Abstract Submittal Form

Liquid Propulsion Subcommittee and Advanced Materials Panel
Technical Interchange Meeting
3 – 5 September 2014

Abstract Due Date: Wednesday, June 4, 2013

Title: Cleaning Process Development for Metallic Additively Manufactured Parts

Sponsoring organization if SBIR-funded:

Primary Author (this author will receive all correspondence regarding participation in this program)

Name: Dr. Terri L. Tramel
Organization: NASA/MSFC/EM50
Address: Marshall Space Flight Center, EM50, Bldg 4711
City: Huntsville
State: AL
ZIP Code: 35812
Phone: 256-544-6048
Fax: Email: Terri.L.Tramel@nasa.gov

2nd Author

Name: Mr. Roger Welker
Organization: NASA/MSFC/EM50/Jacobs
Address: Marshall Space Flight Center, EM50, Bldg 4711
City: Huntsville
State: AL
ZIP Code: 35812
Phone: 256-544-2787
Fax: Email: Roger.W.Welker@nasa.gov

3rd Author

Name: Mrs. Niki Lowery
Organization: NASA/MSFC/EM50/Jacobs
Address: Marshall Space Flight Center, EM50, Bldg 4711
City: Huntsville
State: AL
ZIP Code: 35812
Phone: 256-544-9596
Fax: Email: Niki.M.Lowery@nasa.gov

4th Author

Name: Mr. Mark Mitchell
Organization: NASA/MSFC/EM50
Address: Marshall Space Flight Center, EM50, Bldg 4711
City: Huntsville
State: AL
ZIP Code: 35811
Phone: 256-544-5860
Fax: Email: Mark.A.Mitchell@nasa.gov

Approval

☑ Approved by Management
☐ Placeholder
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes.

Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness.

This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.