
1 
 

 

 

 

Title: Mode I Cohesive Law Characterization of Through-Crack Propagation 

in a Multidirectional Laminate 
 

Authors: Andrew C. Bergan 

 Carlos G. Dávila 

 Frank A. Leone 

 Jonathan Awerbuch 

 Tein-Min Tan 

 

  



1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

A method is proposed and assessed for the experimental characterization of 

through-the-thickness crack propagation in multidirectional composite laminates 

with a cohesive law. The fracture toughness and crack opening displacement are 

measured and used to determine a cohesive law. Two methods of computing 

fracture toughness are assessed and compared. While previously proposed cohesive 

characterizations based on the  -curve exhibit size effects, the proposed approach 

results in a cohesive law that is a material property. The compact tension specimen 

configuration is used to propagate damage while load and full-field displacements 

are recorded. These measurements are used to compute the fracture toughness and 

crack opening displacement from which the cohesive law is characterized. The 

experimental results show that a steady-state fracture toughness is not reached. 

However, the proposed method extrapolates to steady-state and is demonstrated 

capable of predicting the structural behavior of geometrically-scaled specimens. 

INTRODUCTION 

Structural failure of composite laminates occurs after the evolution and 

interaction of various damage mechanisms. Damage progression can be idealized at 

several length scales to model this behavior. Analyses have been proposed 

idealizing damage at the microscale [1], mesoscale [2], structural [3, 4], or some 

combination of scales [5]. For the case of a generic composite laminate structure 
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with a notch subjected to mode I loading, the following idealizations are common at 

each scale. At the microscale, fiber breaks and fiber-matrix debonds are observed 

and idealized. At the mesoscale, damage is often idealized as intralaminar cracks 

and delaminations between plies. At the structural scale, in-plane damage may 

coalesce into a through-the-thickness crack and delaminations may occur at 

structural interfaces. For progressive damage analysis, it is common and convenient 

to idealize damage at the mesoscale because the kinematics of the various damage 

mechanisms are influenced by the ply thickness and orientation [2]. However, for 

problems where no single mesoscale damage mechanism dominates the response, it 

may be sufficient to smear the effects of the micro- and mesoscale damage 

mechanisms and idealize damage at the structural scale. Structural scale damage 

idealization is desirable because significantly fewer degrees of freedom are required 

for macroscale representation compared with a mesoscale representation. One 

problem that has been idealized at the structural scale with some success is residual 

strength prediction of a notched composite structure [3, 4], which is a commonly 

used configuration in damage tolerance assessments [6]. For laminates with 

conventional stacking sequences under mode I dominant loading, the damage 

propagation from the notch is often collinear with the notch [7] and can be idealized 

as a through-crack. 

In order to predict the propagation of a laminate through-crack accurately, it is 

necessary to consider the influence of various damage mechanisms such as matrix 

cracks, fiber breaks, and delamination acting at the micro- and mesoscale within a 

physical process zone of length,     . The cohesive zone model (CZM) is 

commonly used for analyzing fracture initiation and propagation when the process 

zone is non-negligible [8–10]. The CZM represents the process zone as a zero 

thickness interface on which cohesive tractions,  , are governed by a cohesive law 

 
       (1) 

which specifies   in terms of the crack opening displacement,  . 

Cohesive laws of various forms have been suggested to be material properties 

and used to model the process zone with some success [11]. Under small-scale 

bridging (SSB) conditions, where      is small compared with other length scales in 

the problem, a bilinear cohesive law 
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is sufficient to model the fracture process, where   is the penalty stiffness,    is the 

cohesive strength, and    is the fracture toughness [12]. The cohesive law 

comprises an initial linear segment (2a) with a high stiffness specified by the 

numerical parameter   and a softening segment (2b). The process zone length of a 

cohesive law,     
 , can be approximated as 
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where, for isotropic materials,   is the Young’s Modulus and   is a nondimensional 

parameter that depends on the specific model. However, bilinear cohesive laws 

have been unable to predict laminate through-crack propagation uniformly and 

accurately (see e.g. [3, 4, 12, 13]).  

The importance of the shape of the cohesive law for predicting laminate 

through-crack propagation suggests that large scale bridging (LSB) conditions 

dominate. Under LSB, where      is large compared with relevant length scales, the 

shape of the softening law is fundamental and must be represented accurately [14–

17]. Laminate through-crack process zone lengths have been observed 

experimentally to be several times the laminate thickness [18]. The relation between 

the cohesive law shape and the structural response was studied with parametric 

finite element (FE) analyses in reference [4] and it was concluded that a cohesive 

law with convex softening can predict through-crack propagation accurately for a 

variety of configurations. 

An inexpensive and reliable experimental method for characterizing the 

cohesive law is needed. Cohesive law characterization procedures have been 

demonstrated for delamination under mode I and mode II loading where LSB 

conditions prevail [17, 19]. These methods were derived such that the cohesive law 

is guaranteed to be a material property [16, 17]. In contrast, the state-of-the-art 

method for cohesive law characterization of a through-crack, reference [12], is 

based on the crack growth resistance curve, or  -curve, which is a structural 

property under LSB conditions. Therefore, the existing method cannot be expected 

to yield a cohesive law that is a material property if the      is large. The objective 

of this work is to introduce and demonstrate a general method for characterizing the 

cohesive law of a laminate through-crack under mode I loading. A secondary 

objective is assess the suitability of two data reduction methods to compute fracture 

toughness, namely, the J-integral method and the modified compliance calibration 

(MCC) method. 

The remainder of this paper is organized as follows. The next section reviews 

two methods for calculating the  -curve and assesses the existing fracture-based 

method of determining a cohesive law for a through-crack using the  -curve. The 

following section demonstrates the adaptation of Sørensen and Jacobsen’s method 

[17] that is proposed for cohesive law characterization of laminate through-cracks. 

The proposed method is verified numerically and approximations introduced for 

experimental convenience are shown to contribute only minor error to the cohesive 

characterization. Next, this method is applied experimentally for a particular 

laminate that is a candidate for use in the skin of future aerospace structures. 

Results are compared for two specimen sizes to examine the scalability of the 

cohesive characterization. 

THE R-CURVE 

Recently, emphasis has been placed on determining the  -curve for intralaminar 

fiber fracture of an in-situ ply to be used as input for mesoscale progressive damage 

models [20]. The cross-ply compact tension (CT) specimen proposed by Pinho et al. 

[21] has been applied with some success and a method has been developed to 

quantify a trilinear cohesive law based on a measured  -curve [12]. The basic 
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geometry of the CT specimen is shown in Figure 1. The specimen proposed by 

Pinho et al. has a width  =2.01 inches and a thickness of 0.156 inches. Several 

data reduction procedures were proposed and compared in references [21, 22]. The 

two preferred methods of determining the  -curve from CT tests are reviewed in 

the following sections: the J-integral method  [23, 24] and the MCC method [12, 

21, 25]. 

J-Integral Method 

The J-integral method can be used to determine the fracture toughness at 

increments of crack growth by computing Rice’s J-integral [26] around a contour 

enclosing the process zone using displacement data obtained from digital image 

correlation (DIC). The J-integral is 

   ∫ (       
  

   
  )

 

 (4) 

where the    direction is aligned with the crack propagation direction,   is a 

contour chosen within the elastic region such that it encloses the inelastic process 

zone (example shown in Figure 1),   is the strain energy density,   is the traction 

vector, and   is the displacement field. The strain and displacement data are 

obtained from DIC data and the stresses are computed from strains using classical 

lamination theory. The  -curve,       , is obtained by computing the contour 

integral (4) at several increments of crack growth,   . The crack length can be 

measured visually [22], identified from correlation measurements computed by DIC 

[23], or by using equation (4) in conjunction with the M-integral [24], which is a 

contour integral derived in reference [27] to extract the mode I and mode II stress 

 

Figure 1. Composite CT specimen configuration 
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intensity factors from the total energy release rate. The advantage of the J-integral 

method is that it completely characterizes the effect of the process zone and 

intrinsically contains the softening law. However, the J-integral method is 

cumbersome to apply because the contour that encloses the entire inelastic region is 

often unclear without complementary inspection to assess the extent of damage. 

The MCC Method 

In contrast to the J-integral method, which allows for arbitrary inelastic 

behavior at the notch tip, the MCC method is derived assuming linear elastic 

fracture mechanics (LEFM) conditions at the crack tip. The MCC method computes 

the strain energy release rate,  , with the well-known equation [25, 28] 

   
  

  

  

  
 (5) 

where   is the applied load,   is the thickness,        is the specimen 

compliance where    is the opening displacement measured along the load line, and 

  is the crack length. When a crack is characterized accurately with LEFM,    . 

However, in general     when the process zone size is non-negligible [16]. 

While no assumptions of the conditions at the crack tip are included in equation 

(5), practical application requires 

        (6) 

which inherently requires some assumption of the crack tip conditions as they effect 

the compliance. Often equation (6) is derived theoretically, approximated from a 

numerical model, or determined experimentally. In all cases, the effect of the 

process zone on compliance is ignored (e.g. [22, 25]), which is a valid assumption 

under SSB conditions. However, ignoring the effect of cohesive tractions on 

compliance is strictly invalid for arbitrary cohesive laws under LSB conditions [16], 

[17, 29]. Tamuzs et al. examined this assumption using FE in which a cohesive law 

was assumed such that LSB conditions prevailed [30]. It was demonstrated that 

when equation (5) is written as a function of   and    so that crack length is 

eliminated from the expression, the resulting    was in good agreement with   . 

In order to apply equation (5) to an orthotropic CT specimen, Dávila et al. 

proposed a curve fit for equation (6) based on a FE model because a theoretical 

solution is unavailable [12]. Three fit parameters,  ,  , and  , were selected so that 

   
  

 
            (7) 

fit the numerical model results for a range of crack lengths. Substituting equation 

(7) into equation (5) 

   
  

  

      
    

 
 
 

 
 (8) 
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which is convenient in that it eliminates the need for a visually measured crack 

length, which is difficult to discern consistently and accurately. Rearranging (7), an 

effective crack length,     , can be obtained 

      
 

 
        (9) 

where it is noted that      lies within the process zone. Some error is introduced in 

equation (8) when the fit for equation (6) is based on a linear FE model because the 

expression for equation (6) ignores the contribution of the cohesive tractions to the 

compliance. Therefore, the MCC method should be recognized as an approximation 

in contrast to the J-integral method, which introduces no such assumptions. The 

primary benefit of the MCC method compared to the J-integral method is its 

simplicity. 

Comparison of the J-integral and MCC methods 

A parametric FE model of the CT specimen was used to assess the accuracy of the 

MCC method compared with the J-integral method. In addition, the effect of 

specimen size was considered. The model was developed in Abaqus using four 

node 2D continuum elements [31]. The same specimen configuration as in 

references [12, 21] was used (Figure 1): the initial specimen width was     2.01 

inches; the layup was [90/0]8s with a ply thickness of 0.0049 inches; and the ply 

properties were     19.10 Msi,     1.28 Msi,      6.67 Msi, and      0.32. A 

row of superposed, zero-thickness, four-node cohesive elements (COH2D4) was 

placed ahead of the notch tip and the trilinear cohesive law from reference [12] was 

used with         lbf/inch,        ksi,    0.556, and   0.866. As in 

reference [12], the superposed bilinear cohesive laws,   and    were defined as 

   
     ;    

     ;        (10a) 

   
         ;    

         ;            (10b) 

such that maximum cohesive stresses occur at the same opening displacement as 

shown in Figure 2 [12]. 

 

Figure 2. Trilinear cohesive law formed by superposing two bilinear cohesive laws 
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The material properties listed above are identical to those used in reference [12] 

except    and  , which were updated based on more recent test data. 

The  -curves calculated using the J-integral and MCC methods from the 

numerical model are shown in Figure 3 for three specimen sizes. The specimen 

width,  , was increased while keeping the cohesive element length constant. The 

MCC method was computed using equation (8) while the J-integral was computed 

using the domain integration method (built-in to Abaqus) because it is more 

accurate than direct numeric implementation of the contour integral [32]. The 

change in crack length,   , was measured from the initial notch to the farthest 

damaged element. The stair-step behavior for     0.1 is due to the element size; 

smaller elements would smooth this nonphysical effect. It is observed in Figure 3 

that the MCC method yields a relatively close approximation of the J-integral result 

for all three specimen sizes. 

The results in Figure 3 also show that both the MCC and J-integral methods 

predict the fracture process zone length measured from the initial crack length to 

where the  -curve reaches a steady-state,     
 , increases with the specimen size. 

The dependence of     
  on specimen size is likely due to the changing influence of 

the compressive region at the back edge on the process zone and, to a lesser degree, 

specimen compliance. It is important to recall that the cohesive law is assumed to 

be a material property whereas, under LSB conditions, the  -curve and    are 

influenced by the structure. This was theoretically postulated by Suo [16] and 

demonstrated experimentally and numerically for DCB specimens under LSB 

conditions by Sørensen and Jacobsen [17]. The numerical results in Figure 3 

demonstrate the same behavior for the CT configuration, namely, that the     
  and 

the  -curve are structural properties. The results suggests that LSB conditions 

should be considered in analysis and characterization of through-crack propagation 

in composite laminates. 

Dávila et al. proposed a definition for   and   based on the experimentally 

measured  -curve as 

   
  

 

  
 (11) 

          
     

 

     
  (12) 

where   
 
 is the initiation fracture toughness. The cohesive law is thus defined by 

  ,   ,   
 , and     

 . Clearly, this model is not appropriate to characterize the 

cohesive law here because the sensitivity of     
  to the specimen size (Figure 3) 

indicates each specimen size yields a different cohesive law. In other words, the 

numerical analysis results suggest   varies with specimen size, yet the same 

cohesive law was used as input to define the model for all three sizes. The 

significance of this deficiency is that the methodology to extract a cohesive law 

from experimental  -curves using equations (10)-(12) does not result in a unique 

set of material properties when LSB conditions prevail. 
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COHESIVE LAW CHARACTERIZATION 

An expression for the cohesive law in terms of    was obtained by Suo et al. as 

follows [33]. The J-integral (4) is evaluated around a cohesive crack 

    ∫       

  

 

 (13) 

where    is the critical opening at which a traction free crack is formed. 

Differentiating equation (13) with respect to   gives the cohesive law 

      
   
  

 (14) 

Suo et al. suggested that (14) could be used to characterize the cohesive law. 

Subsequently, other authors have done so for specimen configurations in which a 

closed-form solution for the J-integral is available [17, 19]. 

Proposed Cohesive Law Characterization Method 

As an alternative to computing the J-integral, the MCC method can be used in 

equation (14) if       is assumed, in which case equation (14) is replaced by 

      
   

  
 (15) 

which is a convenient basis for characterizing a though-crack cohesive law. As 

stated above, the MCC method is preferred to the J-integral method for its relative 

simplicity. For experimental application,   can be measured easily using DIC 

without the unique experimental setup used in [17]. 

 

Figure 3. Comparison of the  -curve determined by the J-integral and MCC methods using 

geometrically scaled numerical models. The effect of specimen size on     
  is highlighted. 
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In practical application, it is beneficial to fit the       data to an analytic 

expression derived in terms of parameters that have physical significance. The 

analytic fit is differentiated in equation (15) instead of differentiating the       

data numerically. The primary benefit of curve fitting the       data is that a set of 

meaningful parameters that define the cohesive law are obtained. However, the 

curve fit must be sufficiently general and representative of the test data. A cohesive 

law with concave softening, similar to the trilinear cohesive law shown in Figure 2, 

was shown capable of representing the softening behavior observed in a variety of 

laminates through parametric experimental investigation [4]. 

An expression for the trilinear cohesive law is formulated and integrated in 

order to fit the       data. The trilinear cohesive law is defined as 

      {

           

            

            

 (16) 

where 

          (17a) 

       
          

    
     (17b) 

       
  

       

        
           (17c) 

where, for the purpose of formulating       and      , it is assumed that       

and therefore     . For the purpose of the curve fit,       can be ignored 

because it is independent of the four parameters that define the cohesive law (  , 

  ,  , and  ) and     . The stress at the transition between       and       is  

    
            

      
 (18) 

Substituting (17) into (13) and integrating yields  

           
           

 

    
        (19a) 

           
  

         

        
             (19b) 

where      assuming             0 and    is specified so that            
           to enforce continuity in        . Equation (19) can be fit to the test data by 

selecting   ,   ,  , and   such that the residual,  , is minimized 
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   ∑|    
    

 |

  

 

 (20) 

where    is the number of data points,     
  is the analytic fracture toughness 

computed for data point  , and   
  is the value of fracture toughness for data point  . 

The four parameters that define the cohesive law,   ,   ,  , and  , are thus 

characterized by fitting (19) to the measured       data. 

Numerical Verification 

The FE model of the CT specimen with the trilinear cohesive law described 

above was used to assess the proposed cohesive law characterization methodology. 

Both the J-integral and MCC methods were considered with the aim of quantifying 

the error introduced when using the MCC method compared to the J-integral 

method. Based on equation (14), it seems appropriate to plot    vs.   as proposed in 

reference [17], instead of the conventional  -curve plot of    vs.   . Plotting    vs. 

  is preferable to    vs.    because of the inherent ambiguity of the crack tip 

location within large process zones and the dependence of process zone length on 

specimen compliance as was shown in Figure 3. Figure 4 shows normalized 

fracture toughness as a function of normalized crack tip opening for both the J-

integral and MCC methods. The J-integral results were nearly identical for all three 

specimen sizes as expected, and therefore shown by the single solid line. The MCC 

method generated slightly different results for each specimen size, denoted by the 

broken lines. The MCC method underpredicts the fracture toughness as the fracture 

process zone develops and overpredicts the steady-state fracture toughness by 2%. 

The discrepancy between    and    in Figure 4 is quite similar to that observed in 

Figure 3.  

 

Figure 4. Fracture toughness vs. crack tip opening displacement computed by the J-integral and MCC 

methods for different specimen sizes 
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The proposed cohesive law characterization methodology was applied to the 

results from the numerical model. The accuracy of the cohesive law 

characterization was quantified through comparison to the cohesive law defined in 

the model input. For verification, the J-integral method was considered as well (   

instead of    is used in the second term of equation (20)). Figure 5a shows a 

comparison of the cohesive laws. Using both the J-integral and MCC methods, a 

good approximation of the input cohesive law is obtained. However, the J-integral 

method is slightly better than the MCC method. The  load vs. displacement 

responses predicted by the cohesive law characterizations also help to quantify the 

procedure accuracy. Figure 5b shows that the cohesive law characterized using the 

J-integral reproduced the  load vs. displacement nearly identically to the original 

model. The  load vs. displacement prediction from the cohesive law characterized 

using the proposed method (with MCC) underestimated the peak load by 6.9%. 

This relatively small error indicated that the proposed approach is an acceptable 

approximation. The characterized cohesive law parameters and corresponding 

percent error are summarized in Table I. 

 

Figure 5. Verification of cohesive law characterization 

 

TABLE I. CHARACTERIZED COHESIVE LAW PARAMETERS 
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Measurement of   

The proposed cohesive law characterization is sensitive to the location at which   is 

measured. Theoretically,   is measured across the cohesive interface at the notch 

tip. For experimental application,   is measured between the two points shown in 

Figure 6a, which are initially separated by a nonzero distance,  . When using DIC, 

displacement data is not computed immediately at the notch tip because such edge 

data is unreliable. Thus, the DIC-measured crack tip opening displacement,     , is 

taken at points with     where the particular value of   is related to the subset 

size. The FE model introduced above was used to investigate the effect of   on the 

         and the results are shown in Figure 6b. For    ,    rises nearly vertically 

due to the cohesive element penalty stiffness, after which the curve is 

approximately linear with a slope equal to the cohesive strength. In contrast, when 

   ,    resembles a convex parabolic curve before reaching a linear range with 

the same slope as when    . Therefore,      should be offset so that the initial 

nonlinearity is removed such that 

            (21) 

where   is the intercept and   is the slope of a line fit through the linear portion of 

the          curve. 

 

 

Figure 6. Predicted effect of crack opening displacement measurement location on       
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Experimental Procedure 

The proposed approach was used for experimental characterization of the 

cohesive law of a thin multidirectional laminate. Specimens of two sizes were 

fabricated from flat panels with the configuration shown in Figure 1 following the 

standard used for testing metals [37], as proposed for composites by Pinho et al. 

[21]. The purpose of the larger specimens was to validate that a cohesive law 

characterized using the small specimens is capable of predicting the behavior of 

larger structures. The specimens are designated ‘S’ and ‘L’ for small (  = 2.01 in.) 

and large (W = 4.02 in.), respectively. Figure 7 shows a photograph of a typical 

specimen of each size. All specimens had a [±45/902/0/902/±45]s layup with a 

laminate thickness of 0.104 inches. The material comprised AS4 fibers formed as a 

non-crimp fabric and VRM-34 resin infused and oven-cured. The notch was 

machined in two steps. For convenience, a 0.16-inch-wide notch was machined for 

the majority of the notch length. The notch was extended to the length        

with an abrasive slurry wire saw, using a 0.005-inch-diameter wire. The geometry 

of ‘S’ is identical to that of reference [21] except that the ratio of the length of the 

fine notch to the wide notch is larger, which may help suppress damage at the wide 

notch tip observed in some previous CT tests.  

Five replicates of both sizes were tested under displacement control at a loading 

rate of 0.01 and 0.02 inches per minute for the small and large specimens, 

respectively. Load was recorded with a 5 kip load cell. Full-field displacements 

were recorded using VIC-3D [38]. 

 

Figure 7. Photograph of typical CT specimens 
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Anti-Buckling Guide 

A limitation of the CT configuration is the susceptibility for buckling when the 

thickness is small and the fracture toughness is high. While the specimen thickness 

has been selected to preclude buckling in previous tests of cross ply laminates [34], 

the multidirectional laminate of interest here is relatively thin as is typical for 

fuselage skins. Catalanotti et al. [35] proposed a method using a series of 

geometrically scaled double edge notched specimens as an alternative to the CT 

configuration largely because of buckling. If buckling can be suppressed, the CT 

configuration is desirable because only a single specimen is required to characterize 

the cohesive law. For fracture toughness testing of metals, buckling is prevented 

with Teflon coated plates that loosely sandwich the specimen [36]. For the present 

tests, an alternative anti-buckling design was developed and employed to minimize 

contact with the specimen and thus limit interaction with developing damage. The 

anti-buckling guide is shown schematically in Figure 8a. The two pieces of the anti-

buckling guide clamp the back edge of the specimen and were constrained so that 

    0 at the far end. It addition, shims were used between the clevises and 

specimen to center the specimen within the clevises and prevent local buckling. 

A FE model of the specimen and anti-buckling guide was used to verify all 

buckling modes were suppressed for the applied displacement range anticipated 

during the test. The specimen was modeled with shell elements and the anti-

buckling guide was modeled with beam elements in Abaqus [31]. A kinematic 

coupling constraint was used to constrain the clamped portion of the CT specimen 

 

Figure 8. Anti-buckling guide schematic and FE results used to size the guide 
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to the anti-buckling guide. The flexural rigidity of the anti-buckling guide was 

varied and the eigenvalue buckling displacements were recorded. Figure 8b 

summarizes the results for the large specimens. Based on these results, an anti-

buckling guide with bending stiffness of     1 x 10
5
 lbf-in

2
 was chosen. This 

stiffness ensured all buckling was suppressed to a displacement 1.5 times the peak 

anticipated displacement in the test. It is noted that higher flexural rigidity yields 

diminishingly higher displacement capability, such that larger CT specimens would 

be impractical for this particular laminate. 

Test and Analysis Results 

The  load vs. displacement test results show relatively low scatter with 

consistent peak load levels. The load vs. load-line displacement results for both 

specimen sizes are shown in Figure 9. Visually observed damage initiation loads 

correspond with deviations from linearity in the load vs. displacement record, as 

shown for one large specimen in Figure 10. Damage was first observed as a 

splitting crack oriented along the 45°-direction, parallel to surface ply orientation. 

The DIC coefficient correlation, or measure of how a well a pixel is correlated 

between the images from the two cameras, indicated damage by poor correlation 

compared to the surrounding region. Damage propagated slowly and stably with the 

stick-slip behavior characteristic of fracture in composite laminates. Catastrophic 

failure occurred due to compressive failure at the back edge and so all results were 

truncated prior to indication of compressive failure. 

Out-of-plane displacements were monitored using DIC and found to be small 

for all specimens. The deformed shapes observed resembled the buckling modes 

determined by analysis. However, the deformation occurred slowly and uniformly 

as load increased and was small in magnitude suggesting it was due to 

misalignment. 

 

Figure 9. Measured  load vs. displacement for the small and large CT specimens showing all 

replicates 
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Figure 10. Damage initiation for one large specimen as observed in the load vs. displacement record, 

visually, and via the DIC correlation coefficient 

 

 

The  -curves were computed using the MCC method (8) and are shown in 

Figure 11, where the abscissa is the effective crack length,      , computed using 

(9). The J-integral (4) was computed for one specimen at five stages of damage 

growth and the results were found to agree well with the MCC method, as shown 

with the black circles in Figure 11a. It is observed that the  -curves for the small 

and large specimens are consistent, with the large specimens providing more 

damage propagation prior to catastrophic failure. The results do not give an 

indication of the  -curve reaching steady-state. Since no steady-state fracture 

toughness is reached, it is not possible to ascertain a process zone length from these 

results, and so the cohesive characterization method proposed in [12] is 

inapplicable. 

Figure 12 shows    computed with the MCC method vs. notch tip opening 

displacement measured with DIC. It is observed that the results from the small and 

large specimens are consistent. The behavior of    can be segmented into two 

distinct ranges of  . For     , the results are concave as softening initiates. For 

    , the curvature is smaller but remains concave. In these tests,     0.008 

inches. These results suggest a piecewise linear cohesive law with convex softening 

is appropriate because the corresponding piecewise quadratic       can 

approximate the test data well. 

The proposed cohesive law characterization procedure was applied considering 

two sets of test data. In the first case,              , test data from both the small and 

large specimens were used in (20). In the second case,             , test data from 

only the small specimens were used in (20) for the purpose of demonstrating that 

the cohesive law characterization can predict the behavior in larger specimens 

accurately (i.e. the cohesive law is a material property). The results obtained from 

the two characterizations are compared in the following. 
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Figure 11. Experimentally measured  -curves where the solid lines are computed using the MCC 

method (8) and the black circles are computed using the J-integral method (4) 

 

Figure 12. Experimentally measured fracture toughness vs. notch opening displacement 

 

 

For cases where the test results yield a steady-state fracture toughness, the 

cohesive law can be completely characterized by the test data and the extension to 

larger structures is clear. However, in cases such as the present, where the steady-

state fracture toughness was not reached during the test, the cohesive 

characterization must be extrapolated to a steady-state. Therefore, it is instructional 

to examine the application to larger structures in which the extrapolated portion of 

the cohesive law is significant. This is done here by comparing the extrapolated 

characterization,        , to the characterization of all specimens,         . Both 

characterizations are plotted (black lines) in Figure 13 over the test data (grey lines) 

where the broken lines correspond to the small specimens. Both fits generally 

represent the test data well, though it is noted that         is near the upper bound of 

the test data in the extrapolated region (   0.02 in.). The fit parameters are 

summarized in Table II. 
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Figure 13. Analytic fits (black lines) of the measured fracture toughness 

TABLE II. EXPERIMENTALLY CHARACTERIZED COHESIVE LAW PARAMETERS 

Specimen 

Set 

   

[ksi] 

   

[lbf/in]     

all 87310 1231 0.142 0.566 

small 89894 1522 0.123 0.586 

 

 

The two characterized cohesive laws are plotted in Figure 14. The primary 

difference between the cohesive law obtained by fitting to all specimens compared 

with fitting to the small specimens only is   . 

The accuracy of the load vs. displacement behavior predicted from the 

characterized cohesive laws is obtained by analyzing FE models with the  

experimentally determined cohesive laws for both specimen sizes. The results are 

shown in Figure 15. Both characterizations predict the structural response within 

the scatter of the experimental data. While the characterization based on the small 

specimens trends toward the upper bound of the experimental, the overall 
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agreement is quite good. These results suggest that mode I through-crack fracture in 

this laminate can be characterized accurately with a trilinear cohesive law even 

when the steady-state fracture toughness is not reached during the test. 

 

CONCLUDING REMARKS 

Results are presented that confirm that the  -curve and process zone length 

should not be considered material properties under large-scale bridging because of 

their dependence on structural compliance for composite laminate through-crack 

propagation in the CT configuration. Therefore, the experimental method for 

cohesive law characterization presented by Sørensen and Jacobsen in reference 

[17], in which the cohesive law is obtained as the derivative of the J-integral with 

respect to the crack tip opening displacement, should be used instead of methods 

based on the  -curve. Full-field displacement measurement using digital image 

correlation enables straightforward application of this method with a conventional 

compact tension configuration for characterization of a cohesive law for through-

the-thickness crack propagation. The modified compliance calibration method can 

be used instead of the J-integral method for convenience with only a small 

(conservative) error introduced. 

The test results reported here show no indication of reaching a steady-state 

fracture toughness prior to catastrophic failure. An assumed analytical trilinear 

cohesive law was derived and fit to the test data such that fracture toughness was 

extrapolated to a steady-state. The characterized cohesive law predicted the 

structural response accurately for specimens scaled geometrically. This promising 

characterization procedure yields cohesive laws that appear to be material 

properties. Such cohesive laws characterized at the coupon scale can be used to 

govern though-crack propagation from notches under mode I loading in large-scale 

structures to assess the damage tolerance. 

 

Figure 15. Load vs. displacement test and analysis results 
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