
J.T. Yim and D.A. Herman
Glenn Research Center, Cleveland, Ohio

J.M. Burt
Air Force Research Laboratory, Glenn Research Center, Cleveland, Ohio

Modeling Analysis for NASA GRC Vacuum
Facility 5 Upgrade

NASA/TM—2013-216496

February 2013



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientifi c and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:

• TECHNICAL PUBLICATION. Reports of 
completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c 
and technical fi ndings that are preliminary or 
of specialized interest, e.g., quick release 
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

• CONTRACTOR REPORT. Scientifi c and 
technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c, 
technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI 
Information Desk at 443–757–5803

• Phone the NASA STI Information Desk at
 443–757–5802

• Write to:
           STI Information Desk

NASA Center for AeroSpace Information
           7115 Standard Drive
           Hanover, MD 21076–1320



J.T. Yim and D.A. Herman
Glenn Research Center, Cleveland, Ohio

J.M. Burt
Air Force Research Laboratory, Glenn Research Center, Cleveland, Ohio

Modeling Analysis for NASA GRC Vacuum
Facility 5 Upgrade

NASA/TM—2013-216496

February 2013

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135



Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 



Abstract

A model of the VF5 test facility at NASA Glenn Research Center was developed using the direct
simulation Monte Carlo Hypersonic Aerothermodynamics Particle (HAP) code. The model results
were compared to several cold flow and thruster hot fire cases. The main uncertainty in the model
is the determination of the effective sticking coefficient—which sets the pumping effectiveness of the
cryopanels and oil diffusion pumps including baffle transmission. An effective sticking coefficient of
0.25 was found to provide generally good agreement with the experimental chamber pressure data.
The model, which assumes a cold diffuse inflow, also fared satisfactorily in predicting the pressure
distribution during thruster operation. The model was used to assess other chamber configurations
to improve the local effective pumping speed near the thruster. A new configuration of the existing
cryopumps is found to show more than 2× improvement over the current baseline configuration.

1 Introduction

Vacuum Facility 5 (VF5) at NASA Glenn Research Center is one of the world’s premier electric
propulsion (EP) test facilities. The main chamber is 4.6 m (15 ft) in diameter and nearly 18 m
(60 ft) long. Six cryopumps and twenty oil diffusion pumps (ODP) can provide a base pressure
on the order of 1 × 10−7 torr and a theoretical maximum pumping speed over 3.5 million L/s on
air. However, due to the present baseline configuration of the chamber, the actual local pumping
speed can be far lower, particularly at the end of the chamber away from the cryopumps. The
conductance losses through the chamber are in part responsible for this [1]. As NASA moves toward
higher power EP systems, the need for facilities to provide adequate ground testing capabilities is
required. A sufficiently low background pressure is necessary for proper characterization of thruster
performance, plume properties, and lifetime [2–4]. Thus, an effort to improve the effective pumping
speed of VF5 is underway. As part of that effort, the capabilities of VF5 are modeled to provide
understanding of facility pumping and to assess new potential configurations. Both cold flow and
thruster hot fire test data are collected to provide comparisons for model validation. A description
of the model, the testing, and results and comparisons of both are discussed below.

2 Model and Test Description

The Hypersonic Aerothermodynamics Particle (HAP) code was used to perform 3D Direct Simu-
lation Monte Carlo (DSMC) simulations of facility pressure distributions for VF5 [5]. The rarified
environment of an operating vacuum chamber makes DSMC an ideal approach for these simula-
tions. The DSMC method is a particle-based gas flow simulation technique which is derived from
principles of kinetic theory, and is the most mature and widely used technique for rarefied flow
simulation. In a DSMC calculation, a large population of simulated particles is tracked through
the computational domain, with a combination of deterministic particle movement routines and
probabilistic binary collision routines, in order to simulate underlying physics in the governing
Boltzmann equation. The HAP code is a general Cartesian implementation of DSMC, with fea-
tures including dynamic grid adaptation; shared memory parallelization; and options to import
externally defined surface geometries or to automatically generate triangulated surfaces based on
analytical geometry definitions.

For the VF5 models, the chamber geometry—namely the outer shell of the main chamber and
bell jar—is analytically defined within the code through spherical and cylindrical shells. Also
included are the graphite shielding panels placed approximately midway along the chamber length
to protect the cryopanels from direct plume impingement. VF5 contains six large cryopanels and
twenty 32” diameter ODPs. A diagram of the current baseline configuration is provided in Figure 1.
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Figure 1. The baseline configuration of VF5 with four markers indicating approximate gas source
locations. The pressure distribution coloring is based on a short rails source location and 60 mg/s
xenon gas flow.

The two vertical cryopanels along the chamber centerline are 2.8 m × 3.0 m × 0.5 m in size and
they pump along their left and right vertical surfaces. The four horizontal cryopanels are 0.4 m ×
4.6 m × 1.4 m in size and pump along their top and bottom horizontal surfaces. The ODPs are
modeled to have a square pumping surface rather than circular for simplicity; the surface area
is kept the same. No other details of the vacuum facility geometry are explicitly modeled. The
symmetrical nature of the vacuum chamber across the vertical plane along the chamber centerline
is utilized to reduce the simulated volume in half.

The gas source is modeled as an annulus with a uniformly distributed inflow number flux to
simulate the flow exiting a Hall thruster discharge channel. The inflow number flux is calculated to
achieve the desired mass flow rate. The rest of the thruster and support structure geometry are not
modeled in these simulations. The inflow gas is modeled as a diffuse inflow at room temperature,
which is appropriate for cold gas flow conditions. Thruster hot fire is not directly modeled as Hall
thruster propellant particle exit velocities are high enough to require a prohibitively small time
step to resolve their motion and physics. Results presented below, however, will show that the cold
diffuse flow inflow conditions still approximate hot fire conditions to a fair degree. Other research
work has shown only minor differences noted for adding electrostatic fields and/or charge exchange
physics to DSMC flow simulations [6].

The model of VF5 was correlated to experimental pressure data to assess confidence in the
simulation results. Several different available data cases were used to check the validity of the
model. They are listed in Table 1. Four xenon gas source locations were used for the various
tests and their approximate positions are shown in Figure 1. The “short rails” location placed the
source, typically a thruster, approximately at the end cap / main chamber interface axial location.
The “extended rails” location is approximately 1.5 m further into the main chamber. The “mid
chamber reverse” placed the source just in front of the vertical shielding panels facing upstream
back towards the bell jar. The pressure color contour distribution in Figure 1 is based on 60 mg/s
xenon gas flow from the short rails location. Unless explicitly stated otherwise, all gas flow rates,
pressures, and pumping speeds reported in this document are for xenon gas.

The measured chamber pressure data are obtained using Granville-Phillips ion gauges and have
been corrected for xenon gas, which is used for all tests considered here. The ion gauge locations
are largely in the same locations for all tests and reported in Table 2. For the azimuthal locations,
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Table 1. Test data sources
# Date Source Source location Active pumps

1 May 2011 Cold flow Bell jar & mid chamber Cryos only
2 Oct 2011 Cold flow Short rails ODPs only
3 Oct 2011 Cold flow Short rails Cryos + ODPs
4 Nov 2011 Cold flow Short rails Cryos + ODPs
5 Nov 2011 Hot fire Short rails Cryos + ODPs
6 Jan 2012 Hot fire Mid chamber reverse Cryos + ODPs
7 Apr 2012 Hot fire Extended rails Cryos only

Table 2. Ion gauge locations
Gauge Uncertainty Radial Azimuthal Axial

G-P 347 Stabil-Ion Module ±25% Along main chamber wall ∼8:00 ∼1 ft from end cap
G-P 390 Micro-Ion Module ±16% Along main chamber wall ∼8:00 ∼1 ft from end cap
G-P 390 Micro-Ion Module ±16% Along main chamber wall ∼4:00 ∼26 ft from end cap
G-P 390 Micro-Ion Module ±16% Along main chamber wall ∼4:00 ∼46 ft from end cap
G-P 370 Stabil-Ion Gauge ±5% ∼0.75 m from centerline ∼4:00 Along thruster exit plane

noon is along the vertical and the clockwise direction is based on looking into the chamber from
the bell jar end. The 95% confidence intervals of the chamber pressure reading uncertainties for
each ion gauge are also provided in Table 2. They are based on the accuracy and repeatability
values reported by the manufacturer. Error bars for the chamber pressure measurements in the
plots within Section 3 are set to these 95% confidence level values.

The primary unknown variable in these simulations is the sticking coefficient—the fraction of
incident particles that are effectively pumped through cryocondensation, cryosorption, or cryotrap-
ping. The sticking coefficients of gases on a bare cryosurface have been found to lie generally within
a range of 0.6 – 1.0 depending on the gas and surface temperature [7]. However, the VF5 cryopumps
have liquid nitrogen-cooled chevron baffles in front of the cryosurfaces. The transmission probabil-
ities through these baffles—which were provided to be 0.30 to 0.35—are accounted for through a
modified effective sticking coefficient. A series of computational runs was performed to assess the
sensitivity of the modeling results to the applied effective sticking coefficient. The model was set
up to correspond to tests #3 and 4 in Table 1. The effective sticking coefficient was varied from
0.15 to 0.40 in increments of 0.05. The pressure was assessed at four locations corresponding to the
bottom four gauges listed in Table 2. The averaged measured pressures with their corresponding
uncertainty are plotted as shaded bands in Figure 2. The model results are plotted as symbols.
For the pressure near the chamber walls, an effective sticking coefficient of 0.20 to 0.25 was found
to provide the best guess fit. The near thruster pressure data required a sticking coefficient closer
to 0.40. As a general compromise, with some emphasis on the chamber wall locations where most
of the test data is and will be measured, an effective sticking coefficient of 0.25 was chosen. This is
comparable to other published cryopumping simulation work which has found values around 0.3 –
0.4 for the effective coefficient to provide a good fit to their data [8]. An effective sticking coefficient
of 0.25 is used for all results presented below.

Some of the results are presented in terms of pumping speed instead of pressure. The pumping
speed is easily calculated from

PS =
(ṁ mg/s)(22.4 L-atm/mol)(760 torr/atm)

(1000 mg/g)(M g/mol)(P − Pbase torr)
(1)

where ṁ is the mass flow rate, M is the molecular weight of the gas, and Pbase is the base pressure
measured when there is no gas inflow. The model assumes a perfectly leak tight vessel with no
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Figure 2. The effect of the sticking coefficient on modeled chamber pressures at four locations.
The shaded bars correspond to the 95% confidence interval of the measured test data at those four
locations. The symbols plot the model results.

presence of non-condensable species such as helium, therefore Pbase would theoretically be zero for
the model. Since the pressure in the chamber will vary with location, the pumping speed too will
vary throughout the chamber.

3 Results and Discussion

The VF5 model is run for several cases corresponding to different thruster and chamber configu-
rations. For all cases, the location and orientation of the cryopumps and ODPs are the same. A
set of tests were run that operated: 1) cryos only, 2) ODPs only, and 3) all pumps in the chamber.
The effect of the pumping scheme is evaluated with the model. Results are presented in Figure 3.
The model shows a fair approximation to the pressure data collected along the chamber wall. The
model results for the ODP-only case does not capture the drop in pressure at the far end of the
channel, however, the overall magnitude of the pressure tracks with the recorded data, particularly
near the thruster, which is the location of most interest. Different xenon gas flow rates were also
examined. Testing included adjusting the inflow rate of xenon cold gas inflow from 20 to 107 mg/s
with all of the pumps operating. Models were run at 20, 60, and 100 mg/s and the results are
compared in Figure 4. Again, the magnitude of pressure change is well captured by the model.

The model was also compared to pressure data obtained during thruster hot fire testing. The
model assumes a diffuse cold gas inflow, as simulating the high velocity plume particles requires
prohibitively small time steps. Test #5 in Table 1 corresponds to NASA-457Mv2 Hall thruster per-
formance testing at flow rates ranging from 18.5 to 92.4 mg/s [9]. Pressure data were collected from
a screen-shielded Stabil-ion gauge located 0.75 m from the thruster centerline along the thruster
exit plane. Similar data were collected from cold flow test #4 with the same thruster, chamber,
and ion gauge configuration. The results from the two tests and the corresponding cold flow model
results are shown in Figure 5.

Two other thruster hot fire cases are examined. Both operate the thruster at different locations
than the standard location on the short rails. The thruster is placed on an extended set of rails
further into the main chamber for one test, while the other places the thruster near mid-chamber
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Figure 3. Comparison of model and test chamber pressure results for different pumping operations
in VF5.

Figure 4. Comparison of model and test chamber pressure results for different flow rates in VF5.

Figure 5. Comparison of chamber pressure results 0.75 m from thruster centerline for cold flow
test, hot fire test, and cold flow model.
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Figure 6. Comparison of chamber pressure along chamber walls for the extended rails thruster
location hot fire test.

Figure 7. Comparison of chamber pressure along chamber walls for the mid chamber reverse thruster
location hot fire test.

and points the thruster back towards the bell jar end. The model was run for both of those cases.
The comparison for the extended rails configuration is shown in Figure 6 and the mid chamber
reversed configuration is shown in Figure 7.

The test cases described above provide a confidence in the ability of the model to predict the
chamber pressure for the baseline configuration of VF5. The model was utilized to assess the
pumping speed of alternate VF5 configurations. The other configurations included moving the
existing panels as well as adding new ones. The initial set of configurations examined is presented
in Figure 8. It is seen that the presence of cryopanels along the length of the chamber significantly
reduces the pressure in the upstream regions of the chamber near the thruster, as compared to the
baseline configuration. This is due to reducing conductance losses before the gas reaches a pumping
surface [1].

Ultimately, a configuration relocating all of the existing cryopanels was chosen based on pumping
effectiveness, cost, backsputter rate, and other facility considerations. The new proposed cham-
ber configuration moves the long horizontal panels upstream closer to the bell jar as shown in
Figure 8(d). The two vertical panels will also be moved parallel to each other at the far end of
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(a) Baseline

(b) Add 2 new panels (c) Add 10 new panels

(d) Move horizontal panels (e) Move all existing panels, add 2 new pan-
els

Figure 8. Initial set of chamber configurations examined.

Figure 9. The new proposed configuration of VF5 which rearranges all existing cryopanels. The
pressure distribution coloring is based on a short rails source location and 60 mg/s xenon gas flow.
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(a) Axial distribution of pressure and local pumping speed along chamber wall

(b) Radial distribution of pressure and local pumping speed along thruster exit plane

Figure 10. Comparisons of pressure and local pumping speed distributions between baseline and
new proposed chamber configurations for 60 mg/s xenon flow at the short rails location.

the chamber as configured in Figure 8(e). A model of the new configuration was developed and
is shown in Figure 9. Both Figure 9 and Figure 1, of the baseline configuration, show a pressure
distribution based on 60 mg/s of xenon flow from a thruster at the “short rails” location. A closer
look at the pressure distribution is shown in Figure 10. The axial distribution of the pressure along
the chamber wall again shows a marked reduction in the upstream pressure towards the thruster
location while the downstream pressure near the far end of the chamber is similar as before. The
radial pressure distribution along the thruster exit plane vertical axis also shows improvement over
the current baseline. The pumping speed is calculated for both configurations based on the pressure
0.75 m from the thruster centerline along the thruster exit plane and shown in Figure 11. More than
two times improvement, from 320 kL/s to 700 kL/s, is seen in the modeling results for a 60 mg/s
flow rate. The pumping speeds calculated from pressure measurements at the same location during
thruster hot fire tests are also shown in the figure.
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Figure 11. Comparison of calculated xenon pumping speeds 0.75 m from thruster centerline in exit
plane.

4 Conclusion

A model of VF5 was developed and run using the HAP DSMC code. The baseline cryopanel
configuration of VF5 was examined across several different source and pumping cases to assess
the validity of the model as compared to measured test data. VF5 was operated with different
pumps activated, different gas inflow rates, and different thruster locations. The model captured
the pressure changes along the length of the chamber and compared well with test results. The
main source of uncertainty in the modeling results was the estimation of the effective sticking
coefficient used to model the effects of the transmission probability through the baffles in front of
the pumping surfaces as well as the sticking probability of the gas particles to be pumped away after
they reach the pumping surface. A coefficient of 0.25 was found to achieve an acceptable comparison
to the measured test data for the cases examined. One other possible significant contributor to
model uncertainty is the approximate geometry of the chamber and its contents. A more detailed
geometrical description of the chamber, as perhaps represented in a high fidelity CAD model, would
help further reduce uncertainty in the model results.

In addition to the present baseline configuration of VF5, several new variants were examined to
assess potential improvements in pumping speed throughout the chamber. These options included
moving the current existing cryopanels as well as including additional new panels. Ultimately, a
new configuration that rearranges the existing panels was chosen based on a variety of factors. The
new configuration is expected to provide more than 2× the pumping speed near the thruster than
the present baseline setup.
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