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Detection of Unexpected High Correlations between
Balance Calibration Loads and Load Residuals
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An algorithm was developed for the assessment of strain–gage balance
calibration data that makes it possible to systematically investigate potential
sources of unexpected high correlations between calibration load residuals and
applied calibration loads. The algorithm investigates correlations on a load series
by load series basis. The linear correlation coefficient is used to quantify the
correlations. It is computed for all possible pairs of calibration load residuals
and applied calibration loads that can be constructed for the given balance
calibration data set. An unexpected high correlation between a load residual
and a load is detected if three conditions are met: (i) the absolute value of the
correlation coefficient of a residual/load pair exceeds 0.95; (ii) the maximum of
the absolute values of the residuals of a load series exceeds 0.25 % of the load
capacity; (iii) the load component of the load series is intentionally applied. Data
from a baseline calibration of a six–component force balance is used to illustrate
the application of the detection algorithm to a real–world data set. This analysis
also showed that the detection algorithm can identify load alignment errors as
long as repeat load series are contained in the balance calibration data set that
do not suffer from load alignment problems.

Nomenclature

AF = axial force
AF ′ = simulated axial force of load series 1
Dj = difference of two load values of a balance load component
Fj = load value of a balance load component with index j
i = summation index
j = index of a balance load component where 1 ≤ j ≤ n
k = alternate index of a balance load component where 1 ≤ k ≤ n
l = index of a load series where 1 ≤ l ≤ m
n = total number of balance load components
m = total number of load series of a balance calibration data set
N1 = normal force at the forward normal force gage of the balance
N2 = normal force at the aft normal force gage of the balance
p = total number of points of a data set or of a data subset
rAF = electrical output of the axial force gage
rN1 = electrical output of the forward normal force gage
rN2 = electrical output of the aft normal force gage
rS1 = electrical output of the forward side force gage
rS2 = electrical output of the aft side force gage
rRM = electrical output of the rolling moment gage
RM = rolling moment
S1 = side force at the forward side force gage of the balance
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S2 = side force at the aft side force gage of the balance
xi = first quantity
x = arithmetic mean of the first quantity
yi = second quantity
y = arithmetic mean of the second quantity

δ = balance load alignment error in degrees
ΔAF = axial force residual
ΔDj = difference of two residuals of balance load component Fj

ΔFj = residual of balance load component Fj (fitted minus applied or tare corrected load)
ΔN1 = forward normal force residual
ρ = linear correlation coefficient

I. Introduction

Sometimes high correlations between wind tunnel strain–gage balance load residuals and the applied
calibration loads are observed after the completion of a calibration data analysis when both the load residuals
and loads are plotted versus the load series number. These high correlations are “unexpected” because
no correlations between residuals and calibration loads should exist after the completion of the regression
analysis of the data.

Currently, it is unknown (1) what the exact sources of these correlations are, and, (2) how the unwanted
correlations could systematically be avoided. Preliminary investigations indicate that several factors may
influence the magnitude of the correlations. It appears, for example, that (i) the calibration load schedule
design, (ii) the regression model term selection, (iii) the complexity of the applied load combinations, (iv) the
load alignment, (v) the number of data points of each load series, and (iv) physical limitations of the balance
itself are connected in one way or another to the presence of the unexpected high correlations between load
residuals and loads.

In general, it is best to avoid unwanted high correlations between load residuals and the applied cal-
ibration loads in order (i) to gain confidence in the predictive capability of the regression model of the
balance calibration data and (ii) to achieve the best possible performance for a given balance design. Some
limited studies indicate that most of the high correlations can be suppressed by increasing the number of
the regression model terms that are used to fit the balance calibration data. This approach, however, has
its limitations as an increase of the number of regression model terms could also negatively influence the
predictive capability of the related regression models of the calibration data. An increase of the number
of regression model terms, for example, increases the risk of over–fitting the calibration data. It may also
introduce unwanted near–linear dependencies between regression model terms.

It was mentioned above that the exact sources of the unexpected high corrections are still not rigorously
understood such that they can systematically be avoided. Therefore, the authors decided to develop an
algorithm for the Ames Balance Calibration Laboratory that would be able to objectively detect the presence
of unexpected high correlations between load residuals and applied loads in a balance calibration data set.
Then, results of this detection algorithm could be used to more efficiently study potential sources of the high
correlations.

Basic elements of the new detection algorithm are discussed in the next section of the paper. Afterwards,
data from the baseline calibration of a six–component force balance is used to illustrate the application of
the algorithm to a real–world strain–gage balance data set.

II. Detection Algorithm

An algorithm for the detection of unexpected high correlations between strain–gage balance calibration
load residuals and the applied calibration loads was developed at the Ames Balance Calibration Laboratory.
The algorithm looks at correlations on a load–series–by–load–series basis as both the calibration hardware
and the orientation of the balance may change from one load series to the next.

First, the algorithm quantifies correlations between all possible residual/load pairs of the given balance
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calibration data set. The corresponding total number of correlation coefficients equals the square of the
number of balance load components times the number of load series. Afterwards, three criteria are applied
in order to identify those correlation coefficients that are considered “high” and should be studied in more
detail.

The correlations between all possible pairs of load residuals and calibration loads are quantified for each
load series by using the linear correlation coefficient. In general, the linear correlation coefficient for pairs of
data sets xi and yi is defined as

ρ =

p∑
i=1

(xi − x ) · (yi − y )

√√√√ p∑
i=1

(xi − x )
2 ·

√√√√ p∑
i=1

(yi − y )
2

where − 1 ≤ ρ ≤ +1 (1)

where x and y are the arithmetic means of the two given data sets (see Ref. [1] for a definition of the
linear correlation coefficient). The correlation coefficient takes on a value of +1 when the two tested data
sets are directly proportional and the constant of proportionality is positive. Similarly, the correlation
coefficient takes on a value of −1 when the two tested data sets are directly proportional and the constant
of proportionality is negative. A value of the correlation coefficient near zero means that the two data sets
are uncorrelated.

In our application, the first data set, i.e., xi, consists of load residuals that are obtained for the data
points of a specific load series after analyzing the balance calibration data using either the Iterative or the
Non–Iterative Method (see, e.g., Ref. [2] for a description of the Iterative Method). The second data set, i.e.,
yi, has the calibration loads of the load series. The variable p in the above equation equals the total number
of data points that the selected load series with index l has. Then, all generic parameters used on the left
and right hand sides of Eq. (1) can then be described as follows:

Table 1: Application of correlation coefficient to residual/load pairs.

PARAMETER BALANCE DATA SET INDEX RANGE

ρ ρ(j, k, l) 1 ≤ j ≤ n ; 1 ≤ k ≤ n ; 1 ≤ l ≤ m

p p(l) 1 ≤ l ≤ m

xi ΔFj(i, l) 1 ≤ j ≤ n ; 1 ≤ i ≤ p(l) ; 1 ≤ l ≤ m

yi Fk(i, l) 1 ≤ k ≤ n ; 1 ≤ i ≤ p(l) ; 1 ≤ l ≤ m

x =
1

p

p∑
i=1

xi ΔFj(l) =
1

p(l)

p(l)∑
i=1

ΔFj(i, l) 1 ≤ j ≤ n ; 1 ≤ l ≤ m

y =
1

p

p∑
i=1

yi Fk(l) =
1

p(l)

p(l)∑
i=1

Fk(i, l) 1 ≤ k ≤ n ; 1 ≤ l ≤ m

Amore reliable detection of a high correlation between residuals and loads may be achieved if correlations
between changes of quantities instead of correlations between the quantities themselves are investigated.
Therefore, the authors decided to use the change of the residuals and the change of the calibration loads
during a load series for the calculation of the correlation coefficients. The residual and load of the first point
of a load series are used as references for the definition of the change of the residuals and loads.
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Table 2: Alternate application of correlation coefficient to residual/load pairs.

PARAMETER BALANCE DATA SET

xi ΔDj(i, l) = ΔFj(i, l) − ΔFj(1, l)

yi Dk(i, l) = Fk(i, l) − Fk(1, l)

x =
1

p

p∑
i=1

xi ΔDj(l) =
1

p(l)

p(l)∑
i=1

ΔDj(i, l)

y =
1

p

p∑
i=1

yi Dk(l) =
1

p(l)

p(l)∑
i=1

Dk(i, l)

Now, basic elements of the detection algorithm can be summarized. First, using the changes of the
residuals and loads during a load series as input, the algorithm computes correlation coefficients for all
possible residual and load combinations for the given number of load series. Then, each computed correlation
coefficient is assessed. Three different conditions have to be fulfilled by a residual/load pair of a load series
in order to have an unexpected “high” correlation: =⇒ (I) The absolute value of the correlation
coefficient of the tested residual/load pair has to exceed the empirical threshold of 0.95. =⇒
(II) The maximum of the absolute values of the residuals of the selected load component and
load series has to exceed 0.25 % of the load capacity. =⇒ (III) The load component has to be
“intentionally” applied, i.e., the maximum of the absolute values of the loads of the series has
to exceed 10 % of the load capacity.

The detection algorithm was successfully implemented in NASA’s BALFIT regression analysis software
package (see Ref. [3] for a detailed description of the software). BALFIT reports correlations between
residual/load pairs whenever the mode “Data Reduction Matrix Calculation” is selected in combination with
the “Standard” or “Extended Version” of the analysis report. In that case, all residual/load combinations
with unexpected high correlations are reported to the user in both table and graphical format for further
evaluation. The application of the detection algorithm is illustrated in the next section of the paper by using
a baseline calibration data set of a six–component force balance as an example.

III. Discussion of Example

Data from the baseline calibration of the NASA Ames MK40 force balance was selected to illustrate the
application of the algorithm that detects unexpected “high” correlations between residuals and calibration
loads. The MK40 is a six–component TASK balance that measures five forces (N1, N2, S1, S2, AF ) and
one moment (RM). It has a diameter of 2.5 inches and a total length of 17.31 inches. Table 3 below shows
the load capacity of each load component.

Table 3: Load capacities of the NASA Ames 2.5in MK40 balance.

N1, lbs N2, lbs S1, lbs S2, lbs RM , in–lbs AF , lbs

CAPACITY 3500 3500 2500 2500 8000 400

The calibration of the balance was performed using the traditional “hand load” method. A total of
164 data points were taken in 16 load series. Figure 1 shows the calibration load schedule of the baseline
calibration (the tare corrected calibration load in percent of load capacity is plotted versus the data point
index and load series number). It has to be pointed out that the chosen baseline calibration of the MK40
balance is incomplete as calibration hardware limitations did not allow for the simultaneous application of
the normal force (side force) and axial force. However, the data set contains enough information about the
physical behavior of the balance so that the proposed detection of unexpected correlations between load
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residuals and loads can be demonstrated.
All balance loads were corrected for the weight of the balance shell, calibration body, and other hardware

before the final regression analysis was performed. Then, the tare corrected calibration data was analyzed
using the Iterative Method so that residuals of the 164 data points for each load component could be de-
termined (see Ref. [2] for a description of the Iterative Method). For simplicity, the following math term
group combination was selected for the regression analysis of the balance calibration data: Fj , |Fj |, Fj ∗ Fj ,
Fj ∗ Fk. The symbols Fj and Fk represent the balance load components as the regression model used by
the Iterative Method fitted each of the six gage outputs, i.e., rN1, rN2, . . . , rAF , as a function of the related
six balance load components N1, N2, . . . , AF . Figure 2 shows the regression models of the six gage outputs
that were used for the analysis of the calibration data. Each column represents the math model selection of
a balance gage. The chosen regression model terms are identified by black rectangles. Combined loads were
only applied for the normal force and side force components during the calibration of the MK40 balance.
Therefore, the chosen calibration data only supported the cross–product terms N1 ∗N2 and S1 ∗ S2.

Figure 3 shows the load residuals of the baseline calibration data after (i) the regression models described
in Fig. 2 were determined, (ii) the resulting data reduction matrix coefficients were obtained, and (iii) the
load iteration was performed. The load residuals, expressed as a percentage of the load capacity of each load
component, are plotted versus the data point index and load series number. The dot–dashed lines mark the
0.25 % threshold that is traditionally used to assess the magnitude of balance load residuals. In addition,
alternating gray regions mark the 16 load series of the calibration data set. It can be seen that the load
residuals of only a few data points are outside of the region that is bound by the ±0.25 % threshold.

In the next step, correlation coefficients for all residual/load pairs of each load series were computed.
The MK40 balance has six load components and the calibration data set consisted of sixteen load series.
Therefore, the total number of possible correlation coefficients is 576 (6 × 6 × 16). The tables depicted in
Figs. 4a and 4b list all 576 computed correlation coefficients including the maximum of the absolute values of
the residuals for each load residual and load series. No “high” correlation coefficients between the residuals
and loads were detected as no residual/load pair met the three conditions that are highlighted in boldface
in the previous section of the paper. However, several residual/load pairs had correlation coefficients near
±0.95. As an example, four of these correlation coefficients are highlighted by the blue and green boxes in
Fig. 4a. The blue box shows that the forward normal force N1 of load series 1 and 2 was correlated to its
residual ΔN1. In addition, the green box shows that the aft normal force N2 of load series 3 and 4 was also
correlated to the residual ΔN1. The reader could have also “qualitatively” come to the same conclusion
by visually inspecting the corresponding residual/load pairs that are highlighted by blue and green boxes in
Fig. 5 (Fig. 5 shows the forward normal force residuals ΔN1 of the calibration data set plotted versus the six
tare corrected calibration N1, N2, . . . , AF , the data point index and the load series). The MK40 calibration
data example illustrates that the proposed detection algorithm is working as intended.

IV. Detection of Load Alignment Errors

In the introduction it was asserted that the detection algorithm could potentially be used to automat-
ically identify a load alignment error in a balance calibration data set. This characteristic of the algorithm
can be demonstrated, for example, by simulating effects of an assumed misalignment of the forward normal
force component (N1) on the axial force gage outputs (rAF ) of a single load series of the MK40 balance
calibration data set. In that case, the absolute value of the correlation coefficient of the data pair defined
by the axial force load residual (ΔAF ) and the forward normal force (N1) is expected to be “high” for the
selected load series if the modified calibration data set is processed.

The simulation of the axial force gage outputs associated with the assumed misaligned forward normal
force was done in several steps. Data of load series 1 was chosen to be modified. Figure 1 shows the original
tare corrected calibration loads of load series 1. First, the maximum axial force AFmax of load series 1 was
computed that is assumed to be caused by a misalignment of δ = 0.05◦ of the applied forward normal force.
It is the largest axial force error of load series 1 that is caused by the misalignment of the forward normal
force. The following relationship was used to obtain AFmax where N1max is the largest value of N1 that is
applied during load series 1:

AFmax = N1max · sin δ = 2200 [lbs] · sin 0.05◦ = 1.92 [lbs] (2)
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The computed axial force error AFmax of 1.92 [lbs] for the alignment error of δ = 0.05◦ is large. It
corresponds to approximately 0.48 % of the axial force capacity of the MK40 balance.

In the next step, the tare corrected loads of the original calibration data set were modified. Therefore,
the tare corrected axial forces of load series 1 were changed by adding a small perturbation that is associated
with the assumed misalignment of the forward normal force. Consequently, the modified axial force was
computed by using the following linear relationship between the axial force perturbation and the applied
forward normal force component:

AF ′︸︷︷︸
simulated load

= AF︸︷︷︸
original load

+ AFmax · N1

N1max︸ ︷︷ ︸
perturbation

(3)

Other load components of load series 1, i.e., N1, N2, S1, S2, and RM , were not modified. At this point,
all loads of load series 1 are known that are caused by the misaligned forward normal force. It only remains
to predict the gage outputs of the modified load set of series 1 so that the desired data simulation can be
completed. The regression models of the six gage outputs of the original calibration data set are needed for
this purpose because they make it possible to predict gage outputs of the modified load set of load series 1.
These regression models are easy to obtain because they are an intermediate analysis result if the Iterative
Method is used for the processing of balance calibration data (see Ref. [2] for a detailed description of the
Iterative Method).

The regression models of the six gage outputs were obtained from the original calibration data of the
MK40 data set. Then, the perturbed axial force and the remaining five original load components of load
series 1 were used as input for these regression models in order to generate the simulated outputs of load
series 1. They are the final modified gage outputs that the calibration points of load series 1 have as a result
of the misalignment of the forward normal force.

Finally, the original gage outputs of load series 1 in the calibration data set of the MK40 balance were
replaced by the corresponding modified outputs. Afterwards, the 16 load series of the modified calibration
data set were processed as before and correlation coefficients of all possible load and residual pairs were
computed.

Figure 6 shows the axial force residual (ΔAF ) and the forward normal force (N1) of the modified
calibration data set plotted versus the data point index and load series number. Initially, it was a surprise
to the authors that no “high” correlation between the axial force residual and the forward normal force
of load series 1 is visible in Fig. 6 even though effects of the misalignment are “hidden” in the modified
gage outputs. A detailed investigation of this observation revealed that the unexpected result is caused by
the fact that no alternate load series with a positive forward normal force component is contained in the
modified calibration data set for comparison. Therefore, the least squares fit implicitly treated the modified
gage outputs of load series 1 like “perfect” error–free balance data. The least squares analysis simply did
not have access to a “repeat” of series 1 that could be used to examine the validity of the loads and outputs
of series 1. Consequently, the authors concluded that the addition of a “repeat” of series 1 to the modified
calibration data set could potentially reveal the “hidden” alignment problem in load series 1 as long as this
“repeat” series would have no alignment errors. The authors tested their hypothesis by simply including the
original loads and outputs of load series 1 as load series 17 in the modified calibration data set. Afterwards,
this extended data set was processed as before.

Figure 7a shows the axial force residual (ΔAF ) and the forward normal force (N1) of the extended
calibration data set plotted versus the data point index and the load series number. The red box in Fig. 7b
lists the computed correlation coefficients of the data pair defined by the axial force residual (ΔAF ) and the
forward normal force (N1) for all 17 load series. Several observations can be made after reviewing results
that are shown in Fig. 7a and Fig. 7b. First, a “high” correlation between the axial force residual and the
forward normal force is visible for load series 1. The corresponding correlation coefficient was computed to
be “−1” (see Fig. 7b). This result indicates that the detection algorithm correctly identified the “hidden”
connection between the axial force residual and the forward normal force of load series 1. It is also interesting
to observe that the largest axial force residuals of series 1 and series 17 are of similar magnitude (0.25 %
for series 1; 0.33 % for series 17). It seems that the maximum alignment error computed in Eq. (2), i.e.,
0.48 %, was approximately split in half and afterwards assigned to the two load series. Consequently, the
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least squares fit recognized that some kind of “contradiction” between the axial force gage outputs of load
series 1 and load series 17 exists. However, it is also important to point out that the axial force residuals
of load series 17 are large (up to 0.33 % of capacity) but not correlated with the forward normal force (the
corresponding correlation coefficient is listed in Fig. 7b as “+0.81”). In other words, the detection algorithm
correctly concluded that the data of load series 1 (and not the data of load series 17) is causing the elevated
levels of the axial force residual.

Two important conclusions can be drawn from results that are shown in Fig. 7a and Fig. 7b. First,
“repeat” load series are important in order to mathematically detect “hidden” misalignments in balance
calibration data. In addition, the correlation coefficient definition of the proposed detection algorithm has
the ability to positively identify a load series that has load alignment errors.

V. Summary and Conclusions

Basic elements of a new detection algorithm were presented that tries to identify unexpected “high”
correlations between residual/load pairs of a strain–gage balance calibration data set. The detection algo-
rithm was successfully implemented in NASA’s BALFIT software package. Data from a baseline calibration
of the NASA’s MK40 six–component force balance was used to illustrate the application of the new detection
algorithm to a real–world data set. It was also shown that the detection algorithm can positively identify
load alignment errors in a load series as long as the given balance calibration data set has a “repeat” of the
questionable load series that does not suffer from a load alignment error.

Results of the detection algorithm will be used in the future to systematically study potential sources for
“high” correlations between residuals and applied loads of a balance calibration data set. In particular, the
following three questions will guide these investigations: How exactly does the math term selection influence
correlations between residuals and loads? How can a calibration load schedule be improved such that “high”
correlations between residual and loads are avoided? How do load alignment errors influence the magnitude
of the correlations? These investigations may lead to recommendations that could help minimize or avoid
the unwanted correlations between load residuals and loads of a balance calibration data set.
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Fig. 1 Tare corrected calibration loads of the MK40 strain–gage balance.
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Fig. 2 Math models of the six gage outputs of the baseline calibration data set.
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Fig. 3 Calibration load residuals for the selected math models.
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Fig. 4a Correlations coefficients 1 to 300 of the residual and load combinations.
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Fig. 4b Correlations coefficients 301 to 576 of the residual and load combinations.
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Fig. 5 Forward normal force residuals plotted versus the tare corrected loads.
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Fig. 6 Axial force residual plotted versus the tare corrected forward normal force;
a repeat of series 1 with the original gage outputs is not included.
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Fig. 7a Axial force residual plotted versus the tare corrected forward normal force;
a repeat of series 1 with the original gage outputs is included as series 17.
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Fig. 7b Correlation coefficients of data pairs defined by the axial force residual and
the tare corrected forward normal force of the 17 load series.
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