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Dynamic Systems Analysis

* Preliminary Engine Design
— Systems Analysis (Steady state)
— Lack of dynamic performance information
» Historical data (past experiences)
« Additional conservatism in the design
« Dynamic Systems Analysis
— Better predict/account for dynamic operation in PED

— Allow for trade-offs between performance and operability margins
to meet future engine performance requirements

— Enabled through the Tool for Turbine Engine Closed-loop Transient
Analysis (TTECTrA)
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T-MATS (Toolbox for the Modeling and Analysis of
Thermodynamic Systems)

Simulation System designed to give a user a library containing
building blocks that may be used to create dynamic
Thermodynamic systems. Includes:

- lterative Solving capability

- Generic Thermodynamic Component models

Turbomachinery components (compressor, turbine, burner,
nozzle, etc.)

- Control system modeling (controller, actuator, sensor, etc.)
MATLAB/Simulink Based

Open Source (free of proprietary and export restrictions)
Development of T-MATS is being led by NASA Glenn Research
Center
- NASA's focus for this project is on the modeling of aerospace
applications, however the T-MATS framework is extremely
general and can be applied to any thermodynamic model.
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Reducing Conservatism in Aircraft Engine Response @
Using Conditionally Active Min-Max Limit Regulators

« Typical aircraft engine control is based on a Min-Max
scheme

* Designed to keep the engine operating within prescribed
mechanical and operational safety limits

— Compares fuel flow to determine the limit that is closest to being
violated

— Conservative

« Improve engine performance by allowing the limit
regulators to only be active when a limit is in danger of
being violated.

www.nasa.gov 4



National Aeronautics and Space Administration

Dynamic Systems Analysis

Jeffrey Csank
NASA Glenn Research Center

4 Propulsion Control and Diagnostics Workshop
Ohio Aerospace Institute (OAl)
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December 11-12, 2013
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Outline

* Preliminary Engine Design
« Systems Analysis

« Tool for Turbine Engine Closed-loop Transient
Analysis (TTECTTrA)

* Dynamic Systems Analysis
« Conclusion
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Preliminary Engine Design

Weight * Huge commitments are made
Mission based on results

* A completely new engine is
relatively rare

* Most programs focus on
derivative engines

\ Performance

Component

Configuration
& Test
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(_4 Component
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Systems Analysis

« Complex process that involves system-level
simulations to evaluate system-level

performance, weight, and cost (optimize system,
compromise component)

* Focus on steady-state design cycle performance

* Dynamic considerations ‘
and issues are 2
iIncorporated through the
use of operating margins
— Stall margin

Pressure Ratio (PR)
&%&

Z
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i
\

Corrected Flow (Wc)
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Tool for Turbine Engine Closed-loop @
Transient Analysis (TTECTrA)

» Capable of automatically designing a controller

« Easily integrates with users engine model in
MATLAB/Simulink environment

* Provide an estimate of the closed-loop transient
performance/capability of a conceptual engine design

 Requirements:

— MATLAB®/Simulink® (Release R2012b or later)
« MATLAB® Version 8.0 (R2012b)
« Simulink® Version 8.0 (R2012b)
« Control Systems Toolbox® Version 9.4 (R2012b)

— Engine Model compatible with Simulink
— State space linear model in MATLAB

www.nasa.gov 1o
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TTECTTrA Architecture

Desired Set
Thrust Point Error e
Fuel 1 H
: wn
s d  Sct Point el i = Flow : User Model Engine :
Controller i Outputs |
S . !
S Actuator Engine >
Limit c !
Controller e, [
e |
Feedback :
|
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ol

« TTECTTrA software automatically designs:
— Set Point
— Set Point Controller
— Limit Controller

« Simulates different thrust profiles
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Control Variable
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Close figure to accept setpoints
Leave figure open and use GUI to recalculate
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Thrust breakpoints:
specify breakpoints or number of (linearlly-spaced) breakpoints

5

‘ Calculate Setpoints ‘

* Flight condition (altitude, Mach, temperature)
« Define set point bounds and number of breakpoints

— Fuel flow
— Thrust
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TTECTrA — Set Point Controller
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Core acceleration (rpm/sec)
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TTECTTrA - Selector Logic / Actuator

Desired Set Point Error
_________________
Thrust
Set Point
Controller Engine

Outputs
—

Actuator Engine

: Limait

Controller

1307 103I93S

Feedback

e——————t——

« Selector Logic (Min/Max scheme)
— Min (Set Point, Acceleration)
— Max (Min, Deceleration)

* Actuators

— Currently only models fuel flow
— First order filter
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Commercial Modular Aero Propulsion @
System Simulator 40,000 (C-MAPSS40Kk)

« 40,000 Lb Thrust Class High Bypass Turbofan
Engine Simulation

 Matlab/Simulink Environment

* Publically
available

 Realistic controller

« Realistic surge
margin
calculations

www.nasa.gov e
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Burst and Chop Thrust Profile
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 l|dle (14% of max thrust) to Take-off thrust profile to test
the TTECTTrA controller
 Compare the thrust response to the Federal Aviation

Administrations (FAA) Federal Aviation Regulation
(FAR) Part 33, Section 33.73(b)
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Burst and Chop Thrust Profile
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HPC SM, %

Thrust, Ibf

Engine Deterioration
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The Benefit of TTECTrA

Do we have enough margin? Too much margin?

Stack
Uncertainty

Reynolds Number
Distortion

Tip Clearances
Deterioration
Random

Transient Allowance

Total
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The Benefit of TTECTrA
« Combustor Stability

-
o SA 5
Il ® DSA

o SA

RO

“»——essure Ratio (PR)

NcR25, rp Corrected Flow (Wc)
. e Low Pressure
? Compressor

o

o  Turbine life

Nc, rpm
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Future Work
« NPSS Model in Simulink

— Georgia Institute of Technology

* Integrate TTECTrA with the NPSS Simulink model
— NASA/RHC

* Integrate TTECTrA/NPSS Simulink with a larger
systems analysis optimization algorithm
— NASA/RHC and NASA/RTM

www.nasa.gov 22
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Conclusion

* Dynamic systems analysis:

— Enables engine transient performance to be accounted for in
the optimization of the engine design and early in the
preliminary design of turbine engines.

— Allows trading of overly conservative surge margin for better
performance through system redesign (or opline).

* Developed the Tool for Turbine Engine Closed-loop
Transient Analysis (TTECTrA)

— Capable of automatically designing a controller at a single
flight condition.

— Easily integrates with users engine model in
MATLAB/Simulink environment.

— Open source

www.nasa.gov 23
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Thank you

Questions?

www.nasa.gov 24



National Aeronautics and Space Administration @

Toolbox for the Modeling and Analysis of
Thermodynamic Systems
(T-MATS)

Jeffryes W. Chapman
Vantage Partners, LLC.

4™ Propulsion Control and Diagnostics Workshop
Ohio Aerospace Institute (OAl)
Cleveland, OH
December 11-12, 2013
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Outline

T-MATS Description
Background
Framework

Block Sets
Examples
Conclusion

Future work
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T-MATS Description @

* Toolbox for the Modeling and Analysis of Thermodynamic
systems, T-MATS
— Modular thermodynamic modeling framework

— Designed for easy creation of custom Component Level Models
(CLM)

— Built in MATLAB®/Simulink®
« Package highlights

— General thermodynamic simulation design framework
— Variable input system solvers

— Advanced turbo-machinery block sets

— Control system block sets

« Development being led by NASA Glenn Research Center

— Non-proprietary, free of export restrictions, and open source
* Open collaboration environment

www.nasa.gov
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Background

* Thermodynamic simulation examples

Model Type Examples

Steady-State Gas turbine cycle model
(system convergence may be

required) * e.g., performance models

Dynamic with Quasi-steady-state Gas turbine model with spool
variables (multi-iteration simulation; | dynamics only. (real time running
time and system convergence) capability)

e e.g., control models

Fully Defined Dynamic Simulation | Dynamic gas turbine model with spool
(iteration over time) and volume dynamics (typically runs
more slowly)

* e.g., near stall performance models

www.nasa.gov
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Background: Industry Study

-]

Package User Flexibility* | Export Source Dynamic | Control | Cost
Friendly* Restricted | code System
available
C-MAPSS40k, High Low Yes Yes Yes Yes MATLAB
NASA
Matlab: Thermlib High Medium No No Yes No MATLAB
toolbox, Eutech + $4900
Cantera, Open Low High No Yes No No None
source
Gas Turbine Medium Medium No No Yes Yes $4,000
Simulation Program
(GSP), NRL
GasTurb, Nrec Medium Low No No Yes Yes $1340
T-MATS, NASA High High No Yes Yes Yes MATLAB
Definitions: 1* User Friendly, Controls Perspective 2* Flexibility

Low : Code based
Med: Model based

High: Model based with package implemented in a
platform that is an industry standard

Low : Plant configuration set
Med: Obiject oriented, objects difficult to update
High: Object oriented, objects easily adaptable by user

www.nasa.gov
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T-MATS Framework

« T-MATS is a plug-in for a MATLAB/Simulink platform

— additional blocks in the Simulink Library Browser:

¥ Simulink Library Browser = Ell&i
Eile Edit View Help
@ 3 ¥»»  Enter search term - “ @{ Added Slmullnk
Libraries Library: TMATS | Search Results; (none) | Most Frequen 4 [» Thermodynamic mode]ing
System entifica... * = Effeching and dell  Mumerical 1 1
- T B B R and numerical solving
- Effectors and Co... — funCtiOHality
- Numerical Methods || Soer Turbomachinery
- Solver |L| A
“-Turbomachinery =

Showing. T-MATS

— additional diagram tools for model development in Simulink:

Block Parameters

Properties... .

T S e Faster and easier
iDesign ON model creation
iDesign_Off

Block Link Setup At+L

www.nasa.gov s1



National Aeronautics and Space Administration

T-MATS Framework

Outer Loop
Effectors

Dynamic Simulation Example:

— Multi-loop structure
« The “outer” loop (green) iterates in the time domain

— Not required for steady-state models
* The “inner” loop (blue) solves for plant convergence during each time step

Inner Loop
Plant

yiE)

Outputs

Iteration

.

K_illn+1)

)

Conditi
ndition

Do While

k Bloc)

k

Iterations

Iterative
Solver

]

Iteration to ensure convergence, n

X ol(t+dt)

Iteration over time, t

Outerloop |

Plant

-]
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Blocks: Numerical Solver

Many Thermodynamic models are partially defined and require a solver to

ensure model conservation (e.g., mass, energy, etc.).
In many gas turbine simulations, component flow will typically be solved by an

independent solver.

T-MATS contains solvers that perform in two main steps:
— Automated Jacobian (system gradient) Calculation

oh . Oh]
0x4 0xn
J=1: . :
Ofm ... 9fm
| 0x1 0xp

« Each plantinput is perturbed to find the effect on each plant output.
— Newton-Raphson method is used to “converge” the system.

fx(n))

x(n+1) =x(n) - ) where, flx(n) =]

www.nasa.gov ss
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T-MATS contains component blocks necessary for

Blocks: Turbo-machinery

creation of turbo-machinery systems

— Models based on common industry practices

Energy balance modeling approach

R-line compressor maps in Compressor model
Pressure Ratio maps in Turbine model

Single fuel assumption

Flow errors generated by comparing component
calculated flow with component input flow

— Includes blocks such as; compressor, turbine,

nozzle, flow splitter, and valves among others.

— Built with S-functions, utilizing compiled MEX
functions

Y CoolingFlwCharln GasPthCharOut [»
3 GasPthCharln NErr [
Y PRIn TrqOut [»
) Nmech T _Data >
Turbine
CustBldsCharOut [»
Y GasPthCharln
FBIdsCharOut [»
GasPthCharOut [y
Rline
) NErr >
TrqOut >
) Nmech
C_Data >

Compressor
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* T-MATS contains component blocks designed for fast

Blocks: Controls

control systems creation

— Sensors:

— Actuators:

— Pl controllers:

) actual Sens >
1st order Sensor
Y Command Actual [

1st order Actuator

),
),

Input_sensed

Input_dmd

Effector Demand

Simple P

| controller

-]
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Blocks: Settings

 The T-MATS Simulation System is a highly tunable and flexible framework for

Thermodynamic modeling.

— T-MATS block Function Block Parameters
» fast table and variable updates

— Open source code

« flexibility in component composition, as
equations can be updated to meet system
design

— MATLAB/Simulink development
environment

» user-friendly, powerful, and versatile
operation platform for model design

Function Block Parameters: Compressor @
T-MATS: Compressor Library Block {(mask) (link)

This block simulates the performance of a compressor using basic
thermodynamic equations, properties, and table lookups.

C-Map | Bleeds | Stall Margin | iDesign |

Y_C_NcVec_M - Compresser Map Corrected Speed Vector (Y-axis)

[0.500 0.900 1.050]
X_C_RlineVec_M - Compressor Map Rline Vector (-axis)
[1.000 3.000]
T_C_Map_WcArray_M - Compressor Map Flow Array (Wc = f(Nc, Rling))
[00;00;00]
T_C_Map_PRArray_M - Compressor Map Pressure Ratio Array (PR = f(Nc, Rline))
[00;00;00]
T_C_Map_EffArray_M - Compressor Map Efficiency Array (Eff = f(Nc, Rline)
[00;00;00]
5_C_Mc_M - Corrected Speed Scalar Constant (C_Nc)
0.0001
5_C_Wc_M - Flow Scalar Constant (C_Wc)
0.4853
5_C_PR_M - Pressure Ratio Scalar Constant (C_PR)
0.B636
s_C_Eff_M - Efficiency Scalar Constant (C_Eff)
0.9977

[ oK ]’ Cancel ” Help ] Apply
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Airin

4 Compressor |

Dynamic Gas Turbine Example:
Objective System

Fuelin

| Burner

= Turbine

Simple Turbojet

-1 Nozzle

Thrust
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Dynamic Gas Turbine Example:
Creating the Inner Loop

-
Outer Loop _ yit) Outputs
Effectors ] Inner Loop

| Plant fidnl) |
\_ /ﬁy
Iteration Iterations

Condition .
—{ Do While

Simulink Block

lterative

£ o] Solver

Iteration to ensure convergence, n

X_ol(t+dt) Outer Loop
Plant

Iteration over time, t
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Dynamic Gas Turbine Example: @
Inner Loop Plant

Turbine Nozzle
wou'.
Input Do e
[ —h. i i - NoZZE
oy v e s & Nmzzn To= )
; An e - é? Turine
o L | Burner
O— i ‘
¢:: Jm | =)
Il Compressor J NoEFDWEND O

— } Compressor

Shaf

Turbojet plant model architecture made simple by T-MATS vectored I/O and block labeling
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Dynamic Gas Turbine Example:
Creating the Solver

Outer Loop _ Vit Outputs
Effectors ] Inner Loop

Plant )

/ iteration Iterations \

Condition .
F Do While
Simulink Block

lterative
X illn+1
i) Solver
\ Iteration to ensure convergence, n / &
X_ol(t+dt) Outer Loop

Plant

Iteration over time, t
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Dynamic Gas Turbine Example: @
Solver

/ Simulink While Iterator block

do |

[==n

Twhile

Inner Loop Plant

Whils Rerator / from previous slide

| fera loires dioi_winilbe o oradlE b

w

Plani_in

Pl _Oer

0.
g

w
T

1%

k
k
[
I

%l

Rerzive MR Sokerw JaconBnCak MR Lol FET
= FlameE ror s

Iterative Solver

Plant flow errors driven to zero by iterative solver block in parallel with While Iterator
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Dynamic Gas Turbine Example:

Creating the Outer Loop

Outer Loop

Effectors

y(t)

Outputs

Inner Loop

X_il

Iteration
Condition

Plant

f(x(n))

—> Do While

Iterations

Simulink Block

(n+1)

Iterative Solver

T-MATS Block

Iteration to ensure convergence, n

X_ol(t+dt)

Outer Loop

Iteration over time, t

Plant
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Dynamic Gas Turbine Example:
Outer Loop Plant

Environmental
conditions
\ g Ve Shaft speed integration
Model Source, Alt
OuerloopE Sectors
Model_Input fF———- Plant In  do{.. lwhie Plant Out h! B o X h!
& Corl - - 'i <PENOUpUE st |

0 nipiurt
Model Source, Wf ¢
. herativeSoher and InnerLoopPlant Outer Locp integrator

Simple Control
System

Shaft integrator and other Outer Loop effectors added to create full system simulation
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Verification and Release

« Verification was performed by matching T-MATS

simulation data with other established simulations.

— Models chosen for verification
« NPSS steady-state turbojet model
 C-MAPSS - High bypass turbofan engine model

— In all cases differences in simulation performance were
within acceptable limits.

« Expected Release: Q4,2013 or Q1,2014.

— Pre-built examples will include:
* Newton-Raphson equation solver
« Steady state turbojet simulation
« Dynamic turbojet simulation

-]
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Conclusions

 T-MATS offers a comprehensive
thermodynamic simulation system

— Thermodynamic system modeling framework
— Automated system “convergence”

— Advanced turbo-machinery modeling capability
— Fast controller creation block set

www.nasa.gov 4s
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Future Work

* |Increase thermodynamic modeling capability

— Introduce Cantera to T-MATS

« “Cantera is a suite of object-oriented software tools for problems
involving chemical kinetics, thermodynamics, and/or transport
processes”

* Open source
* Increases thermodynamic modeling capability to include:
— Non-fuel specific gas turbine modeling
— Fuel cells
— Combustion
— Chemical Equilibriums

O+CH®&®H+CO
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National Aeronautics and Space Administration Vantage
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Reducing Conservatism in Aircraft Engine
Response Using Conditionally Active Min-Max
Limit Regulators

Ryan D. May
Vantage Partners, LLC

Sanjay Garg
NASA Glenn Research Center

4th Propulsion Control and Diagnostics Workshop
Ohio Aerospace Institute (OAl)
Cleveland , OH
December 11-12th, 2013
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Overview

* Introduction

« Baseline Control Architecture

« Conditionally Active Limit Regulator Approach
e Simulation Examples

* Conclusions & Future Work

—_—NASA SR Preprisien-centrelerd——

Diagnostics Workshop
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Introduction 4

* The primary task of an engine control system is to deliver
the guaranteed performance while ensuring safe

operation throughout operating envelope over the life of
the engine

« Guaranteed performance is defined as meeting the FAA
certification requirements for engine responsiveness —
maximum allowed 95% rise time for idle to max thrust
command

-_———————————————————
Diagnostics Workshop www-nasa.gov: «
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Baseline Control Architecture

 Typical aircraft engine

,
|
|
|
|
1
|
—L— 3f SetPoint _’Q_’_’ EPR, Nf [
|

control is basedona  ipa4 crror
Min-Max scheme Lot == == L N N |
- || NfFMax [ :
* DeSIQned tO keep the Environmental ! i !

1 I ithi Condition I < I
engine operating w!thln en AR E :
prescribed mechanical ! [P3nta > i
and operational safety A bl |
limits VL Limit Vo w

: z | |Command
! Ps3Min (| & [T >
Engine i _ i
Feedback ! RUMin = !
EPRAND ] |iProtection Logic |

T TOPUTSTOTT Ut OT o i
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Engine Response with Baseline Control y

e C-MAPSS40k Full throttle burst at sea-level static
conditions with an end-of-life engine

F oot [Ibf]

Accel Limit Active

b o ?1500 BE inel = eessssssssssssssssas
5 1: ///" S 10001 ===ss R
o /S / —EPRIISetpointv g 500 e o - \\
» [__'____,_,..-—/ ‘P aser e z i / \
14 15 16 17 18 19 20 0.9 0.95 1 1.05 1.1 1.15 1.2
c Nc [rpm] x10*
x 10" D 40
A L = 30 \
3 //fd— 093320 \/\x —
2 P @ 19 —
1 e 2 0
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Is the Conservative Response an issue? 4
* No:

« Not during normal flight as long as it meets the FAA response
requirements

* Yes:
« On aircraft where primary flight control surfaces are damaged

(e.g. UAL 232, Bagdad DHL, AA 587)
« On aircraft with integrated flight/propulsion control
« Can we improve the engine response while maintaining
the current architecture?
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The Case for Conditionally Active Limit ‘f
Regulators

* The baseline Min-Max selection control approach is
iInherently conservative

« Every limit regulator is capable of limiting fuel flow to
engine — regardless of proximity to current limit

* Depending on how the individual Pl regulators are tuned,
the regulator may intervene when there is no danger of a
limit being violated

 To reduce conservatism, limit regulators should
become active only when a limit is in “danger” of
being violated.

_——————_————————————
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Conditionally Active Limit Regulators 4

« For operation with reduced conservatism while still
ensuring safety, following two criteria must both be
satisfied to enable a limit regulator:

1) The regulated variable must be “close” to the specified limit

2) The rate of change of the regulated variable is such that the
regulated variable will reach the limit within a specified number
of control update time steps

—_—NASA R Prepuistor-Certrelarne——
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Conditionally Active Limit Regulators 4

« The conditions for the limit regulator to be active can be
stated as:

For a maximum limit variable y, with limity, ..

V1 Z(I_OLI)*ylmax

—where 0(_1I_an@’B1 are itiv}id | garameters
o Similar)éhuati(%sjé]an Egelde\élope_d fHHmaKimum limit
variables
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Conditionally Active Limit Regulators
Graphical interpretation:

y

» Criteria 1is max
satisfied at t,
» Criteria 2 is _
(1-a1)y1max

satisfied at tg

* Therefore the limity,
regulator is
enabled at tg

tA+B1*AT tB'
t t t t+B AT
t
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CA Architecture Modifica

Uses the existing

Min-Max U,
. Y1
architecture, Y Pv——
"¥WImax e Min
but each regulator’s é T it — Ui
output is only Regulator
considered if Max s
the associated —
criteria are satisfied
Yamin e, | Minimum
—»  Limit .
Regulator
.
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Choice of CA Design Parameters

 We currently do not have an analytical approach to
selecting the CA limit regulator design parameters a and

&

 The CA parameters are tuned empirically
— - a value selected first to ensure limit is not
violated for operation under worst case
conditions
- With a fixed a, the 3 value is selected to
provide fastest possible response without
violating limit
* Numerical optimization algorithm has been developed

_————————_—————————
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Simulation Results

 Full throttle burst at sea-level static conditions with an
end-of-life engine
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Simulation Results
« Case when a limit (Nc) is reached
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Conclusions

* The use of properly tuned Conditionally Active limit
regulators can improve the engine response without
compromising safety

« This approach should simplify the tuning and validation of
the limit regulator gains as the regulators are only active
iIn a small number of possible cases

« The CA limit regulator does not require modifications to
any other aspect of the well established control
architecture
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Future Work y

* Formulate the CA limit regulator approach in a proper
mathematical framework

* Investigate development of analytical approach to
determining the CA design parameters so as to satisfy
performance and safety requirements
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