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Abstract

Dynamic environments in which objectives
and environmental features change with re-
spect to time pose a difficult problem with
regards to planning optimal paths through
these environments. Path planning methods
are typically computationally expensive, and
are often difficult to implement in real time if
system objectives are changed. This compu-
tational problem is compounded when mul-
tiple agents are present in the system, as
the state and action space grows exponen-
tially with the number of agents in the sys-
tem. In this work, we use cooperative co-
evolutionary algorithms in order to develop
policies which control agent motion in a dy-
namic multiagent unmanned aerial system
environment such that goals and perceptions
change, while ensuring safety constraints are
not violated. Rather than replanning new
paths when the environment changes, we de-
velop a policy which can map the new en-
vironmental features to a trajectory for the
agent while ensuring safe and reliable oper-
ation, while providing 92% of the theoreti-
cally optimal performance.

Introduction
Dynamic environments where agents are constrained occur
often in real-world problems such as air traffic coordination
and car coordination. Mobile robot coverage tasks such as
those involving Unmanned Aircraft Systems (UAS) are con-
tinuously becoming more prevalent in industrial, military,
and academic applications, in part due to their fast deploy-
ment times and ability to reach areas that ground locomotive
systems cannot reach [Caballero et al., 2008]. One impor-
tant area of research is payload directed flight, where UAS
must obtain as much information from an area as possible in
a given amount of time, and potentially change their flight
plans based on dynamic information obtained from the en-
vironment. A simple example of payload directed flight is
UAS monitoring a forest fire. As the behavior of the fire
changes, the UAS may need to alter its flight plan in order
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to continually provide as much information about the fire as
possible. Payload directed flight is an interesting testbed for
multiagent learning algorithms because the environment and
system objectives change with respect to time (dynamic),
and there are safety requirements which must be satisfied
(constraints).

Traditional search algorithms are capable of developing
optimal flight plans, but respond poorly to highly dynamic
environments such as those found in payload directed flight.
Further, planning algorithms are often are too computation-
ally expensive to make route adjustments in real time for
multiagent systems with high congestion and agent cou-
pling, especially as the number of agents or size of the envi-
ronment grows.

In order to address the challenge of and further the abil-
ity to dynamically adjust routes in a multiagent payload di-
rected flight system, this research incorporates cooperative
coevolutionary algorithms. Control policies which change
flight trajectories based on dynamic environmental data are
learned, allowing for real time trajectory adjustments based
on changes in the state space. Such control policies become
necessary as search algorithms become too slow to operate
in real-time. In these missions, flight safety is extremely im-
portant; safety requirements, such as minimum separation
between aircraft, must always be met. We must ensure that
safety violations will not occur when learned policies (rather
than planning) are utilized. The contributions of this work
are to demonstrate that:

• a cooperative coevolutionary algorithm results in a
multiagent policy such that no safety constraints are vi-
olated in any converged solution found.

• a cooperative coevolutionary algorithm outperforms fi-
nite time horizon deterministic search algorithms in
multiagent payload directed flight (achieving 92% of
the theoretically optimal solution).

The rest of this paper is organized as follows. Section 2
covers work related to this research. Section 3 gives details
on the domain and algorithm used in this research. Section
4 details the experiments and results from this research. Fi-
nally, Section 5 discusses these results and presents future
avenues of research.



Background
The following sections give detail on work related to this
research, including the domain of payload directed flight,
search algorithms, cooperative coevolutionary algorithms,
and the use of difference evaluation functions.

Payload Directed Flight
The aim of Payload Directed Flight (PDF) is to provide guid-
ance, navigation, and control for flight vehicles to achieve
mission goals related to the payload sensors while ensur-
ing various constraints are satisfied [Lee, Yeh, and Ippolito,
2010]. Research in PDF typically focuses on trajectory gen-
eration, autonomous feature detection, and autopilot design
concepts. These topics have been investigated in [Ippolito,
2009; Lee and Ippolito, 2009; Lee, Yeh, and Ippolito, 2010].
As goals and objectives in PDF missions become more com-
plex or the physical size of the area to be investigated grows
larger, multiagent PDF missions may become necessary. Lit-
tle research has been conducted on multiagent PDF, because
adding a multiagent framework makes the problem of plan-
ning trajectories in PDF much more complex due to the in-
creased size of the action and state space.

Search Algorithms
The following sections detail recursive best first search as
well as multiagent A∗ search.

Recursive Best First Search Recursive Best First Search
(RBFS) is a simple tree search algorithm which is similar
to the recursive depth first search algorithm, except that an
upper bound is kept in order to allow for better paths to be
explored rather than continuing indefinitely down a single
path. This upper bound is set to be the f-value of the best
alternative path from the ancestor to the current node. The
current node is expanded and the children nodes are each ex-
panded. If all the child nodes exceed the upper bound then
the f-value of the current node is set to the best child node’s
f-value. If one or more of the child nodes be less than the up-
per bound, then the node with the smallest f-value is visited
and the upper bound is set to the lowest alternative [Russell
and Norvig, 2009]. Due to the large size of the state space
and dynamic nature of multiagent payload directed flight,
RBFS often becomes computationally intractable, requiring
finite time horizon searches producing severely suboptimal
multiagent plans.

Multiagent A* Search Multiagent A*, or M*, is a variant
of the A* search algorithm for multiagent domains [Wagner
and Choset, 2011]. Initially, each agent performs a standard
A* search to find its locally optimal path. M* assumes that
there is low coupling between agents, which is true when
agents are well separated in the workspace. If two agents
happen to be coupled after performing their individual A*
algorithms, then replanning occurs while considering both
agents simultaneously. M* is proven to be complete and ca-
pable of finding minimal cost paths [Wagner and Choset,
2011]. However, the assumption that agents are not strongly
coupled often fails in multiagent payload directed flight, and

many paths considering the joint actions of multiple agents
must be considered. In a highly congested system, the M* al-
gorithm will become too computationally expensive to per-
form. Ultimately, any search algorithm becomes computa-
tionally intractable in a large multiagent PDF system, be-
cause of the large state space, extremely dynamic environ-
ment, and high coupling between agents.

Cooperative Coevolutionary Algorithms
Evolutionary algorithms (EAs) are a class of stochastic
search algorithms, which have been shown to work well in
domains where gradient information is not readily available
[Fogel, 1994]. EAs act on an initial set of candidate solutions
in order to generate new solutions and to retain solutions
which show improvement. Coevolution, an extension of evo-
lutionary algorithms, is well-suited for multiagent domains
[Ficici, Melnik, and Pollack, 2005]. In a coevolutionary al-
gorithm, the fitness of an agent depends on the interactions
it has with other agents. Thus, assessing the fitness of each
agent is context-sensitive and subjective [Panait, Luke, and
Wiegand, 2006]. We focus on Cooperative Coevolutionary
Algorithms (CCEAs), where a group of agents succeed or
fail as a team [Potter and Jong, 1995]. CCEAs tend to favor
stable, rather than optimal, solutions [Panait, Luke, and Wie-
gand, 2006], because agents in each population adapt to each
other, rather than adapting to find an optimal policy [Panait,
2010].Further, as agents succeed or fail as a team, the fit-
ness of each agent becomes context-dependent and subjec-
tive [Wiegand, Jong, and Liles, 2002]. For example, an agent
may take an optimal action, but receive a poor fitness assign-
ment because its collaborators took severely suboptimal ac-
tions. The Difference Evaluation Function aims to address
the credit assignment problem found in multiagent systems.

Difference Evaluation Functions
The agent-specific Difference Evaluation Function Di(z) is
given by [Agogino and Tumer, 2008]:

Di(z) = G(z)−G(z−i + ci) (1)

where G(z) is the global evaluation function, and G(z−i +
ci) is the global evaluation function without the effects of
agent i. The term ci is the counterfactual, which is used to
replace agent i, and must not depend on the actions of agent
i. Intuitively, the Difference Evaluation Function gives the
impact of agent i on the global evaluation function, because
the second term removes the portions of the global evalua-
tion function not dependent on agent i. Note that:

∂Di(z)

∂ai
=

∂G(z)

∂ai
(2)

where ai is agent i. Thus, an agent i acting to increase the
value of Di(z) will also act to increase the value of G(z).
This property is termed factoredness [Agogino and Tumer,
2008].

The second term in Equation 2 removes the effects of all
agents other than agent i, meaning that the Difference Eval-
uation Function is a strong function of agent i. This results
in the Difference Evaluation Function providing a feedback



signal with much less noise than the global evaluation func-
tion G(z). This property is termed learnability [Agogino
and Tumer, 2008].

Approach
The following sections describe the domain used in this re-
search, the types of control policies utilized, as well as the
approach taken to solve the problem of multiagent PDF.

Domain
We model multiagent payload directed flight to provide a
testbed for our cooperative coevolutionary algorithm. Pay-
load directed flight is an interesting domain for multiagent
research, because it has dynamic environmental features and
objectives, and has constraints which must be satisfied by
each agent. These characteristics are common in a wide va-
riety of real-world problems, so domains such as multiagent
payload directed flight give insight that simpler domains
cannot provide.

Locations of Points of Interest (POIs) are arranged in
a grid. During each episode, each POI is “active” for one
fourth of the episode, meaning that the POIs to be observed
change as the experiment progresses. Each POI may be ob-
served only once.
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Figure 1: Payload Directed Flight domain. At any given mo-
ment, only a subset of the POIs are available to be observed.
Aircraft have a finite region around them in which observa-
tions can be made.

A key concern in a multiagent PDF system is that of flight
safety. Aircraft must maintain a minimum separation dis-
tance from other aircraft, in order to avoid any potential
collisions, which would result in costly equipment loss and
minimal observation data. In order to promote safe flight, a
penalty is assessed whenever planes are within one unit of

distance from each other. The system evaluation function is
given as:

G(z) =
∑

p∈P

np − nvβ (3)

where np is an indicator function which returns 1.0 if the
p’th POI was observed, and 0.0 otherwise. The variable nv

is the number of separation violations which occurred dur-
ing the simulation, and β is the penalty assessed for each
violation.

Control Policies
Two types of control policies are considered in this research.
First, we analyze a control policy developed using RBFS.
Second, we analyze a control policy utilizing neural net-
works.

Recursive Best First Search The first control policy an-
alyzed is developed using RBFS. In this case, we assume
each agent begins the experiment at a potential POI location
(see Figure 1), and can move to any of the 8 adjacent poten-
tial POI locations at each timestep. RBFS is used to find the
set of joint actions for the set of aircraft to maximize POI
coverage while ensuring safety violations do not occur. Due
to the exponential growth of the search space in multiagent
systems, the search is limited to 5 timesteps ahead.

Neural Network Control The second control policy we
use involves training neural network controllers with coop-
erative coevolutionary algorithms. We use neural networks
because they are well-suited to handle the continuous state
and action space of multiagent payload directed flight. In the
case of neuro-control, planes are allowed to move continu-
ously throughout the environment, in contrast to the discrete
control policy provided by RBFS. The neural network in-
puts relate to a distance weighted density of planes and ac-
tive POIs in each quadrant relative to the planes orientation,
as in Figure 2. The distance metric is the squared Euclidian
norm, bounded by a minimum observation distance of 0.2
distance units. As seen in Figure 2, the environment is split
into four quadrants relative to the aircraft’s orientation, de-
noted Q1 through Q4. The aircraft has two sensors in each
quadrant. The first sensor in each quadrant q returns the sum
of the inverse of the squared distance from each active POI
to the aircraft (See [Colby and Tumer, 2012] for more de-
tailed description of state variables). The second sensor in
each quadrant q returns the sum of square distances from
the plane to all other planes in that quadrant. The neural net-
works used in the research incorporate sigmoid activation
functions, so network outputs are bounded between 0 and 1.
The mapping from network outputs to the plane motions is
found by mapping from the network output (0 to 1) to plane
motion (-Δ to Δ).

Algorithm
We use a cooperative coevolutionary algorithm to train neu-
ral networks to control each agent in the multiagent PDF do-
main. Each agent is controlled by a single neural network,
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Figure 2: State inputs for aircraft. The domain is divided
into four quadrants relative to the aircraft’s orientation. A
distance weighted density of aircraft and active POIs in each
quadrant to create 8 total state inputs.

where network inputs are the relative x and y locations of
the active POI locations, and the network has two outputs
corresponding to the planes x and y movements.

To ensure that the system does not converge to solutions
which violate safety constraints, we take two steps. First,
the penalty for a safety violation is greater than the total po-
tential maximum observation value. For example, if POIs
over the course of an experiment can provide a cumulative
value of 100, then penalties for safety violations are set to
be greater than 100. Thus, a safety violation will always out-
weigh any value gained from observations. Secondly, if the
algorithm begins to converge to a solution which violates
safety constraints, the mutation operator increases in magni-
tude, pushing the solutions away from that area of the solu-
tion space. Thus, the fitness function is designed to highly
discourage safety violations, and the algorithm is not al-
lowed to converge to a solution in which safety violations
occur. The CCEA used in this research is a modification of
that found in [Colby and Tumer, 2012], and is given in Al-
gorithm 1.

Experiments and Results
Three experiments were conducted in this research. The first
experiment involves a static domain, in which each POI is
activated at the beginning of the experiment and remain ac-
tive for the duration of the experiment. This experiment is
to provide a performance baseline in a simple domain. The
second experiment uses a dynamic domain, where only a set
of POIs is active at any point in time. This experiment is to
demonstrate the difference between search algorithms and
learning algorithms in dynamic domains where real-time

Algorithm 1 Cooperative Coevolutionary Algorithm (See
Section for parameters)

Initialize N populations of k neural networks
for all Generations do

for all Populations do
produce k successor solutions
mutate successor solutions

end for
for i = 1 → 2k do

randomly select one agent from each population
add agents to team Ti

simulate Ti in domain
assign fitness to each agent in Ti using Dj(z)

end for
for all Populations do

select k networks using ε-greedy
end for
if suboptimalConvergence() = true then

mutationRate = mhigh

else
mutationRate = mstandard

end if
end for

flight rerouting is necessary. Finally, the third experiment
involves a large domain with a large number of agents. This
experiment is to demonstrate the scalability of the learning
algorithm in domains which are too computationally com-
plex for search algorithms to be conducted.

Static Domain
For the first experiment, the environment is kept static,
meaning that POIs do not activate or deactivate during the
experiment. A grid of 5 by 5 POIs is initialized, with 5 agents
being initialized at random locations in the domain. This
domain is used as a test case to demonstrate how well the
cooperative coevolutionary algorithm performs in ideal con-
ditions, as well as to demonstrate that in simple domains
(small physical area, low number of agents, no dynamic
changes in environment), search algorithms give optimal
flight plans. A comparison of performance between RBFS
and the CCEA is shown in Figure 3.

For the RBFS, once the locations of all agents are initial-
ized, the RBFS algorithm was used to determine a flight plan
such that each POI was observed, while no safety violations
occur. As this particular experiment involves a small number
of agents with a relatively short time window, and the envi-
ronment does not change with respect to time, a full search
for complete flight plans could be executed. As expected,
RBFS performs optimally, creating a flight plan in which all
POIs are observed with no safety violations.

After 125 statistical runs, the average performance of the
CCEA corresponded to 90.12 ± 0.54% POI coverage, with
a maximum of 100% coverage and a minimum of 84% cov-
erage. However, no set of solutions violated any safety re-
quirements in any of the 125 statistical runs. So, although
the CCEA does not provide the same level of performance



Figure 3: 5 by 5 domain with 5 agents. RBFS provides an
optimal solution, while the CCEA provides an average of
90% coverage, with no separation violations.

as an optimal search algorithm, it does ensure that converged
solutions are free of policies which violate safety require-
ments.

Dynamic Domain
For the next set of experiments, the environment is dynamic,
as defined in Section . For these experiments, the potential
POI locations were distributed in a 10 by 10 grid, with 5
agents. Each event in the simulation lasted for 25 timesteps,
and 25 different POIs were active for each event. This do-
main is dynamic, as opposed to the static domain in the first
experiment. Further, this domain is larger in terms of the
number of POIs as compared to the first experiment. A com-
parison of the optimal soluton, the RBFS search, and the
CCEA policies is shown in Figure 4.

Figure 4: 10 by 10 grid with 5 agents. Finite time horizon
RBFS results in 82% coverage, while the CCEA results in
92% coverage with no separation violations.

Due to the increased complexity of this domain result-
ing from the dynamic environment and increased number
of POIs, a full RBFS search cannot be completed to create
flight plans for an entire simulation. As the active POI lo-
cations change with respect to time, flight plans need to be
dynamically changed in order to ensure that newly activated
POIs are observed. Thus, the RBFS algorithm was carried
out with a finite time window, where new flight plans were
generated every 5 time steps. Every 5 time steps, an RBFS
algorithm is completed to maximize the number of POIs to
be observed over that time window, while ensuring that no
safety violations occurred. Although the flight plans are al-
ways optimal for the finite time window, they do not form a
globally optimal solution for the length of the entire simula-
tion. This is seen in Figure 4, where the RBFS obtained an
average coverage of 82% of the POIs in the domain.

For the CCEA, there were 125 statistical runs conducted,
with the error bars in Figure 4 reporting the error in the
mean. As in Figure 3, the error bars are often obscured by
the plot symbols. After 125 statistical runs, the average per-
formance of the CCEA corresponded to 92.05± 1.56% POI
coverage, with a maximum of 100% coverage and a min-
imum of 88% coverage. Every single statistical run of the
CCEA outperformed the average RBFS performance.

Large Dynamic Domain
For the final experiment, the POIs are arranged in a 15 by
15 grid, where 100 agents move throughout the environ-
ment observing POIs. As with the second experiment, the
environment is dynamic, where in each of the 4 events, 56
(57 in the last event) POIs were active. This domain is too
large for a search algorithm such as RBFS to be conducted.
At each time step, 1009 joint actions exist, rendering any
search algorithm computationally intractable. These experi-
ments serve to demonstrate how well the CCEA performs in
a domain where search algorithms are intractable. Further,
this is an exceptionally congested domain, in which separa-
tion violations are difficult to prevent. So, this experiment
gives insight on how well the CCEA will perform in highly
congested domains which computationally intractable for
search algorithms. Results for these experiments are shown
in Figure 5. As in the first two experiments, 125 statistical
runs were conducted, and error in the mean results in error
bars which are typically obscured by the plot symbols.

As seen in Figure 5, the CCEA performs exceptionally
well, providing good coverage and no safety violations. It
is of note that in this particular domain, the key difficulty is
in ensuring that separation violations do not occur. The do-
main is extremely congested, so ensuring planes are spread
out in order to prevent separation violations results in fairly
good area coverage. Analysis of the statistical results show
that average coverage was 92.0 ± 1.27%, with a maximum
coverage of 100% and a minimum coverage of 87%. This
demonstrates that the CCEA is scalable in the number of
agents, unlike search algorithms. It is of note that in each of
the statistical runs, the converged policies lead to zero sep-
aration violations. The minimum coverage of 87% is quite
high, but is obviously not optimal. This is in large part due
to the penalty term associated with separation violations. As



Figure 5: 15 by 15 grid with 100 agents. Due to the complex-
ity of the domain, search algorithms are computationally in-
tractable. The CCEA provides solutions which average 92%
coverage, with no separation violations.

a separation violation negates all observation values, agents
act to ensure that separation violations do not occur at the
expense of POI observations. Although this results in sub-
optimal system performance, it ensures that separation vio-
lations do not occur. It is of note that in a hardware system,
sacrificing a small amount of system performance is accept-
able if safety requirements are ensured.

Discussion
Dynamic environments where agents are constrained oc-
cur often in real-world problems such as payload directed
flight, air traffic coordination, and car coordination. Opti-
mal paths may be determined, but due to the dynamic nature
of the environments real-time planning will often be neces-
sary to ensure continued high performance. As the number
of the agents in the system grows, the state and action space
grows exponentially, rendering traditional search algorithms
intractable. Multiagent learning provides a solution which
can develop control policies in these highly dynamic and
constrained environments when search algorithms become
too computationally expensive to implement.

This research provides three key research contributions.
First, we demonstrate that cooperative coevolutionary al-
gorithms can converge to policies such that no safety con-
straints are violated in multiagent payload directed flight
systems. Second, we demonstrate that cooperative coevolu-
tionary algorithms perform on average at 92% of the opti-
mal policy. Finally, we demonstrate that cooperative coevo-
lutionary algorithms outperform finite time horizon search
algorithms, and perform well in large domains in which no
search algorithms are computationally tractable at all.

Future work on this research has multiple avenues. First,
we will investigate if we can improve coverage values while
maintaining separation guarantees. Second, we will investi-
gate if fitness functions other than the difference evaluation

function can provide better coverage performance. Third, we
will investigate heterogeneous aircraft with different pay-
loads, and thus different objectives.
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