reconstructed smooth enough and robust.  

5. Conclusion 

An orthographic stereo correlation method was proposed to reconstruct the accurate and 
dense Digital Elevation Models (DEMs) from lunar orbital imagery. The proposed method 
addresses this problem by making use of linearity in geometry and photometry to improve 
both the accuracy and robustness of the stereo correlation process. Given camera 
parameters of an image pair and an initial DEM, the DEM is refined to acquire the sub-pixel 
accuracy. A correlation window on the terrain with the predefined surface normal of a post 
is used to define the squared error of back-projected images on the local terrain. The 
squared error is minimized with respect to the post elevation. This forms a single 
dimensional optimization by nesting the linear reflectance optimization. For the future 
work, the surface normal can be estimated together with the elevation. 
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