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Neutron stars are a very diverse population, both in their observational and their physical proper-
ties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether
their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are
all different species of the same animal whose magnetic field evolution and interior composition
remain a mystery. This article will broadly review the properties of inhabitants of the neutron star
zoo, with emphasis on their high-energy emission.
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I. INTRODUCTION

Neutron stars are the remnants of massive stars whose
cores collapse during the supernova explosions at the end
of their nuclear fusion lifetimes. Conservation of both the
angular momentum and the magnetic flux of the progen-
itor star during the collapse gives the neutron star an ex-
tremely high spin rate and magnetic field. The collapse
ends when the degeneracy pressure of neutrons balances
the gravitational forces of the matter. At that point the
core radius is about 10 km and with a mass ∼ 1.4M� the
center of the star has already reached nuclear densities.
Neutron stars thus possess the highest spin frequencies,
magnetic fields and densities of any known objects in the
Universe. Since their theoretical conception by [20] they
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have been fascinating celestial objects, both for study of
their exotic interiors and environments and for their im-
portant place in stellar evolution.
Neutron stars (NSs) all typically have detectable pulsa-

tions, since they are rapidly spinning and their emission
patterns are highly anisotropic. This may be one of the
few observational properties that they have in common,
because they otherwise show an amazing variety of pul-
sating and bursting behaviors. Neutron star types are
classified according to the primary power source for their
emission and spin evolution. Rotation-powered pulsars
(RPP) derive their energy primarily from the rotation
of the NS, magnetars from magnetic field energy, iso-
lated NSs (INS) from the latent heat of the NS matter,
and accretion-powered NSs from the energy released by
matter accreting onto the NS from a binary companion.
A subclass of accreting NSs are X-ray bursters whose
bursts are powered by thermo-nuclear explosions. An ad-
ditional class, Central Compact Objects (CCO), are seen
as soft X-ray point sources inside supernova remnants
and seem to be quiet at all other wavelengths. Figure 1
shows where these different NS types roughly fall in pe-
riod and surface magnetic field space. Although period
is a measured quantity, surface magnetic field is derived
in different ways for the various NS types. Magnetic
fields in RPPs, magnetars, INS and CCO are derived
from measured period derivatives, Ṗ , assuming magnetic
dipole radiation spin down, although in magnetars this
can only give an approximate value since their spin be-
havior is complicated by magnetically-driven NS heating
and bursting. The surface dipole field at the pole deter-
mined assuming the observed Ṗ is from magnetic dipole
radiation is

Bd =

(
3Ic3PṖ

2π2R6

)1/2

� 2× 1012G(PṖ15)
1/2, (1)

where Ṗ15 ≡ Ṗ /(10−15 s s−1), P is in units of seconds,
and I (� 1045 g cm2) and R (� 106 cm) are the neutron
star moment of inertia and radius. Magnetic fields of
accretion-powered NSs cannot be measured from their
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FIG. 1. Schematic diagram of neutron star populations with respect to their periods and derived surface magnetic field
strengths.

Ṗ since their spin evolution is governed by accretion
torques. For accreting X-ray pulsars, the cyclotron lines
seen in their spectra give good estimates of surface field
strength:

Bcyc �
(

Ec

11.6keV

)
1012 G (2)

where Ec is the cyclotron line energy. For low-mass X-
ray binaries (LMXB) and bursting sources, the Alfven
radius where the NS magnetic pressure balances that of
the accretion flow gives an estimate of the surface mag-
netic field strength:

BA ∼ 1012 GPeq

(
Ṁ

10−9M� yr−1

)1/2

(3)

[46] where Peq (in seconds) is the equilibrium spin period

of the NS and Ṁ is the mass accretion rate. The NS

types generally occupy different areas of P − B space,
although there is a good deal of overlap. The LMXB
population, being progenitors of rotation-powered MSPs,
overlap the MSP population. CCOs lie at the lower end of
the RPPs, coinciding with some of the MSP population.
The lower end of the magnetar population overlaps the
upper end of the RPPs, and the INS overlaps both. The
accreting X-ray pulsars have magnetic fields and periods
similar to some of the older RPPs. The magnetars have
the highest surface magnetic fields, while the rotation-
powered millisecond pulsars and LMXBs have very low
surface fields but the shortest periods.

Figure 2 shows the distribution of non-accreting NS in
measured period and period derivative. The radio pul-
sars occupy the largest region of this phase space with
their population extending from the very short period,
low Ṗ MSPs up to the high Ṗ , high magnetic field pul-
sars that border the magnetar range. The magnetars
have the highest Ṗ and some of the longest periods in
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FIG. 2. Plot of period vs. period derivative for the presently known rotation-powered pulsars, Isolated Neu-
tron Stars (INS), Compact Central Objects (CCO), Rotating Radio Transients (RRATs) and magnetars (from

http://www.atnf.csiro.au/people/pulsar/psrcat/). Lines of constant characteristic age, P/2Ṗ , and dipole spin-down luminosity,

Ėd, are superposed.

the NS zoo. with some having P ∼ 11 s (the longest pe-
riod of a radio pulsar is about 8 s). The INS have periods
very similar to those of magnetars, also reaching up to 11
s, but with Ṗ and magnetic fields about a factor of ten
lower than those of the lower field magnetars. The CCOs
have very low Ṗ , almost as low as the MSPs, but their
spin periods are more like those of young RPPs. High en-
ergy pulsars (RPPs with X-ray or gamma-ray pulsations)
typically have the highest spin-down power (see Eq [4])
but are not necessarily the youngest, as many of the very
old MSPs are efficient X-ray and gamma-ray pulsars.

II. ROTATION-POWERED PULSARS

Neutron stars that are spinning down as a result
of torques from magnetic dipole radiation and particle

emission are known as rotation-powered pulsars (RPP).
The energy from their spin down appears as broad-
band pulsations from radio to gamma-ray wavelengths
and as a wind of energetic particles flowing into their
surrounding pulsar wind nebulae. Since the discov-
ery of RPP through their radio pulsations in 1967 [62],
more than 2000 radio pulsars are now known with pe-
riods ranging from a few ms to several seconds [82],
http://www.atnf.csiro.au/people/pulsar/psrcat/). X-
ray, gamma-ray and optical pulsations were soon discov-
ered in a few of these pulsars by folding the time series
obtained at these wavelengths at the radio periods. At
present, there are over 100 RPP detected at X-ray ener-
gies and over 130 gamma-ray pulsars [11]; most were dis-
covered using known radio ephemerides, but many were
also discovered through their X-ray or gamma-ray pulsa-
tions and are radio quiet. The spin down of RPPs is typi-
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FIG. 3. Skymap in Galactic coordinates showing the gamma-ray pulsars of different types detected by Fermi: Blue squares:
radio quiet pulsars. Red triangles: millisecond gamma-ray pulsars. Green circles: radio loud gamma-ray pulsars. Black dots:
Gamma-rays were phase-folded using a rotation ephemeris. Gray dots: Pulsars for which no rotation ephemeris was available.
From [11].

cally smooth and predictable, but they have occasionally
been observed to undergo sudden changes in spin called
‘glitches’, where the period decreases and then recovers
back to its normal spin-down rate on a timescale of days
to weeks.

There are two main populations of RPPs: normal pul-
sars having characteristic ages τ = P/2Ṗ < 100 Myr, and
millisecond pulsars (MSP) with τ >∼ 100 Myr. The peri-
ods of the normal pulsars are thought to have increased
at a steady rate from their birth periods at the time of su-
pernova core collapse. The birth periods of RPPs are not
well known, and inferences of the period range from tens
of ms to hundreds of seconds [74][49]. MSPs are thought
to have originally been members of the normal RPP pop-
ulation, spun down for tens of Myr and then spun up by
accretion from a binary companion [14]. MSPs make
up about 10% of the RPP population and about 80%
of them are in binary systems. A large number of new
MSPs have recently been found through radio searches at
positions of Fermi unidentified gamma-ray sources (e.g.
[98]), doubling the known numbers of radio MSPs in the
Galactic disk. Their radio ephemerides can then be used
to find the gamma-ray pulsations. They are extremely
good clocks since they rarely glitch, they have very little
of the timing noise seen in young RPPs, and their spin
down is very stable. These characteristics make them po-
tentially valuable sources for use in celestial navigation
[31] and gravitational wave detection [68].

The rotating dipole model that seems to well describe

RPPs gives estimates of their main electrodynamic prop-
erties. The Poynting flux of a rotating dipole in vacuum
gives an estimate of the spin-down power:

Ėd =
4π2IṖ

P 3
=

2B2
0Ω

4

3R6c5
= 1031 erg s−1 B2

12 P
−4 (4)

where Ω = 2π/P is the spin angular velocity, R the
NS radius, B0 is the surface magnetic field and B12 ≡
B0/10

12 G. The rotating dipole induces strong electric
fields, E = Ω× r×B that in vacuum are orders of mag-
nitude larger than the gravitational force, pulling charges
out of the NS surface to fill the magnetosphere [47]. The
maximum charge density, which screens the electric field
along magnetic field lines, is

ρGJ � −Ω ·B
2πc

(5)

which gives a scale for the current density flowing along
the open field lines, JGJ = ρGJc. The particles and mag-
netic field corotate with the NS out to the light cylinder
radius, RLC = c/Ω, where the corotation velocity reaches
the speed of light. The magnetosphere is divided into re-
gions of open field lines that cross RLC and regions of
field lines that close within RLC. The footpoints on the
NS surface of the open/closed boundary define the polar
caps. The induced potential drop in vacuum across the
open field lines is

Vpc � 1

2

(
2π

cP

)2

B0R
3 = 6× 1012 VoltsB12 P

−2 (6)
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FIG. 4. Gamma-ray (black) and radio (red) pulse profiles for a selection of pulsars detected by Fermi, from [11].

The open field lines and the particles that flow along
them become the pulsar wind, which carries the bulk of
the Poynting flux beyond RLC.

The pulsed radiation of RPPs carries less than about
10% of the total spin-down power. Most of the power
in pulsed emission is in gamma rays around a GeV for
all but a few RPPs, notably the Crab pulsar whose
pulsed emission power peaks in hard X rays. The ra-
dio pulsations make up typically only 10−4 or less of
the spin-down power, but are easier to detect since the
photon flux is much higher. Since the gamma-ray pul-
sations typically carry the highest percentage of Ėd,
they can reveal the most information about the parti-
cle acceleration in pulsar magnetospheres. The discov-
ery of gamma-ray pulsations from over 130 RPPs by the
Fermi Gamma-Ray Space Telescope [7, 11], where there
were only seven known previously [110], has thus revo-
lutionized the study of this type of NS (see Figure 3).
Two new populations of gamma-ray pulsars have been
established with Fermi: radio quiet pulsars discovered
through blind searches for gamma-ray pulsations [2, 93],
and gamma-ray MSPs whose pulsations are found us-
ing radio ephemerides [3]. These are presently equal
in number to the radio-loud gamma-ray pulsars. The
gamma-ray pulse profiles show recurring patterns of two
narrow peaks separated by phase intervals of 0.1 - 0.5,
with occasional single peaks. The most striking pattern
is that the gamma-ray peaks are not in phase with the
radio pulses, but typically arrive later in phase, with a
lag that is correlated with the gamma-ray peak separa-
tion (smaller lags for larger peak separation, see Figure
4). The pulsed gamma-ray spectra are power laws with

high-energy exponential cutoffs in the range 1 - 10 GeV.
The pulsed gamma-ray emission of RPPs results from
radiation of particles accelerated to energies of order 10
TeV by electric fields parallel to the magnetic fields in
the open magnetosphere. Acceleration could take place
near the polar caps [17], in the outer magnetosphere near
the light cylinder [33] in slot gaps along the last open
field lines [18, 89] or from reconnection in the striped
wind outside the light cylinder [92]. The Fermi measure-
ment of an exponential shape for the spectral cutoff of
the Vela pulsar [1] ruled out emission in the intense mag-
netic field near the polar caps, whose spectra would have
much sharper, super-exponential cutoffs [37], as being
the primary source of the observed gamma-rays. Instead,
the softer cutoffs as well as the observed profile shapes
and peak separation vs. radio phase-lag correlation [7]
predicted by outer magnetosphere models [102], strongly
suggest that the gamma-ray emission comes from high
altitudes up to and possibly beyond the light cylinder.
In these models, the narrow gamma-ray peaks are caus-
tics formed by phase bunching of the emission along the
open field boundary through aberration and light travel
time effects [42, 52]. The main radiation mechanism at
GeV energies is thought to be curvature radiation by the
primary particles that have been accelerated to 10 TeV
energies, but inverse-Compton emission may also con-
tribute radiation at the higher energies (up to 400 GeV)
seen from the Crab pulsar [13].

Many RPPs (over 100 at present) also show X-ray
emission, with pulsations detected in many of these. This
emission is usually made up of two components: non-
thermal emission that is probably magnetospheric, and
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0.05 - 0.1 keV thermal emission from surface cooling or
heated polar caps (see [74] for a detailed review). Some,
like the Crab pulsar, show only non-thermal X-ray emis-
sion, but in these cases the thermal components are prob-
ably buried under the strong non-thermal emission. Oth-
ers, like MSP J2124-3358, show only thermal components
with statistically insignificant non-thermal emission. The
thermal and non-thermal peaks in the pulse profiles are
usually not in phase, but the non-thermal peaks are
sometimes in phase with one or two gamma-ray peaks.
In the youngest RPPs, emission from cooling of the NS
surface is thought to dominate the thermal radiation.
In contrast, middle-aged RPPs like Vela, Geminga and
PSR J0659+1414 show a two-component thermal spec-
trum from both heating and cooling, and a non-thermal
power-law component. MSPs show all of this behavior
but, since these sources are too old to have detectable
emission from cooling, the thermal components, some of
which are multiple blackbodies, must be due to polar cap
heating. The non-thermal emission is in most models due
to synchrotron radiation from electron-positron pairs, ei-
ther from the polar cap or the outer gap, emitting at
high altitude [56, 63]. The non-cooling thermal emission
could come from polar caps heated by high-energy par-
ticles flowing toward the NS from the polar cap [55] or
outer gap [50] accelerators.

There is an unusual and growing subpopulation of
RPPs known as Rotating Radio Transients (RRATS)
(see [77], for review). They were discovered only very
recently [84], through detections of their single, isolated
radio pulses. They show a variety of transient radio be-
havior, ranging from nulling (or turning off for up to
∼ 104 s) for long time periods to steady pulsations that
are highly modulated. While nulling behavior in normal
radio pulsars has been known for many years, the nulling
of RRATS is extreme. Over 70 RRATS have been iden-
tified and Ṗ s have been measured for about 20 of these
sources. Their P and Ṗ are scattered throughout the nor-
mal RPP population (see Figure 2), but they tend to be
older (τ >∼ 105 yr) and a number of them have higher than
average surface magnetic fields. X-ray pulsations have
been detected from one RRAT, PSR J1819-1458 [85], re-
vealing a thermal spectrum and an absorption line at 0.5
keV, possibly due to proton cyclotron resonant scattering
in a field of 2×1014 G. The causes of such radio transient
behavior is unknown, but global changes in the currents
or charge density in the pulsar magnetosphere has been
suggested [70, 81]. It is not yet clear how RRATS fit
into the normal RPP population. They share some sim-
ilar properties with INS (see Section V), but if they are
a separate evolutionary group they would significantly
raise the birthrate of NSs in the Galaxy [76].

In addition to pulsed emission, broadband, un-pulsed
emission from radio to high-energy (TeV) gamma-rays is
detected from the pulsar wind nebulae (PWNe) associ-
ated with RPPs. The PWN is a repository of high-energy
particles and fields from the RPP, accumulated over the
pulsar’s lifetime and trapped by the surrounding super-

nova shell that is moving more slowly than the relativistic
pulsar wind, or by the bow shock driven by the supersonic
motion of the pulsar through the interstellar medium.
The particles are mostly electron-positron pairs from the
pair cascades [36] that occur in the magnetosphere, but
there could be some protons or positively-charged ions
as well. Most of the Poynting flux of the RPP must at
some point, either in the wind or at the wind termination
shock, be transferred to the particles. In the Crab neb-
ula, the highest energy particles receive nearly the entire
open-field voltage, as deduced from the ∼ 100 MeV cut-
off in the synchrotron spectrum [19, 39]. Many PWNe
are detected at energies up to several or even tens of
TeV [38]. This VHE emission is thought to be inverse-
Compton emission from the nebular particles, scattering
either their own synchrotron radiation as in the Crab
PWN or, in most cases, the microwave and infrared back-
ground radiation. Powerful gamma-ray flares from the
Crab nebula that appear only in the synchrotron emis-
sion component have recently been observed by Fermi
[8] and AGILE [109]. Their short timescales of hours
to days indicate that they are coming from a very small
region (< 1 arcsec) and their energies of up to several
GeV challenge traditional models of acceleration in pul-
sar wind nebulae [28].

III. MAGNETARS

NSs whose primary power source is the tapping of en-
ergy stored in their magnetic fields are known as magne-
tars (see [119], for review). There are two sub-classes of
magnetars, Anomalous X-Ray Pulsars (AXPs) and Soft
Gamma-Ray Repeaters (SGRs), that were thought for
many years to be separate and unrelated objects. Today,
we know that SGRs and AXPs are both NSs possessing
magnetic fields of unprecedented strength of 1014 − 1016

G, and that show both steady X-ray pulsations as well as
soft γ-ray bursts. Their inferred steady X-ray luminosi-
ties are about one hundred times higher than their spin-
down luminosities, requiring a source of power way be-
yond the magnetic dipole spin-down that powers RPPs.
New high-energy components discovered in the spectra of
a number of AXPs and SGRs require non-thermal par-
ticle acceleration and look very similar to high-energy
spectral components of young rotation-powered pulsars
[41] (see Figure 6).
SGRs were first detected around 1979 as γ-ray tran-

sients and were thought to be a type of classical γ-ray
burst. They undergo repeated bursts with several tenths
of second duration and average energy 1040 − 1041 erg,
and their bursting often occurs in episodes spaced years
apart. They more rarely undergo giant superflares of to-
tal energy 1045−1047 erg, consisting of an initial spike of
duration several hundred ms followed by a longer decay
of duration several hundred seconds showing pulsations
(Figure 5). Such superflares have been observed in three
SGR sources, SGR0526-66 (the famous 5th March 1979
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FIG. 5. Light curve of the 2005 superburst from SGR 1806-20, seen by the Burst Alert Telescope on Swift. Strong pulsations
are seen in the decaying tail of the burst. (from [90])

event) [34], SGR1900+14 [69] and SGR1806-20 [90]. In
1998, SGR1806-20 was discovered to have 7.47 s pulsa-
tions in its quiescent X-ray emission [78] and a large Ṗ
that implies a huge surface magnetic field of � 1015 G
if due to dipole spin-down. Quiescent periodicities of 8
s and 5.16 s and large Ṗ were subsequently detected in
SGR0526-66 and SGR1900+14, implying similarly high
surface magnetic fields. In all three sources, the qui-
escent periods are the same periods seen in the decay
phases of their superflares. The quiescent pulse profiles
are very broad and undergo dramatic changes just be-
fore and after superflares. The profiles are often more
complex, with multiple peaks before flares, changing to
more simple single peaked profiles following the flares.
Since the modulation is thought to result from beam-
ing along magnetic field lines, the profile changes signal
a re-arrangement of the magnetic field structure during
the flares. All of the SGRs lie near the Galactic plane
and are thought to have distances around 10-15 kpc (ex-
cept for SGR0526-66, which is in the LMC). Recently, a
transient SGR was discovered with an apparent surface
magnetic field strength < 7.5×1012 G [99]. This could be
an aging magnetar that has experienced significant field
decay over its lifetime.

The first AXPs were discovered as pulsating X-ray
sources in the early 1980s by EXOSAT and were thought
to be a strange (anomalous) type of accreting X-ray pul-
sar. They are bright X-ray sources possessing luminosi-
ties (in their highest states) of LX ∼ 1035 erg s−1, but
show no sign of any companion or accretion disks that
would be required to support the accretion hypothesis.
The AXPs have pulsation periods in a relatively narrow
range of 5 - 11 s and are observed to be spinning down
with large period derivatives [115]. Their pulse profiles
are broad and very similar to those of SGR sources. The
very high surface magnetic fields of 1014 − 1015 G im-
plied by dipole spin-down were originally controversial,
but have come to be accepted after the quiescent periods
were found in SGRs and especially following the recent
discovery of SGR-like bursts from several AXPs [73]. It
is now believed that SGRs and AXPs are two varieties

of the same type of object, very strongly magnetized,
isolated NSs possibly powered by magnetic field decay.
In both sources, the high-state quiescent luminosities of
LX ∼ 1035 erg s−1 are much higher than their spin-down
luminosities of Ėd ∼ 2− 6× 1033 erg s−1, demanding an
alternative power source.

The quiescent spectra of AXPs and SGRs (see Figure
6) consist of a thermal component fit by ∼ 0.5-1 keV
blackbodies and one or more non-thermal components.
Until recently, non-thermal spectra were seen only be-
low 10 keV and were fit with steep power laws having
photon indices ∼ 3 − 4. When INTEGRAL and RXTE
recently measured the spectra above 10 keV for the first
time hard, non-thermal components were discovered in
three AXPs, and also SGR 1806-20. In two of the AXPs,
the differential spectra between 10 keV and 50 keV are
extremely flat: 1E 1841-045 [79] has a power-law pho-
ton index of s = 0.94 and 4U 0142+61 [40] displays a
photon index of s = 0.45, both much flatter than the
steep non-thermal components in the classic X-ray band.
RXS J1708-40 possesses a slightly steeper continuum
with s = 1.18. The non-thermal tail of quiescent emis-
sion in SGR 1806-20 is similarly pronounced [86, 88], but
somewhat steeper, with a photon index of s = 1.6 − 1.9
extending to 100 keV. Such hard non-thermal compo-
nents require continuous particle acceleration during the
quiescent state. Transient, highly variable radio emis-
sion has been detected from several magnetars [29, 30]
and may be correlated with their X-ray luminosity and
outbursts[100].

It was proposed early on [75, 97] that SGRs were NSs
with strong magnetic fields in the range 1011− 1013 G to
confine the super-Eddington burst radiation. That SGRs
and AXPs had much higher magnetic fields above 1014

G was proposed by Duncan & Thompson [DT] [43] be-
fore their existence was observationally verified. In this
model, some NSs generate huge magnetic fields by dy-
namo action soon after their birth in supernova explo-
sions. Such high fields have several properties that can
cause the NSs to behave differently from NS with lower
fields. These fields can decay on much shorter timescales,
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FIG. 6. Magnetar spectral components. Left: quiescent phase-averaged spectrum of AXP 4U 0142+61 showing lower energy
thermal and power law components below 10 keV and high-energy component above 10 keV (from [41]). Right: typical burst
spectra from AXP/SGR, compared with burst spectra from X-ray and gamma-ray bursts (from [119]).

due to ambipolar diffusion [60].

tamb
∼= 105yr

(
Bcore

1015G

)−2

(7)

Diffusion of magnetic flux out of the NS core on these
timescales provides the power to magnetars in the
DT model. Magnetar-strength fields also apply higher
stresses to the stellar crust, so that the yield strain can
exceed the crustal strength. This property is responsi-
ble for the small SGR and AXP bursts in the DT model
[112]. If a toroidal component of the field Bcore > 1015

G develops in the interior of the star, it can twist the ex-
ternal field [45]. Such action can cause the superflares if
the twisted field lines reconnect. Finally, due to the much
faster heat transport in very strong magnetic fields, there
is a greater heat flux through the crust [60]. Such a prop-
erty may explain the much hotter surface temperatures
of magnetars and the high quiescent X-ray emission.
Magnetar fields also produce a variety of different be-

havior of radiative processes (see [44] and [53] for re-
views). In general, in magnetic fields approaching and
exceeding the quantum critical field Bcr = 4.4 × 1013

G, for radiative processes such as Compton scatter-
ing, cyclotron and synchrotron emission and absorp-
tion, and pair production and annihilation, classical de-
scriptions are largely inaccurate and QED descriptions
must be used. In addition, new processes become possi-
ble in strong fields, such as one-photon pair production
and annihilation, vacuum polarization and photon split-
ting, that cannot take place in field-free environments.
These processes, in particular vacuum polarization [80],
strongly influence the propagation of photons in the NS
atmosphere and the spectrum of the emergent radiation.

According to the DT model [113], the magnetar su-
perflares result from reconnection of sheared or twisted
external field lines, leading to particle acceleration and
radiation of hard emission. The estimated luminosity of
such events,

B2
core

8π
R3 ≈ 4× 1046erg

(
Bcore

1015G

)2

, (8)

is similar to observed luminosities of superflares. The
smaller bursts result from cracking of the crust, which
is continually overstressed by diffusion of magnetic flux
from the NS interior. The shaking of magnetic footpoints
then excites Alfven waves that accelerate particles. The
energy radiated in such events would be

ESGR
∼= 1041erg

(
B0

1015G

)−2(
l

1km

)2(
θmax

10−3

)2

, (9)

where l is the length scale of the displacements, B0 is
the crustal field and θmax is the yield strain of the crust.
The quiescent emission in the DT model is powered by
magnetic field decay through conduction of heat from the
core. The NS crust is heated to a temperature of

Tcrust
∼= 1.3× 106K

(
Tcore

108K

)5/9

(10)

where Tcore is the core temperature, and luminosity

Lx
∼= 6× 1035ergs−1

(
Bcore

1016G

)4.4

. (11)

[111] have proposed that the hard, non-thermal qui-
escent component is due to the creation of a strong
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E‖ induced by twisting of field in the closed magneto-
sphere (see also [26]), producing synchrotron radiation
from electron acceleration at high altitude. An alterna-
tive model for magnetar activity and emission has been
discussed by [61]. The burst and quiescent radiation are
a result of shocks from fast-mode plasma waves and the
hard quiescent component is due to a pair-synchrotron
cascade. On the other hand, Baring [21] and Baring &
Harding [22] propose that resonant Compton upscatter-
ing of thermal X-rays by accelerated particles produces
the quiescent hard emission.

IV. COMPACT CENTRAL OBJECTS

Compact Central Objects (CCOs) are X-ray sources
detected close to the centers of young supernova rem-
nants (SNRs) that have no apparent emission in other
wavebands and no binary companions. Although these
sources have been known and studied for several decades
without much understanding of their nature, exciting re-
sults over the past few years have brought them into
the forefront of NS studies. They have soft, exclusively
thermal spectra in the few hundred eV range and X-
ray luminosities around 1033 − 1034 erg s−1. About ten
CCOs are presently known, including the central sources
of CasA (Figure 7), Puppis A and Kes 79 supernova
remnants. Several, J1852+0040 in Kes79 [49], J0822.0-
4300 in Puppis A [48] and 1E 1207.4 -5209 in PKS 1209-
51/52 [121] have detected pulsations in the hundreds of

ms range. J1852+0040 has a detected Ṗ [49], indicat-
ing that it is spinning down like a RPP. The measured
P and either measurements or constraints on Ṗ indicate
that these sources have very low magnetic fields in the
range 1010 − 1011 G assuming magnetic dipole braking,
so that their birth periods were close to their present val-
ues. Since their SNRs are all young, ∼ 103−104 yr, they
were probably born with unusually low magnetic fields,
which makes them ‘anti-magnetars’ [49].
The observed spectra are purely thermal, but some

have multiple blackbody components. The measured
radii of the emitting areas, assuming blackbody spectra
or even H atmospheres, are less that 1 km, much smaller
than a NS radius. This is surprising if the emission is
from cooling of the NS, especially since the very low mag-
netic fields do not preferentially conduct the cooling to
small hotspots at the poles [120]. Recently though, fits
of the spectrum of the CCO in CasA with C atmosphere
models, that are harder than those of H or He, give emit-
ting radii that are consistent with a NS radius of 10 -
12 km [66]. This could be an indication of recent ac-
cretion activity that would deposit some heavy elements
on the NS surface. Even more recently, the temperature
of CasA is observed to be decreasing, by 4% in just 10
years [59]. If this is in fact the first measured cooling
of a NS, the rate of cooling is much more rapid than
standard NS cooling models predict. The measurements
require proton or neutron superfluid models [105] that

predict sudden cooling at around the age of CasA (300
yr). These measurements could thus also be the strongest
evidence for superfluidity in NS cores. Some CCOs show
absorption lines in their spectra. 1E 1207.4 -5209 has 2-4
harmonically spaced lines at 0.7, 0.14, 0.21 and 0.28 keV
[27] and the spectrum of J0822.0-4300 may have an ab-
sorption feature at 0.8 keV [48]. These could be electron
cyclotron lines in a field around 8× 1010 G.
Several mysteries surround these objects. Were they

really born with such low magnetic fields or were higher
interior fields submerged by mass fallback accretion to
emerge later, enabling them to turn on as normal RPPs
[64]? This hypothesis would fit with the need for C at-
mospheres that make their spectra consistent with full-
surface NS cooling.

V. ISOLATED NEUTRON STARS

Another class of NSs that appear to be thermally cool-
ing with no emission outside the soft X-ray band, except
for faint optical/UV counterparts, are known as Isolated
Neutron Stars (INS) (see review by [71]). Although these
properties are similar to those of CCOs, they are a dis-
tinct class because they lack any observable associated
supernova remnant or nebula. There are presently seven
confirmed INS (sometimes referred to as The Magnificent
Seven), six of which have measured weakly modulated X-
ray pulsations with periods between 3 s and 11 s, much
longer than those of CCOs. Two have high measured Ṗ
near 10−13, giving surface magnetic fields around 1013 G,
characteristic ages τ ∼ 2 Myr and spin-down luminosity
around 4× 1030 erg s−1 assuming dipole spindown. They
have significant proper motions, indicating distances of
less than 500 pc. The INS thus appear to be very nearby,
cooling middle-aged NSs.
The X-ray spectra of INS are soft blackbodies with

kT in the range 40 - 100 eV, and X-ray luminosities in
the range 1030 − 1032 erg s−1, with no measurable power
law or non-thermal components. Four have observed
optical and/or UV counterparts that appear at first to
be Rayleigh-Jeans extensions of the X-ray blackbodies.
However the optical spectra are about a factor of 10
above the extrapolation of the X-ray blackbody. Alterna-
tives to simple blackbody fits have been explored, such as
a thin magnetic, ionized H atmosphere for the spectrum
of J1856.5–3754, the original INS [65], or high B-field at-
mospheres [96]. Most INS show multiple or complex ab-
sorption lines in their spectra at energy between 0.3 and 1
keV (e.g. [72]). It is not clear what causes these features,
but some possibilities are proton cyclotron, and neutral
or molecular H absorption. The X-ray luminosities of
several INS are larger than their spin down luminosities,
by a factor of 60 in the case of RX J0720, so that rotation
cannot power the observed X-ray emission. Furthermore,
the temperatures and thermal luminosities of INS are too
high (by about a factor of 10) for conventional cooling
at their characteristic ages. This could imply that their
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FIG. 7. X-ray image of the supernova remnant Cassiopeia A taken with the Chandra X-Ray Observatory, color coded
for energy (Red: 0.5-1.5 keV; Green: 1.5-2.5 keV; Blue 4.0-6.0 keV). The CCO is the central white point source. Credit:
NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.

magnetic fields have not been constant since birth but
have decayed [60], providing another power source in ad-
dition to cooling and making them younger than their
spin-down ages.

It is not clear how INS are connected to the rest of
the RPP population, other than being NSs with thermal
emission. Do they lack detectable radio emission because
our viewing angle does not cross the radio beam? A fit
of the X-ray profile of J1856.5–3754 [65] constrains mag-
netic inclination and viewing angles to be far apart. Or
are they dead radio pulsars or extreme RRATS? They
do lie very near or beyond the empirical radio death
line. But why do they not have detectable non-thermal
high energy emission? Other RPPs of similar ages or
older have detectable X-ray or gamma-ray pulsations. If
their magnetic fields are decaying or have decayed from
magnetar-strength fields, then they could be old magne-
tars [60] that wound up in the normal pulsar part of P -Ṗ
space [95]. At the moment the population of INS is too
small to draw any firm conclusions about their nature
and origin, but searches for new INS are underway.

VI. ACCRETING NEUTRON STARS

NSs in binary systems can accrete matter from the
companion stars, either from the stellar winds or from an
accretion disk that forms if the companion overflows its
Roche Lobe. The gravitational energy from the infalling
matter provides at least part of the energy for the ob-
served radiation and the accretion torques dominate the
spin evolution. Despite these common properties, accret-
ing NSs display a wide variety of behaviors, depending on
the NS magnetic field strength, mass of the companion
and properties of the accretion.

A. Low-Mass X-Ray Binaries

LMXBs are binary systems in which one member is
a NS or black hole and the other star is a low-mass
main sequence star, white dwarf or red giant that fills its
Roche Lobe, transferring matter onto the compact object
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through an accretion disk. Almost all of the radiation is
emitted as X rays with a very small amount (about 1%)
in optical light. The NS in LMXB are thought to be
old, have weak magnetic fields (∼ 108 G) and are being
spun up by torques from the accretion disk. One expla-
nation for their very weak fields is that the accretion has
reduced or submerged the magnetic flux [35, 101, 103].

Depending on the accretion rate Ṁ , they will reach an
equilibrium where the pressure of the NS magnetic field
balances the pressure of the accretion flow after about
1 Myr, at which point the NS period will have reached
an equilibrium period Peq. The value of Peq depends on

the NS field and Ṁ given by Eq (3). For magnetic fields

around 108 G and Ṁ near the Eddington limit, Peq will
reach millisecond periods. X-ray pulsations at millisec-
ond periods were in fact found in a number of LMXBs
with the Rossi X-Ray Timing Explorer (RXTE), the first
being SAX J1808.4-3658 [118]. Around 24 of the more
than 100 LMXB sources have shown ms X-ray pulsa-
tions, with frequencies in the range 100 - 700 Hz (see
review by [32]). Discovery of these long-sought ms X-
ray pulsations in LMXB finally established them as the
progenitors of the rotation-powered MSPs. The transi-
tion between an LMXB and a MSP was actually observed
when ms radio pulsations were discovered from the source
J102347.6+003841 which less than ten years earlier had
shown optical emission indicating an accretion disk [16].

Some LMXBs have steady X-ray emission, with occa-
sional bursting behavior while others are detectable only
during their bursts. A good fraction are transient, with
outbursts on month to year timescales. The outbursts
typically last weeks to months. The X-ray bursts are
thought to be thermonuclear explosions on the NS sur-
face, (see [108] for review) when the density and temper-
ature of the accreted material reach the critical point
for igniting nuclear reactions. The bursts have typi-
cal timescales of around 10 - 100 s and total energy of
1039 − 1040 erg s−1. LMXBs also show kHz quasiperiodic
oscillations (QPO) in their X-ray emission (see [114] for
review), thought to originate in the inner accretion disk
flow. In most models of QPO, the oscillation frequen-
cies are the orbital frequencies of accreting matter. Since
these are stable orbits around a NS, they must be outside
the innermost stable circular orbit (ISCO) determined by
General Relativity, so their frequencies can be used to
place limits on the NS mass [87]. Since the maximum
measured QPO frequencies are about 1200 Hz, using the
ISCO of 6GM/c2 in the Schwarzschild metric gives the
NS mass M < 2M� [122].

A subset (∼ 13) of LMXB show ms pulsations in their
persistent emission. The rest (11) show the pulsations
only during X-ray bursts [106, 117] or in QPO behavior.
During the X-ray bursts, oscillations have been observed,
usually during the decay phase (see Fig 8), whose fre-
quency rises to an asymptotic limit as the intensity drops
[107]. The interpretation of this behavior is that the ro-
tation of the NS is modulating the burst hot spot which
expands and rises in altitude, then drops back onto the

surface. The true rotation frequency of the NS is then the
observed asymptotic frequency. The NS spin frequency
can also appear as the frequency difference between pairs
of QPO that move up and down in frequency together.
Since the difference in the frequencies of the QPO pair
stays the same and is in the range 200 - 400 Hz, it is
thought to be the NS rotation frequency. In some cases
though, the frequency difference appears to be closer to
1/2 of the spin frequency, and the relation between QPO
and spin frequency has been questioned [83].
The distribution of NS spin frequencies from these

various measurements cuts off suddenly at a maximum
frequency around 620 Hz [32], which is well below the
∼ 1000 Hz break-up frequency of a NS. This indicates
that there are some mechanisms that halt or counteract
the spin up process. Several possibilities have been sug-
gested, including gravitational wave damping [51, 116],
making these good sources of kHz gravitational radiation
for possible detection with Advanced LIGO.

B. Intermediate- and High-Mass X-Ray Binaries

Binary systems consisting of a neutron star or black
hole and high-mass O or B star (M >∼ 5M� ) are known
as High-Mass X-Ray Binaries (HMXB), an example be-
ing Vela X-1. In a large subclass of HMXBs, the NS
orbits a Be star in a very eccentric orbit, accreting mate-
rial only occasionally in outbursts when the NS crosses a
disk of material surrounding the Be star. An example of
a Be X-ray binary is A0535+26. If the donor star is an
intermediate-mass star (1.0M� <∼ M <∼ 5M�), the sys-
tem is an intermediate-mass X-ray binary (IMXB) [94],
a well-known example being Her X-1. In HMXBs, the
compact object accretes material from the wind of the
companion star or from a Be star disk, while in IMXBs
the NS accretes from a disk as in LMXBs. Both of these
classes, numbering about several hundred, are bright X-
ray sources, and a large number show either persistent
or transient X-ray pulsations (in the case of Be star bi-
naries). In contrast to the ms pulsations of LMXBs, pul-
sation periods of HMXBs are much longer, in the range
1 - 1000 s. The relation in Eq (3) then requires that the
NS magnetic field in these sources are near 1012 G. In
fact, many X-ray pulsars in IMXBs and HMXBs (about
20) show absorption features in their spectra [58] that
are almost certainly due to electron cyclotron resonance
scattering. The energies of these cyclotron resonant scat-
tering features (CRSF) are in the range 10 - 50 keV, also
suggesting (Eq. [2]) that the surface magnetic of the NSs
are around 1012 − 1013 G.
Because the NS magnetic fields are high in these sys-

tems, the Alfven radius

rA = 3× 108 cmB
4/7
12

(
Ṁ

1017 g s−1

)−2/7

(M/M�)
−1/7

,

(12)
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FIG. 8. X-ray burst oscillations in 4U 1702-43 (from [107]). The histogram shows the X-ray intensity of the X-ray burst. The
contours show the Fourier power level as a function of frequency and time, indicating a drifting oscillation starting at 328 Hz
(t = 7 s) and ending at 330.5 Hz.

lies at a much larger distance from the NS than in
LMXBs, and the accreting material is strongly chan-
neled via the magnetic field lines onto a small polar
cap. The infalling material then heats the NS atmo-
sphere above the polar cap to temperatures around 108

K . The proposed mechanisms by which the kinetic en-
ergy of the infalling material is decelerated and trans-
ferred to heat depends on the mass accretion rate, which
in turn determines its pressure and the source luminos-
ity LX = GMṀ . If the accretion pressure exceeds the
radiation pressure, which is much higher than the spher-
ical Eddington limit due to the channeling of the flow,
a radiative shock will form at some distance above the
NS surface [23]. If the pressure of the accretion flow
does not exceed the radiation pressure, the atmosphere
is heated either by Coulomb collisions [91] or a collision-
less shock. In the case where a stand-off shock forms, a
slowly sinking accretion column radiates mostly perpen-
dicular to the magnetic axis in a fan beam [24], while in
the Coulomb-heated case, the atmosphere is a thin slab
at the NS surface and radiates primarily along the mag-
netic axis [54]. The continuum spectrum of the X-ray
pulsar radiation is thermal bremsstrahling and Compton
scattering emission (e.g. [25]). The CRSFs appear as ab-

sorption lines and as many as four harmonics also appear
in some X-ray pulsars such as 4U 0115+63 [57]. They are
formed through resonant scattering of continuum pho-
tons by electrons that have a thermal distribution of mo-
menta along the strong magnetic field lines (see [53], for
a detailed description of the physics of CRSFs). Since
the resonant scattering cross section has a strong depen-
dence on angle, CRSFs can provide a good diagnostic
of the geometry and physical conditions of the emitting
atmosphere [15, 104].

C. Microquasars and Gamma-Ray Binaries

A subclass of accreting X-ray binaries are called micro-
quasars since they display properties similar to those of
quasars, including rapid variability of their X-ray emis-
sion and radio jets. Strong, broadband emission as well
as broad emission lines are also observed from their ac-
cretion disks. They consist of a compact object, either
neutron star or black hole, with a normal companion.
These sources undergo repeated and sometimes periodic
radio, optical and X-ray flaring with associated formation
of relativistic jets. Cygnus X-3 is a well-known micro-
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quasar that could be a black hole or neutron star in a 4.8
hr orbit around a massive hot star. One of the strongest
X-ray sources in the sky, it is also detected from radio to
GeV gamma-ray wavelengths [4].

The term gamma-ray binary has come to include bi-
nary systems that contain a compact object and emit
high energy gamma rays. Since several microquasars
have been detected in gamma rays, they are one of the
gamma-ray binary source types. The other gamma-ray
binary source type is a system containing a RPP orbit-
ing a massive star. The prototype of this source class
is PSR B1259-63, which is a 48 ms radio pulsar in a
3.4 yr eccentric orbit around a Be star. It appears as a
normal radio pulsar at apastron, but at periastron the
pulsar is thought to make several crossings through the
Be star disk, producing X-rays and gamma-rays at GeV
[9] and TeV [12] energies. The X-ray binaries LSI+61 303
and LS5039 have been detected by Fermi in high-energy
gamma rays [5, 6], have characteristics similar to PSR
B1259-63 and are thought to contain undetected pulsars.
The Fermi source 1FGL J1018.65856 is the first Galactic
binary system to have been discovered at gamma-ray en-
ergies [10] but appears similar to LS5039, as both X-ray
and radio modulation at the orbital period were subse-
quently detected.

VII. SUMMARY

Neutron stars are found in a wide variety of sources,
displaying an amazing array of behavior. They can be
isolated or in binary systems, accreting, heating, cooling,
spinning down, spinning up, pulsing, flaring and burst-
ing. The one property that seems to determine their
behavior most strongly is their magnetic field strength,
structure and evolution. The hot polar caps, bursts and
flares of magnetars are likely due to the rapid decay and
twisting of their superstrong magnetic fields, whose very

existence requires some kind of early dynamo activity.
The intermediate-strength magnetic fields of RPPs de-
termines their spin-down behavior and radiation prop-
erties. However, the overlap of the magnetar and RPP
populations is not understood at present. Why don’t
high-field RPPs burst or flare? Why don’t lower-field
magnetars sometimes behave more like RPPs? INS may
be old magnetars whose high fields have decayed, but
they do not account for the existence of younger RPPs
with magnetar-strength fields. Not only the strength of
the magnetic field but also its configuration may be im-
portant in making a NS a magnetar or a RPP. Magnetic
field decay is a critical link between other NS popula-
tions as well. “Decay” of the magnetic field is necessary
for normal RPPs to evolve into MSPs through accretion
and spin up in LMXBs. Some kind of accretion-driven
field reduction is the most likely mechanism, but it is
controversial since it is not clear how effective it is or on
what timescale a buried field might re-emerge. One piece
of evidence in favor of accretion-driven field reduction is
the fact that NSs in LMXBs, which are older systems
(> 108 yr), have mostly low fields and NSs in HMXBs,
which are younger systems (107 − 108 yr), have higher
fields. This may be an indication that accretion-driven
field reduction or decay has not had enough time to oper-
ate in HMXBs but has in LMXBs. However, there does
not seem to be any evidence of decaying fields in either
the LMXB or HMXB populations; e.g. smaller magnetic
fields in older systems. On the other hand, CCOs are very
young so if they acquired their low fields through mass
fallback accretion, the field submergence would have had
to operate on much faster timescales than it apparently
does in LMXBs. But as we continue to find new species
in the NS zoo, one of these may someday be the “Rosetta
Stone” that will give us the clues for solving these puz-
zles.
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