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1:55 – 2:20p Reducing Conservatism in Aircraft Engine Response Using 
Conditionally Active Min-Max Regulators – Ryan May 
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Dynamic Systems Analysis 

• Preliminary Engine Design 
– Systems Analysis (Steady state) 
– Lack of dynamic performance information 

• Historical data (past experiences) 
• Additional conservatism in the design 

• Dynamic Systems Analysis 
– Better predict/account for dynamic operation in PED 
– Allow for trade-offs between performance and operability margins 

to meet future engine performance requirements 
– Enabled through the Tool for Turbine Engine Closed-loop Transient 

Analysis (TTECTrA) 
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T-MATS (Toolbox for the Modeling and Analysis of 
Thermodynamic Systems)  

• Simulation System designed to give a user a library containing 
building blocks that may be used to create dynamic 
Thermodynamic systems. Includes: 

- Iterative Solving capability 
- Generic Thermodynamic Component models  

Turbomachinery components (compressor, turbine, burner, 
nozzle, etc.) 

- Control system modeling (controller, actuator, sensor, etc.) 
• MATLAB/Simulink Based 
• Open Source (free of proprietary and export restrictions) 
• Development of T-MATS is being led by NASA Glenn Research 

Center 
- NASA’s focus for this project is on the modeling  of aerospace 
 applications, however the T-MATS framework is extremely 
 general and can be applied to any thermodynamic model. 
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Reducing Conservatism in Aircraft Engine Response 
Using Conditionally Active Min-Max Limit Regulators 
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• Typical aircraft engine control is based on a Min-Max 
scheme 

• Designed to keep the engine operating within prescribed 
mechanical and operational safety limits 
– Compares fuel flow to determine the limit that is closest to being 

violated 
– Conservative 

• Improve engine performance by allowing the limit 
regulators to only be active when a limit is in danger of 
being violated. 
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Dynamic Systems Analysis 

4th Propulsion Control and Diagnostics Workshop 
Ohio Aerospace Institute (OAI) 

Cleveland, OH 
December 11-12, 2013 
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Outline 

• Preliminary Engine Design 
• Systems Analysis 
• Tool for Turbine Engine Closed-loop Transient 

Analysis (TTECTrA) 
• Dynamic Systems Analysis 
• Conclusion 
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Preliminary Engine Design 
• Huge commitments are made 

based on results 
• A completely new engine is 

relatively rare 
• Most programs focus on 

derivative engines 
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Systems Analysis 

• Complex process that involves system-level 
simulations to evaluate system-level 
performance, weight, and cost (optimize system, 
compromise component) 

• Focus on steady-state design cycle performance 
• Dynamic considerations 

and issues are 
incorporated through the 
use of operating margins 
– Stall margin 
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Tool for Turbine Engine Closed-loop 
Transient Analysis (TTECTrA) 

• Capable of automatically designing a controller 
• Easily integrates with users engine model in 

MATLAB/Simulink environment 
• Provide an estimate of the closed-loop transient 

performance/capability of a conceptual engine design 
• Requirements: 

– MATLAB®/Simulink® (Release R2012b or later) 
• MATLAB® Version 8.0 (R2012b) 
• Simulink® Version 8.0 (R2012b) 
• Control Systems Toolbox® Version 9.4 (R2012b) 

– Engine Model compatible with Simulink 
– State space linear model in MATLAB 
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TTECTrA Architecture 

• TTECTrA software automatically designs: 
– Set Point 
– Set Point Controller 
– Limit Controller 

• Simulates different thrust profiles 
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TTECTrA - Set Point Function 

• Flight condition (altitude, Mach, temperature) 
• Define set point bounds and number of breakpoints 

– Fuel flow 
– Thrust 
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TTECTrA – Set Point Controller 

• Bandwidth (Hz) 
• Phase Margin 
• Feedback filter (Hz) 
• Throttle Filter (Hz) 
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TTECTrA – Limit Controller 

• Acceleration Minimum Surge Margin (HPC) 
– Ncdot vs NcR25 

• Deceleration Minimum Surge Margin (LPC) 
– Wf/Ps3 
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User Model 

TTECTrA - Selector Logic / Actuator 

• Selector Logic (Min/Max scheme) 
– Min (Set Point, Acceleration) 
– Max (Min, Deceleration) 

• Actuators 
– Currently only models fuel flow 
– First order filter 
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Commercial Modular Aero Propulsion 
System Simulator 40,000 (C-MAPSS40k) 

• 40,000 Lb Thrust Class High Bypass Turbofan 
Engine Simulation 

• Matlab/Simulink Environment 
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• Publically 
available 

• Realistic controller 
• Realistic surge 

margin 
calculations 
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Burst and Chop Thrust Profile 

• Idle (14% of max thrust) to Take-off thrust profile to test 
the TTECTrA controller 

• Compare the thrust response to the Federal Aviation 
Administrations (FAA) Federal Aviation Regulation 
(FAR) Part 33, Section 33.73(b) 
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Burst and Chop Thrust Profile 
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Engine Deterioration 
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The Benefit of TTECTrA 

Stack % 
Uncertainty 11 

Reynolds Number 2 

Distortion 4 

Tip Clearances 1.5 

Deterioration 1.5 

Random 2 

Transient Allowance 12 

Total 23 
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The Benefit of TTECTrA 
• Combustor Stability 
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Future Work 

• NPSS Model in Simulink 
– Georgia Institute of Technology 

 

• Integrate TTECTrA with the NPSS Simulink model 
– NASA/RHC 

 
• Integrate TTECTrA/NPSS Simulink with a larger 

systems analysis optimization algorithm 
– NASA/RHC and NASA/RTM 
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Conclusion 

• Dynamic systems analysis: 
– Enables engine transient performance to be accounted for in 

the optimization of the engine design and early in the 
preliminary design of turbine engines. 

– Allows trading of overly conservative surge margin for better 
performance through system redesign (or opline). 

 
• Developed the Tool for Turbine Engine Closed-loop 

Transient Analysis (TTECTrA) 
– Capable of automatically designing a controller at a single 

flight condition. 
– Easily integrates with users engine model in 

MATLAB/Simulink environment. 
– Open source 

23 
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Questions? 

24 

Thank you 
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Toolbox for the Modeling and Analysis of 
Thermodynamic Systems  

(T-MATS) 

Jeffryes W. Chapman 
Vantage Partners, LLC. 
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Outline 

• T-MATS Description 

• Background 

• Framework 

• Block Sets 

• Examples 

• Conclusion 

• Future work 
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T-MATS Description

• Toolbox for the Modeling and Analysis of Thermodynamic 
systems, T-MATS 
– Modular thermodynamic modeling framework 
– Designed for easy creation of custom Component Level Models 

(CLM) 
– Built in MATLAB®/Simulink® 

• Package highlights 
– General thermodynamic simulation design framework 
– Variable input system solvers 
– Advanced turbo-machinery block sets 
– Control system block sets 

• Development being led by NASA Glenn Research Center 
– Non-proprietary, free of export restrictions, and open source 

• Open collaboration environment 
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Background 

• Thermodynamic simulation examples 
Model Type Examples 

Steady-State 
(system convergence may be 
required) 

Gas turbine cycle model 
 
• e.g., performance models 

Dynamic with Quasi-steady-state 
variables (multi-iteration simulation; 
time and system convergence) 

Gas turbine model with spool 
dynamics only. (real time running 
capability) 
 
• e.g., control models 

Fully Defined Dynamic Simulation 
(iteration over time) 

Dynamic gas turbine model with spool 
and volume dynamics (typically runs 
more slowly) 
 
• e.g., near stall performance models 
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Background: Industry Study 

Package User 
Friendly* 

Flexibility* Export 
Restricted 

Source  
code 
available 

Dynamic Control 
System 

Cost 

C-MAPSS40k, 
NASA 

High Low Yes Yes 
 

Yes Yes MATLAB 

Matlab: Thermlib 
toolbox, Eutech 

High Medium No No Yes 
 

No MATLAB 
+ $4900 

Cantera, Open 
source 

Low High No Yes No No None 

Gas Turbine 
Simulation Program 
(GSP),  NRL 

Medium Medium No No Yes Yes $4,000 

GasTurb, Nrec Medium Low No No Yes Yes $1340 

T-MATS, NASA High High  No Yes Yes Yes MATLAB 

Definitions: 1* User Friendly, Controls Perspective 
Low : Code based 
Med:  Model based 
High: Model based with package implemented in a 
platform that is an industry standard 

2* Flexibility 
Low : Plant configuration set 
Med:  Object oriented, objects difficult to update 
High: Object oriented, objects easily adaptable by user 
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T-MATS Framework

• T-MATS is a plug-in for a MATLAB/Simulink platform 
– additional blocks in the Simulink Library Browser: 

 
 
 
 
 
 
– additional diagram tools for model development in Simulink: 

 

 
 

Faster and easier 
 model creation 
  

Added Simulink 
Thermodynamic modeling 
and numerical solving 
functionality 
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T-MATS Framework 
• Dynamic Simulation Example: 

– Multi-loop structure 
• The “outer” loop (green) iterates in the time domain 

– Not required for steady-state models 

• The “inner” loop (blue) solves for plant convergence during each time step 
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Blocks: Numerical Solver 
• Many Thermodynamic models are partially defined and require a solver to 

ensure model conservation (e.g., mass, energy, etc.). 
– In many gas turbine simulations, component flow will typically be solved by an 

independent solver. 
 

• T-MATS contains solvers that perform in two main steps: 
– Automated Jacobian (system gradient) Calculation 

• Each plant input is perturbed to find the effect on each plant output. 
– Newton-Raphson method is used to “converge” the system. 
 

          where,             
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Blocks: Turbo-machinery 

– Models based on common industry practices 
• Energy balance modeling approach 
• R-line compressor maps in Compressor model 
• Pressure Ratio maps in Turbine model 
• Single fuel assumption 
• Flow errors generated by comparing component 

calculated flow with component input flow  
 

– Includes blocks such as; compressor, turbine, 
nozzle,  flow splitter, and valves among others. 
 

– Built with S-functions, utilizing compiled MEX 
functions 
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• T-MATS contains component blocks necessary for 
creation of turbo-machinery systems  
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Blocks: Controls 

– Sensors:  
 
 
 

– Actuators: 
 
 
 

– PI controllers: 

35 

• T-MATS contains component blocks designed for fast 
control systems  creation 
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Blocks: Settings 
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• The T-MATS Simulation System is a highly tunable and flexible framework for 
Thermodynamic modeling. 

 

– T-MATS block Function Block Parameters 
•  fast table and variable updates 

 
– Open source code  

• flexibility in component composition, as 
equations can be updated to meet system 
design 

 
– MATLAB/Simulink development 

environment 
• user-friendly, powerful, and versatile 

operation platform for model design 
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Dynamic Gas Turbine Example: 
Objective System 

37 

Simple Turbojet 
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Dynamic Gas Turbine Example: 
Creating the Inner Loop 
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Dynamic Gas Turbine Example: 
Inner Loop Plant 

39 

Turbojet plant model architecture made simple by T-MATS vectored I/O and block labeling 

Input 

Compressor 

Burner 

Turbine Nozzle 

Shaft 
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Dynamic Gas Turbine Example: 
Creating the Solver 
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Dynamic Gas Turbine Example: 
Solver 

41 

Plant flow errors driven to zero by iterative solver block in parallel with While Iterator 

Simulink While Iterator block 

Iterative Solver 

Inner Loop Plant 
from previous slide 
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Outer Loop 
Effectors 

Outer Loop 
Plant 

X_ol(t+dt) 

Outputs 

Iteration over  time, t 

Outer Loop 
Effectors

Outer Loop 
Plant

X_ol(t+dt)

Outputs

Iteration over  time, t
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Dynamic Gas Turbine Example: 
Creating the Outer Loop 

 Inner Loop 
Plant 

Iterative Solver 

f(x(n)) 

X_il(n+1) 

Iteration to ensure convergence, n 

y(t) 

Do While 
Iterations 

Simulink Block 

Iteration  
Condition 

T-MATS Block 



National Aeronautics and Space Administration 

www.nasa.gov 

Dynamic Gas Turbine Example: 
Outer Loop Plant 

43 

Shaft speed integration 

Environmental 
conditions 

Simple Control 
System 

Shaft integrator and other Outer Loop effectors added to create full system simulation 
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Verification and Release 

• Verification was performed by matching T-MATS 
simulation data with other established simulations. 
– Models chosen for verification 

• NPSS steady-state turbojet model 
• C-MAPSS – High bypass turbofan engine model 

– In all cases differences in simulation performance were 
within acceptable limits. 
 

• Expected Release: Q4,2013 or Q1,2014. 
– Pre-built examples will include: 

• Newton-Raphson equation solver 
• Steady state turbojet simulation 
• Dynamic turbojet simulation 
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Conclusions 

• T-MATS offers a comprehensive 
thermodynamic simulation system 
 
– Thermodynamic system modeling framework 
– Automated system “convergence”  
– Advanced turbo-machinery modeling capability 
– Fast controller creation block set 
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Future Work

• Increase thermodynamic modeling capability 
– Introduce Cantera to T-MATS 

• “Cantera is a suite of object-oriented software tools for problems 
involving chemical kinetics, thermodynamics, and/or transport 
processes” 

• Open source 
• Increases thermodynamic modeling capability to include: 

– Non-fuel specific gas turbine modeling 
– Fuel cells 
– Combustion 
– Chemical Equilibriums 

46 
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Reducing Conservatism in Aircraft Engine 
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Limit Regulators 
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Overview 

• Introduction 
• Baseline Control Architecture 
• Conditionally Active Limit Regulator Approach 
• Simulation Examples 
• Conclusions & Future Work 

NASA GRC Propulsion Control and 
Diagnostics Workshop 48 
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Introduction 

• The primary task of an engine control system is to deliver 
the guaranteed performance while ensuring safe 
operation throughout operating envelope over the life of 
the engine 

• Guaranteed performance is defined as meeting the FAA 
certification requirements for engine responsiveness – 
maximum allowed 95% rise time for idle to max thrust 
command 

NASA GRC Propulsion Control and 
Diagnostics Workshop 49 
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Baseline Control Architecture 

• Typical aircraft engine 
control is based on a 
Min-Max scheme 

• Designed to keep the 
engine operating within 
prescribed mechanical 
and operational safety 
limits 
 

NASA GRC Propulsion Control and 
Diagnostics Workshop 50 
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Engine Response with Baseline Control 
• C-MAPSS40k Full throttle burst at sea-level static 

conditions with an end-of-life engine 

NASA GRC Propulsion Control and 
Diagnostics Workshop 51 
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Is the Conservative Response an issue? 
• No: 

• Not during normal flight as long as it meets the FAA response 
requirements 

• Yes: 
• On aircraft where primary flight control surfaces are damaged 

(e.g. UAL 232, Bagdad DHL, AA 587) 
• On aircraft with integrated flight/propulsion control 

• Can we improve the engine response while maintaining 
the current architecture? 
 

NASA GRC Propulsion Control and 
Diagnostics Workshop 52 
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The Case for Conditionally Active Limit 
Regulators 

• The baseline Min-Max selection control approach is 
inherently conservative 

• Every limit regulator is capable of limiting fuel flow to 
engine – regardless of proximity to current limit 

• Depending on how the individual PI regulators are tuned, 
the regulator may intervene when there is no danger of a 
limit being violated 

• To reduce conservatism, limit regulators should 
become active only when a limit is in “danger” of 
being violated. 

NASA GRC Propulsion Control and 
Diagnostics Workshop 53 
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Conditionally Active Limit Regulators 

• For operation with reduced conservatism while still 
ensuring safety, following two criteria must both be 
satisfied to enable a limit regulator: 
1) The regulated variable must be “close” to the specified limit 
2) The rate of change of the regulated variable is such that the 

regulated variable will reach the limit within a specified number 
of control update time steps 

NASA GRC Propulsion Control and 
Diagnostics Workshop 54 
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Conditionally Active Limit Regulators 

• The conditions for the limit regulator to be active can be 
stated as: 

For a maximum limit variable y1 with limit y1max: 
 

 
 

–where α1 and β1 are positive design parameters 

• Similar equations can be developed for minimum limit 
variables 
 

NASA GRC Propulsion Control and 
Diagnostics Workshop 55 
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Conditionally Active Limit Regulators 

• Criteria 1 is 
satisfied at tA 

• Criteria 2 is 
satisfied at tB 

• Therefore the limit 
regulator is 
enabled at tB 

NASA GRC Propulsion Control and 
Diagnostics Workshop 56 
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CA Architecture Modification 
Uses the existing 
Min-Max 
architecture,  
but each regulator’s 
output is only 
considered if  
the associated 
criteria are satisfied 

NASA GRC Propulsion Control and 
Diagnostics Workshop 57 
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Choice of CA Design Parameters 

• We currently do not have an analytical approach to 
selecting the CA limit regulator design parameters α and 
β   

• The CA parameters are tuned empirically  
– - � value selected first to ensure limit is not 

violated for operation under worst case 
conditions 

- With a fixed �, the β value is selected to 
provide fastest possible response without 
violating limit 

• Numerical optimization algorithm has been developed 
 

NASA GRC Propulsion Control and 
Diagnostics Workshop 58 
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• Reduced conservatism 
resulting in much faster 
response 

Simulation Results
• Full throttle burst at sea-level static conditions with an 

end-of-life engine 

NASA GRC Propulsion Control and 
Diagnostics Workshop 59 
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Simulation Results
• Case when a limit (Nc) is reached 
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Conclusions 

• The use of properly tuned Conditionally Active limit 
regulators can improve the engine response without 
compromising safety 

• This approach should simplify the tuning and validation of 
the limit regulator gains as the regulators are only active 
in a small number of possible cases 

• The CA limit regulator does not require modifications to 
any other aspect of the well established control 
architecture 
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Future Work 

• Formulate the CA limit regulator approach in a proper 
mathematical framework 

• Investigate development of analytical approach to 
determining the CA design parameters so as to satisfy 
performance and safety requirements 
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