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Comparative study of high-order
positivity-preserving WENO schemes

By D.V. Kotov, H.C. Yee AND B. Sjögreen

1. Motivation and objectives

In gas dynamics and magnetohydrodynamics flows, physically, the density ρ and the
pressure p should both be positive. In a standard conservative numerical scheme, however,
the computed internal energy is obtained by subtracting the kinetic energy from the total
energy, resulting in a computed p that may be negative. Examples are problems in which
the dominant energy is kinetic. Negative ρ may often emerge in computing blast waves.
In such situations the computed eigenvalues of the Jacobian will become imaginary.
Consequently, the initial value problem for the linearized system will be ill posed. This
explains why failure of preserving positivity of density or pressure may cause blow-ups
of the numerical algorithm. The adhoc methods in numerical strategy which modify
the computed negative density and/or the computed negative pressure to be positive
are neither a conservative cure nor a stable solution. Conservative positivity-preserving
schemes are more appropriate for such flow problems.
The ideas of Zhang & Shu (2012) and Hu et al. (2012) precisely address the afore-

mentioned issue. Zhang & Shu constructed a new conservative positivity-preserving pro-
cedure to preserve positive density and pressure for high-order WENO schemes by the
Lax-Friedrichs flux (WENO/LLF). In general, WENO/LLF is too dissipative for flows
such as turbulence with strong shocks computed in direct numerical simulations (DNS)
and large eddy simulations (LES). The new conservative positivity-preserving procedure
proposed in Hu et al. (2012) can be used with any high-order shock-capturing scheme,
including high-order WENO schemes using the Roe’s flux (WENO/Roe).
The goal of this study is to compare the results obtained by non-positivity-preserving

methods with the recently developed positivity-preserving schemes for representative
test cases. In particular the more difficult 3D Noh and Sedov problems are considered.
These test cases are chosen because of the negative pressure/density most often exhib-
ited by standard high-order shock-capturing schemes. The simulation of a hypersonic
nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube
(EAST) is also included. EAST is a high-temperature and high Mach number viscous non-
equilibrium flow consisting of 13 species. In addition, as most common shock-capturing
schemes have been developed for problems without source terms, when applied to prob-
lems with nonlinear and/or stiff source terms these methods can result in spurious solu-
tions, even when solving a conservative system of equations with a conservative scheme.
This kind of behavior can be observed even for a scalar case (LeVeque & Yee 1990)
as well as for the case consisting of two species and one reaction (Wang et al. 2012).
For further information concerning this issue see (LeVeque & Yee 1990; Griffiths et al.
1992; Lafon & Yee 1996; Yee et al. 2012). This EAST example indicated that standard
high-order shock-capturing methods exhibit instability of density/pressure in addition
to grid-dependent discontinuity locations with insufficient grid points. The evaluation
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of these test cases is based on the stability of the numerical schemes together with the
accuracy of the obtained solutions.

2. Positivity-preserving algorithms

Here we briefly describe the positivity-preserving method of Hu et al. (2012). Readers
are referred to Zhang & Shu (2012) for their positivity-preserving WENO schemes that
are valid only for the Lax-Friedrichs flux formulation. Consider the Euler equations:

wt + f(w)x = 0, (2.1)

w =

⎛
⎝ ρ

m
E

⎞
⎠ , f(w) =

⎛
⎝ m

ρu2 + p
(E + p)u

⎞
⎠ (2.2)

with

m = ρu, E =
1

2
ρu2 + ρe, p = (γ − 1)ρe,

where ρ is the density, u is the velocity, m is the momentum, E is the total energy, p
is the pressure, e is the internal energy, and γ > 1 is a constant. The speed of sound is
given by c =

√
γp/ρ and the three eigenvalues of the Jacobian f ′(w) are u − c, u and

u+ c.
A general explicit kth-order conservative scheme with Euler-forward time integration

for Eq. (2.1) can be written as
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)
, (2.3)

where the superscripts n and n + 1 represent the old and new time-steps, respectively,
and λ = Δt/Δx, where Δt is the time-step size and Δx is the grid-step size.
Eq. (2.3) can be rewritten as follows:
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The positivity-preserving procedure of Hu et al. involves the first-order Lax-Friedrichs
scheme with numerical flux:
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Let wLF,±
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. The positive density is first enforced by the following cut-off

flux limiter for positive density:
1. For all i initialize θ+i+1/2 = 1, θ−i+1/2 = 1.

2. If ρ
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Here, ερ = min{10−13, ρ0min}, where ρ0min is the minimum density in the initial condi-

tion, f̂∗
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2

is the limited flux, and 0 ≤ θ±i+1/2 ≤ 1 are the limiting factors corresponding

to the two neighboring cells, which share the same flux f̂i+ 1
2
. After applying this flux

limiter, Eq. (2.4) becomes
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The positive pressure is further enforced by the following cut-off flux limiter for positive
pressure:
1. For all i initialize θ+i+1/2 = 1, θ−i+1/2 = 1.

2. If p
(
w+

i
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< εp, solve θ+i+1/2 from (1− θ+i+1/2)p(w

LF,+
i ) + θ+i+1/2p(w

∗,+
i ) = εp.

3. If p
(
w−

i

)
< εp, solve θ−i+1/2 from (1− θ−i+1/2)p(w

LF,−
i ) + θ−i+1/2p(w

∗,−
i ) = εp.

4. Set θp,i+1/2 = min(θ+i+1/2, θ
−
i+1/2), f̂

∗∗
i+ 1

2

= (1− θ−p,i+1/2)f̂
LF
i+ 1

2

+ θ−p,i+1/2f̂
∗
i+ 1

2

.

Again, εp = min{10−13, p0min}, where p0min is the minimum pressure in the initial

condition, and f̂∗∗
i+ 1

2

is the further limited flux. With these limited fluxes, the original

scheme (2.3) is modified as
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)
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The above new procedure can be applied at each sub-stage of a TVD Runge-Kutta
(Shu & Osher 1988) method, which is a convex combination of Euler-forward time-steps.
Note that any high-order numerical flux can be used in this formulation.

3. Numerical results

The numerical experiments include 1D and 3D Noh problems, 3D Sedov blast, a Mach
2000 jet test case, and the 1D EAST hypersonic viscous nonequilibrium shock tube. The
comparative study includes the following numerical schemes:
• UPWIND - first-order upwind scheme using Roe average state;
• TVD - second-order TVD (Yee 1989; Yee et al. 1990);
• Standard fifth- and seventh-order WENO (WENO5 and WENO7) with local Lax-

Friedrichs flux (WENO5-LLF and WENO7-LLF) and Roe flux (WENO5-Roe), see Jiang
& Shu (1996);
• WENO5fi+split and WENO7fi+split - high-order nonlinear filter counterparts of

WENO5 and WENO7 using the wavelet flow sensor in conjunction with the Ducros et
al. splitting of the inviscid flux derivatives (see Yee & Sjögreen (2007, 2010));
• Zhang & Shu positivity-preserving WENO5 and WENO7 local Lax-Friedrichs flux

(WENO5P, WENO7P) and of fifth order with global Lax-Friedrichs flux (WENOGP);
• Hu et al. positivity-preserving WENO5 with local Lax-Friedrichs flux (WENO5PH)

and Roe’s flux (WENO5PH-Roe). Similarly for WENO5Pfi+split.
Note that for the TVD scheme, Roe’s average state is employed.

3.1. The Noh problem

The first test case is the well-known 1D and 3D spherical Noh implosion problem (Noh
1987). The initial conditions are ρ = 1, p = 0 and u = unit vector directed toward the
origin with γ = 5/3. In this problem an infinite-strength shock expands outward from
the origin at a constant velocity of 1/3. The goal is to test the ability of the scheme to
preserve spherical symmetry and produce the correct entropy jump for adiabatic shock
compression.
The results obtained using different schemes for the 1D case are shown in Figure 1. The

grid size is h = 0.002. The second-order TVD scheme appears to be not stable for the
chosen limiter and entropy fix. Increasing the order of the WENO scheme from fifth to
seventh-order gives slightly better results. In addition, the regular WENO-LLF schemes
are slightly more accurate than their positive counterparts. WENO5-Roe performs with
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Figure 1. Density plot for the Noh-1D problem obtained by UPWIND (line 1), WENO5-LLF
(line 2), WENO5-Roe (line 3), WENO5GP (line 4), WENO5P (line 5), WENO7-LLF (line 6),
WENO7P (line 7) on a grid N = 267. Reference solution: line 8. The right figure is zoomed in
the vicinity of x = 0.

Figure 2. Density plot for the Noh-1D problem obtained by WENO5-Roe on a grid N = 267
with different values of the entropy fix parameter: ε = 0.20 (line 1), ε = 0.25 (line 2), ε = 0.30
(line 3), ε = 0.35 (line 4). Reference solution: line 5.

the same accuracy as WENO5-LLF using a large entropy fix. Its accuracy can be im-
proved by using the appropriate entropy fix parameter ε. Figure 2 shows the results by
WENO5-Roe with different values of ε. The value ε = 0.3 produces an error close to zero
in the vicinity of x = 0 instead of an error of 0.5% obtained by the scheme with a value
of ε = 0.25.

The 2D slices at z = 0 obtained for the 3D case by UPWIND, WENO5P, WENO7P,
WENO5PH, WENO7PH and WENO5PH-Roe are shown in Figure 3. The grid size
is 134 × 134 × 134. Note that regular WENO5-LLF and WENO5-Roe are not stable
for the Noh 3D problem due to computed negative pressure/density. The results by
WENO5P and WENO7P also contain some points with small negative pressure values.
This can be fixed by applying an adaptive time-step that uses the positivity-preservation
condition. The results obtained using WENO5PH, WENO5PH-Roe andWENO7PH with
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Figure 3. Density contours for the Noh-3D problem on a grid 134 × 134 × 134, slice z = 0.
Top row: UPWIND, WENO5P and WENO7P. Bottom row: WENO5PH-Roe, WENO5PH and
WENO7PH.

Figure 4. Comparison of the results for the Noh-3D problem obtained by UPWIND (line 1),
WENO5P (line 2), WENO7P (line 3), WENO5PH (line 4) and WENO5PH-Roe (line 5) with
the reference solution (line 6) for the slice y = 0, z = 0 on a grid 134× 134× 134.
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Figure 5. Density contours for the Sedov-3D problem on a grid 128× 128× 128 (slice z = 0).
Top row: WENO5-LLF, WENO5Pfi+split and WENO5PH. Bottom row: WENO5P, WENO7P
and WENO5PH-Roe.

the same CFL exhibit positive density and pressure values. In the case of computation
using WENO5PH-Roe, a high value ε = 0.5 has been used to achieve an acceptable
performance. Figure 4 shows a comparison of the results obtained using the same methods
with the reference solution for the slice y = 0, z = 0. The increase of the scheme order
from WENO5P to WENO7P does not improve the quality of the results for this problem.
This is an expected behavior for cases where solutions are almost constant apart from
discontinuities. Using Roe flux for WENO5PH leads to significant oscillations.

3.2. The Sedov problem

The second test case is the 3D spherical Sedov blast wave (Sedov 1959). The initial
conditions are ρ = 1, u = 0 and e = 0.1528415451 exp(−R2/R2

0)/R
3
0, where R =√

x2 + y2 + z2 and R0 = 2/h. The grid size is h = 0.02 and γ = 1.4. The density and tem-
perature contours are shown in Figs. 5 and 6. The deviation from spherical symmetry for
positive schemes is bigger than for regular WENO, which is well observed on the temper-
ature contours. However, the solution obtained using standard WENO schemes contains
some points with small negative pressure values, whereas, WENOP and WENOPfi ob-
tain all positive pressure and density values. Switching to Roe’s flux causes even further
deviation from symmetry (see results obtained using WENO5PH-Roe). Note that the
density contours obtained by all of these methods look very similar.

3.3. Mach 2000 jet

The same Mach 2000 jet problem as that in Zhang & Shu (2010) is considered here with
γ = 5/3. The computational domain is [0, 1] × [−0.25, 0.25]. The initial flow condition
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Figure 6. Temperature contours for the Sedov-3D problem on a grid 128 × 128 × 128 (slice
z = 0). Top row: WENO5-LLF, WENO5Pfi+split and WENO5PH. Bottom row: WENO5P,
WENO7P and WENO5PH-Roe.

is the ambient gas with (ρ, u, v, p) = (0.5, 0, 0, 0.4127). The boundary conditions for the
right, top and bottom are outflow. For the left boundary, (ρ, u, v, p) = (5, 800, 0, 0.4127)
if y ∈ [−0.05, 0.05] and (ρ, u, v, p) = (0.5, 0, 0, 0.4127) otherwise. The terminal time is
0.001. The speed of the jet is 800, which is around Mach 2100 with respect to the sound
speed in the jet gas.

For this problem a very small initial CFL value is required for high-order computation
(about 0.01). For this reason, a variable time-step control is used in the computation.
After each RK stage the solution is tested using the positivity condition. If the condition
is not satisfied, the time-step is divided by a factor of 2 and the current RK step is
repeated again. In this way the computation can be carried out with an average CFL
value 4− 8 times larger than the fixed CFL.

The results by different schemes on the uniform grid 800 × 400 are shown in Figure
7. Note that regular WENO5-LLF, WENO5-Roe and their nonlinear filter counterparts
WENO5fi+split exhibit negative pressure. In general, the quality of the results by positive
WENO schemes increases as the order increases. The obtained results using WENO5PH-
Roe are a little less dissipative than in the case using WENO5PH-LLF or WENO5P. The
entropy fix parameter used in WENO5PH-Roe for this case was ε = 0.3.

For the above 3D Noh and the Mach 2000 jet test cases, the nonlinear filter counterparts
of WENO5P, WENO7P WENO5PH and WENO7PH are not stable due to the wide
stencil of the wavelet flow sensor. Research is underway to develop a flow sensor with
a more narrow stencil for such flows. Note that these filter counterparts are stable and
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Figure 7. From top to bottom: density contours for the Mach 2000 jet problem obtained by
TVD, WENO5GP, WENO5P, WENO5PH-Roe and WENO7P on a grid 800 × 400. Scales are
logarithmic.
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ρ 1.10546 kg/m3

T 6000 K
p 12.7116 MPa
YHe 0.9856
YN2 0.0144

ρ 3.0964× 10−4kg/m3

T 300 K
p 26.771 Pa
YO2 0.21
YN2 0.79

Table 1. High- (left) and low- (right) pressure region initial data

exhibit better accuracy than its non-filter counterparts for problems that do not have
the aforementioned special extreme condition.

3.4. 13 species 1D EAST simulation

The computational domain has a total length of 8.5m. The left part of the domain with
length 0.1m is a high-pressure region. The right part of the domain with length 8.4m is
a low-pressure region. The gas mixture consists of 13 species:

e−, He,N,O,N2, NO,O2, N
+
2 , NO+, N+, O+

2 , O
+, He+.

The initial conditions of the high- and low-pressure regions are listed in the Table 1. For
the left-side boundary the Euler (slip) wall condition is applied, and for the right-side,
the zero gradient condition is applied for all variables. As mentioned before, EAST is
a high-temperature and high Mach number viscous non-equilibrium flow consisting of
13 species. In addition, as most common shock-capturing schemes have been developed
for problems without source terms, when applied to problems with nonlinear and/or
stiff source terms these methods can result in spurious solutions, even when solving a
conservative system of equations with a conservative scheme. Here only selected schemes
are used for this simulation.
Figure 8 shows the results from the computation using the Harten-Yee second-order

TVD scheme (Yee 1989; Yee et al. 1990) for four grids with Δx = 10−3 m, 5×10−4 m, 5×
10−5 m and 2.5× 10−5 m at time tend = 0.325× 10−4 sec. One can observe a significant
shift in the shear (left discontinuity) and the shock (right discontinuity) locations as the
grid is refined. The distance between the shear and the shock shrinks as the grid is refined.
The difference between shock locations obtained on the grids with Δx = 5×10−5 m and
2.5×10−5 m is less than 0.3%. Thus the solution using Δx = 5×10−5 m can be considered
as the reference solution.
The left subfigure of Figure 9 shows a comparison among five methods obtained on a

coarse grid (Δx = 10−3 m) with the reference solution. The scheme’s labels are defined
as follows:
• ACMTVDfi: Second-order central base scheme using ACM flow sensor. See Yee et al.

(1999) for further information on filter schemes.
• WENO5-llf: Fifth-order WENO (WENO5) using the local Lax-Friedrichs flux.
• WENO5P-llf: Positive WENO5 of Zhang & Shu (2012) using the local Lax-Friedrichs

flux.
• WENO5PH-llf: Positive WENO5 of Hu et al. (2012) using the local Lax-Friedrichs

flux.
The right subfigure of Figure 9 shows a comparison of ACMTVDfi using a different

weight κ parameter of the ACM flow sensor. The smaller the κ, the smaller the amount of
TVD dissipation that is used. Among the considered schemes, Figure 9 indicates that the
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Figure 8. 13 species 1D EAST problem: Second-order Harten-Yee TVD simulation for three
grids: Δx = 10−3 m (line 1), 5 × 10−4 m (line 2), 5 × 10−5 m (line 3), 2.5 × 10−5 m (line 4),
and Tend = 0.325× 10−4s, with CFL = 0.8.

least dissipative scheme predicts the shear and shock locations best when compared with
the reference solution. The results indicate that ACMTVDfi is slightly more accurate than
WENO5-llf. This is due to the fact that ACMTVDfi reduces the amount of numerical
dissipation away from high gradient regions. Using the subcell resolution method of
Wang et al. (2012) for one reaction case by applying it to only one of the reactions
in this multireaction flow does not improve the performance over standard schemes.
Further research on the generalization of subcell resolution to multi-reactions needs to
be explored.

4. Summary

The positivity-preserving schemes produce more stable behavior than regular WENO
for the considered problems. The scheme by Hu et al. (2012) achieves slightly better
positivity preservation than the scheme by Zhang & Shu (2012) using the same CFL
number. These positivity-preserving schemes also are more diffusive than their standard
WENO counterparts. Accuracy can be improved when using Roe’s flux with the Hu et
al. scheme instead of using Lax-Friedrichs, which is required by the Zhang-Shu scheme.
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