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ABSTRACT

Quiescent galaxies at z ∼ 2 have been identified in large numbers based on rest-frame colors, but only a small
number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show
either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171
photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å),
we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å),
Mg i (λ5175 Å), and Na i (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations
already existed when the universe was ∼3 Gyr old, and that rest-frame color selection techniques can efficiently
select them. We find an average age of 1.3+0.1

−0.3 Gyr when fitting a simple stellar population to the entire stack. We
confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent
galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.5

−0.4 Gyr,
whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.2

−0.1 Gyr. Although
the spectrum is dominated by an evolved stellar population, we also find [O iii] and Hβ emission. Interestingly,
this emission is more centrally concentrated than the continuum with LO iii = 1.7 ± 0.3 × 1040 erg s−1, indicating
residual central star formation or nuclear activity.
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1. INTRODUCTION

In the nearby universe, the most massive galaxies almost
always have little ongoing star-formation and red colors that ex-
hibit a remarkably small intrinsic scatter (e.g., Bower et al.
1992). These red, quiescent galaxies form a well-defined
color–mass relation known as the “red sequence.” Photomet-
ric studies of large, representative samples of galaxies based
on broadband and medium-band photometry have pushed the
detection of the red sequence out to z ∼ 2 (e.g., Williams et al.
2009; Whitaker et al. 2011; Brammer et al. 2011; Nicol et al.
2011). However, only a small fraction of these distant quiescent
galaxies have been spectroscopically confirmed (e.g., Cimatti
et al. 2004, 2008; Daddi et al. 2005; Kriek et al. 2006, 2008,
2009; van Dokkum & Brammer 2010; van de Sande et al. 2011,
2012; Onodera et al. 2012; Toft et al. 2012; Bezanson et al.
2013).

Interestingly, most distant quiescent galaxies with high-
quality rest-frame optical spectra appear to exhibit young
ages, showing strong Balmer absorption lines (e.g., van de
Sande et al. 2012; Bezanson et al. 2013). This could imply
that the bulk of high-redshift quiescent galaxies were recently
quenched. However, most spectroscopic studies in the literature
are biased toward the brightest (and consequently youngest) of
such galaxies. Therefore, spectroscopic ages for a representative
sample of quiescent galaxies remains elusive.
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Owing to the near-infrared (NIR) slitless spectroscopic ca-
pabilities provided by the Wide-Field Camera 3 (WFC3) on
the Hubble Space Telescope (HST), it is now possible to obtain
low-resolution spectroscopy of a mass-limited sample of qui-
escent galaxies at z ∼ 2. In this Letter, we stack the spectra
of 171 quiescent galaxies at z ∼ 2 and demonstrate that they
have absorption features indicative of evolved stellar popula-
tions. Furthermore, with ages derived from the stacked grism
spectra, we are in a unique position to test what drives the color
spread of quiescent galaxies for the first time.

We assume a ΛCDM cosmology with ΩM = 0.3, ΩΛ =
0.7, and H0 = 70 km s−1 Mpc−1 throughout the Letter. All
magnitudes are given in the AB system.

2. DATA

The 3D-HST treasury program (Brammer et al. 2012a), a
248 orbit NIR spectroscopic survey with the HST/WFC3 G141
grism, provides spatially resolved low-resolution spectra of all
objects in 5 well-studied extragalactic fields to a 5σ depth for
continuum magnitudes of HF140W ∼ 23. 3D-HST has targeted
the AEGIS, COSMOS, GOODS-S, and Ultra Deep Survey
(UDS) fields, as well as incorporated publicly available data
in the GOODS-N field (GO:11600; PI:Weiner). WFC3 imag-
ing for all five fields is available from the CANDELS survey
(Grogin et al. 2011; Koekemoer et al. 2011). With a wavelength
range of 1.10 μm < λ < 1.65 μm, the prominent age-dependent
Hβλ4861 and Mgλ5175 absorption features in quiescent
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galaxies at z ∼ 2 are observable. The first-order dispersion
of the G141 grism is 46 Å pixel−1 (R ∼ 130) with a spatial
resolution of 0.′′12, sampled with 0.′′06 pixels; as the spectra
have high spatial resolution and low spectral resolution, the line
width almost exclusively reflects the size of the galaxy in the
dispersion direction.

The sample used in this Letter is selected from WFC3-
selected photometric catalogs generated from the HST
Advanced Camera for Surveys and WFC3 images of the
CANDELS and 3D-HST survey fields, along with ancillary
ground-based optical and NIR images and mid-IR images with
Spitzer/IRAC using a methodology similar to that described by
Whitaker et al. (2011). A full description of these catalogs is
beyond the scope of this Letter and will be described in a forth-
coming paper (R. Skelton et al., in preparation). We extract a
two-dimensional flux-calibrated WFC3/G141 grism spectrum
for every object in the photometric catalog with HF140W < 24.
Details of the reduction and extraction of the grism spectra,
including accounting for the contamination of overlapping ob-
jects, are provided by Brammer et al. (2012a, 2012b).

To determine the galaxy redshifts, we first compute a purely
photometric redshift from the photometry, using the EAZY code
(Brammer et al. 2008). We then fit the full two-dimensional
grism spectrum separately with a combination of the continuum
template taken from the EAZY fit and a single emission-
line-only template with fixed line ratios taken from the Sloan
Digital Sky Survey (SDSS) composite star-forming galaxy
spectrum of Dobos et al. (2012). The final grism redshift,
z_grism, is determined on a finely sampled redshift grid with
the photometry-only redshift probability distribution function
used as a prior. This method is somewhat more flexible than that
originally described by Brammer et al. (2012a), but the redshift
precision is similar with σ ∼ 0.0035(1 + z). Finally, rest-frame
colors and stellar population parameters are computed from the
photometry with the EAZY and FAST (Kriek et al. 2009) codes,
respectively, with the redshift fixed to z_grism and assuming a
Chabrier (2003) initial mass function.

3. SAMPLE SELECTION

A standard method for discriminating high-redshift quiescent
galaxies from star-forming galaxies is selecting on the rest-
frame U − V and V − J colors (e.g., Labbé et al. 2005; Wuyts
et al. 2007; Williams et al. 2009; Bundy et al. 2010; Cardamone
et al. 2010; Whitaker et al. 2011; Brammer et al. 2011; Patel
et al. 2012); quiescent galaxies have strong Balmer/4000 Å
breaks, characterized by red U − V colors and relatively blue
V − J colors.

Following the definition of Whitaker et al. (2012), our
quiescent selection box is shown in Figure 1, with the larger 3D-
HST parent sample at 1.4 < z < 2.2 shown in gray scale. Using
the dotted line in Figure 1 ((U −V ) = −1.25× (V −J )+2.85),
we further divide our quiescent sample into “younger” (blue)
and “older” (red) galaxies (Section 5). The nature of the stellar
populations of galaxies with rest-frame colors close to the
quiescent/star-forming division is not clear and we therefore
restrict our analysis to be more conservative by 0.08 mag
(excluding those galaxies with high transparency in Figure 1).
We select galaxies at 1.4 < zgrism < 2.2 with stellar masses
log(M�) > 10.5 M�, further restricting our sample to require
>75% wavelength coverage of the grism spectrum with <50%
of the pixels flagged as bad. The grism spectra of quiescent
galaxies do not have strong emission line features and therefore
the redshifts may not be reliable beyond certain magnitude

Figure 1. Rest-frame U − V and V − J color selection of quiescent galaxies,
further separating the sample into two bins of younger (blue) and older (red)
quiescent galaxies in Section 5. All galaxies with HF140W < 24 are shown in
gray scale.

(A color version of this figure is available in the online journal.)

limits; we additionally require that we detect the continuum
at �5σ per resolution element in the one-dimensional spectrum
(HF140W < 22.8), removing the faintest 20% of galaxies.

4. QUIESCENT STACKS

Although the individual galaxies are too faint to discern
spectral features, by stacking the spectra of our final sample
of 171 galaxies, we can achieve the necessary signal-to-noise
ratio to robustly identify absorption features in a large well-
defined high-redshift sample for the first time. To normalize the
spectra, we shift to the rest-frame and interpolate the flux values
to a new wavelength grid with 10 Å width bins. Next, we fit
the continuum in each spectrum with a third-order polynomial,
masking regions around prominent absorption features. After
dividing by the continuum, we determine the median flux value
at each wavelength bin and smooth with a boxcar of 20 Å. The
gray scale error bars are derived from 100 bootstrap iterations
of the stacking analysis.

We show the stacked spectrum in Figure 2. In the top panel, we
see many clear absorption features: G band (λ4304 Å) blended
with Hγ (λ4341 Å), Mg i (λ5175 Å), Fe i (λ5269 Å), and Na i
(λ5894 Å). These metal lines are indicative of an evolved stellar
population. We caution that systematic residuals in the blue part
of the spectrum are of similar strength as the emission lines. The
residuals do not seem to be caused by photon noise, and show up
in all stacked spectra. We have not identified the cause of these
residuals. We cannot exclude errors in the stellar population
synthesis models, although that is unlikely in this well-studied
wavelength range.

We perform a least-squares minimization using the Vazdekis
et al. (2010) models to find the best-fit age of the stack.
The Vazdekis et al. (2010) models provide moderately high
resolution spectral energy distributions computed assum-
ing an instantaneous burst, solar metallicity, and a Kroupa
(2001) universal initial mass function, based on the MILES
(Sánchez-Blázquez et al. 2006) stellar library. We simulate
the expected morphological broadening by convolving the
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Figure 2. Median rest-frame stack of 171 quiescent galaxies (top) and the residuals after subtracting the best-fit model (red) with an age of 1.25 Gyr (bottom), using
the grism redshifts. The orange model shows an additional 5% enhancement of centrally concentrated Hβ and [O iii] emission. The accuracy of the grism redshifts
enables us to resolve absorption features at z ∼ 2 with high signal-to-noise for the first time.

(A color version of this figure is available in the online journal.)

high-resolution models with the grism response and the ob-
ject morphology in the HF140W direct image (see Brammer et al.
2012b, for more information on how the two-dimensional model
spectra are generated). One-dimensional model spectra are then
extracted in the same way as was done for the observed G141
spectra. The red line in Figure 2 is the best-fit convolved model
with an age of 1.25 Gyr, fit to all wavelengths.

The bottom panel of Figure 2 shows the residuals when sub-
tracting the best-fit model (red). Here, we see the [O iii] doublet
(λ4959, 5007 Å) and Hβ in emission. It is somewhat surprising
to clearly resolve the [O iii] doublet given the morphological
broadening in the grism spectra. In Figure 3, we demonstrate
the expected resolution for the [O iii] emission feature at a fixed
line ratio of 3:1 when convolving with the interlaced point-
spread function (PSF; red) and the average galaxy HF140W pro-
file (black). The stacked profile is constructed by re-centering,
masking neighbors, and normalizing by the total flux of individ-
ual galaxies before taking the mean/median. The [O iii] doublet
is blended together when the emission is a global feature of the
galaxy, whereas centrally concentrated emission (within roughly
the central pixel) shows two clear peaks. The point source nature
of the [O iii] emission lines also indicates that the high quality
of the grism redshifts, as redshift errors would broaden the ob-
served [O iii] lines in the stack. We note that although the relative
ratio of the [O iii] doublet is mildly sensitive to the assumed best-
fit model, this effect is significantly less than the error bars from
the stacking analysis themselves. The residuals are consistent
with both centrally concentrated [O iii] and Hβ emission.

To model the central Hβ and [O iii] enhancements, we
simultaneously fit a grid of Vazdekis et al. (2010) models
convolved with the average galaxy profile with enhancements
ranging from 0% to 15% above the continuum flux for Hβ and
[O iii] emission lines convolved with the PSF. We assume a fixed
line ratio of [O iii] λ5007/Hβ = 1, consistent with the residuals
in Figure 2 and line ratio diagnostics for post-starburst galaxies
in the SDSS (Mendel et al. 2013). The best-fit model of 1.25 Gyr
with a 5% [O iii] and Hβ central enhancement is shown in the
top panel of Figure 2 (orange).

We measure the [O iii] λ5007 line flux from the residuals
in Figure 2 to be 1.4 ± 0.2 × 10−18 erg s−1 cm−2, which
corresponds to LO iii of 1.7 ± 0.3 × 1040 erg s−1 for the median
redshift of 1.64. Similarly, we measure the Hβ line flux to be
1.5 ± 0.2 × 10−18 erg s−1 cm−2. To determine the line flux
errors, we add the simulation errors in quadrature to the error
in the average continuum level. The resulting [O iii] λ5007/Hβ
ratio is 0.9 ± 0.2. If we further correct LO iii for the average
dust extinction value of AV = 0.5 determined from the
photometry, we estimate the dust-corrected [O iii] luminosity
to be Lc

O iii = 2.4 × 1040 erg s−1, following Bassani et al.
(1999). Adopting the conversion from Lc

O iii to LX from Lamastra
et al. (2009) and a factor of 10 conversion from LX to Lbol
(Lusso et al. 2010), we estimate a typical active galactic nucleus
(AGN) luminosity to be Lbol = 2 × 1042 erg s−1. However,
we note that it is not possible to differentiate between centrally
concentrated residual star formation or an AGN without further
information.
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Figure 3. The morphology of the residual [O iii] emission after subtracting a
1.25 Gyr model (histogram). The morphology is compared to the expectation
for a centrally concentrated gas distribution (red line) and to a distribution that
follows the galaxy light (black line). The red shaded region indicates the 1σ

confidence interval resulting from the modeling analysis. The resolved double
peak of the [O iii] feature is only expected for centrally concentrated emission
with the low grism resolution.

(A color version of this figure is available in the online journal.)

5. WHAT DRIVES THE SPREAD
IN REST-FRAME COLORS?

With these high-quality stacked spectra, we can now begin
to assess the driving factor behind the spread in rest-frame
colors of quiescent galaxies. The three possibilities include age,
dust, or metallicity variations amongst galaxy populations. The
difference in rest-frame U − V and V − J colors corresponding
to 1 Gyr of passive aging within the Bruzual & Charlot (2003)
models results in a 0.4 mag vector parallel to the quiescent
sequence. Similarly, increasing the metallicity from log(Z) =
0.02 (solar) to log(Z) = 0.05 or adding 0.5 mag of dust reddening
following the Calzetti et al. (2000) dust law results in an
almost identical vector in both direction and magnitude. Due to
degeneracies between age, dust, and metallicity, it is notoriously
difficult to differentiate which of these effects dominates.

Metallicity variations will cause the color spread in galaxies
to increase over time as the galaxies passively evolve, reaching
a roughly constant scatter for the oldest stellar populations.
As noted by Whitaker et al. (2010), the trend for the intrinsic
scatter in the rest-frame colors of massive quiescent galaxies to
steadily decrease from z = 2 to the present epoch (see also, e.g.,
Ruhland et al. 2009; Papovich et al. 2010) is opposite to that
predicted from metallicity variations alone. We therefore expect
that metallicity will not have a large effect at high redshifts.

As the shape of the Balmer/4000 Å break depends sensitively
on the treatment of dust reddening, one would ideally need
to correlate direct, independent measurements of the ages of
massive galaxies with their colors. Surprisingly, Bezanson et al.
(2013) did not find a simple correlation between the rest-
frame color and the strength of the Balmer absorption lines,
as some of the reddest galaxies in the spectroscopic sample had
strong Balmer absorption lines. However, with a small sample
size of 13 galaxies, it is difficult to gauge if these results are
representative of the overall quiescent population.

In Figure 4, we plot the median stacked spectra in two rest-
frame color bins for the 171 quiescent galaxies, as color-coded

in Figure 1. The total number of galaxies in each bin is labeled
in Figure 1 and the number of galaxies per wavelength bin is
indicated in the top histogram of Figure 4. A minimum number
of 20 galaxies was required per wavelength bin to ensure a robust
measurement.

Here, we assess the effects of age as a function of rest-
frame color for a mass-limited sample of quiescent galaxies
by measuring the strength of absorption features such as Mg i
and Hβ. Both of these spectral features are sensitive to the age of
the stellar population, but not very sensitive to metallicity or dust
reddening. Given the narrow baseline of the spectral features,
dust extinction is not expected to have a significant effect. At
the grism resolution, the Hβ absorption feature is expected to be
about 4%–5% stronger in a 1 Gyr stellar population as compared
to a 2 Gyr stellar population, whereas the Mg i absorption feature
is about 3%–4% weaker. Increasing the metallicity results in a
slightly deeper Mg i feature, but only on the order of �1%. To
first order, any change measured in Hβ and Mg i is due to age
differences between the galaxies.

The average age of galaxies with the bluest rest-frame colors
is 0.9+0.2

−0.1 Gyr, consistent with the expectation that they are in the
“post-starburst” phase (Kriek et al. 2010; Whitaker et al. 2010,
2012). These galaxies clearly show significantly stronger Hβ
and Hγ absorption than the reddest galaxies. Note the difference
in shape of the blended G band and Hγ between these two
stacks. The redder galaxies are 0.7 Gyr older on average, with
a best-fit age of 1.6+0.5

−0.4 Gyr. For a 0.7 Gyr age difference, the
Bruzual & Charlot (2003) models predict Δ(U − V ) = 0.2
and Δ(V − J ) = 0.3, corresponding to exactly the observed
difference in the median rest-frame colors of the two bins.

The older quiescent galaxies show clear signs of either central
residual star-formation activity or an AGN, while the enhance-
ment in the younger galaxies is not well constrained despite
a well-determined spectroscopic age. We measure the residual
[O iii] λ5007 and Hβ line fluxes for the younger and older pop-
ulations, finding ratios of 0.3 ± 0.1 and 1.1 ± 0.2, respectively.
The bluer galaxies lack a clear [O iii] feature, although the dif-
ference with the redder galaxies is only marginally significant.

6. DISCUSSION

We present stacked grism spectroscopy of a mass-limited
sample of 171 quiescent galaxies at 1.4 < z < 2.2
from the 3D-HST treasury program (Brammer et al. 2012a).
We demonstrate that we can resolve absorption features such
as the G band (λ4304 Å), Hβ(λ4861 Å), Mg i (λ5175 Å), and
Na i (λ5894 Å) in the median stacks due to the high-quality
grism redshifts. We further detect centrally concentrated Hβ
and [O iii] in emission, indicating either residual central star
formation (e.g., Bezanson et al. 2013) or an AGN.

The average L[O iii] derived from the stacks of 0.4 × 107 L�
is consistent with the results of Mendel et al. (2013), who find
that 70%–80% of recently quenched galaxies in the SDSS have
LINER-like active nuclei (L[O iii] � 107 L�). Furthermore, the
[O iii] λ5007/Hβ ratio of 0.9 for a median mass of 1010.83 M�
places the average quiescent galaxy within the LINER region of
the mass–excitation diagnostic diagram (Juneau et al. 2011),
albeit marginally consistent with the “composite” crossover
region within the error bars. From the average dust-corrected
[O iii] (λ5007 Å) luminosity, we infer that quiescent galaxies
may have a typical AGN luminosity of Lbol = 2 × 1042 erg
s−1. These results are consistent with the recent work of Olsen
et al. (2013), who find that 70%–100% of massive quiescent
galaxies at 1.5 < z < 2.5 contain a low- or high-luminosity
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Figure 4. Median stacks of quiescent galaxies in two rest-frame color bins (as defined in Figure 1). The top two panels show the number of galaxies and median
redshift of each wavelength bin. The observed stacks in the third panel reveal that the bluest quiescent galaxies have younger ages, most notable by the stronger Hβ

and weaker Mg i absorption. The fourth panel shows the best-fit models, including a 5%–6% centrally concentrated enhancement of Hβ and [O iii] emission. The
residuals are shown in the bottom panel.

(A color version of this figure is available in the online journal.)

AGN. The potential ubiquitous nature of AGNs in massive,
quiescent z ∼ 2 galaxies provides observational support that
black hole accretion may be more effective at the high-mass
end (e.g., Kriek et al. 2007).

To understand the relationship between rest-frame color and
our spectroscopic age measurements, we further stack the data
in two rest-frame color bins. We find that the bluest quiescent
galaxies have a more prominent Hβ absorption line, with best-fit
ages of 0.9+0.2

−0.1 Gyr, confirming the idea that these galaxies are
the most recently quenched. Furthermore, we find that redder
quiescent galaxies (80% of the population) have an older age
of 1.6+0.5

−0.4 Gyr. Although previous spectroscopic studies have
measured similarly old ages (e.g., Kriek et al. 2009; Onodera
et al. 2012; van de Sande et al. 2012), this is the first time we
are able to probe the full population. These results suggest that
age varies significantly with the colors of quiescent galaxies,
consistent with Whitaker et al. (2010).

Galaxies with the reddest rest-frame colors likely have some
degree of dust extinction, as dust-free models cannot produce
such red colors at these redshifts. Dust extinction does not
greatly affect the line-index measurements for single stellar
populations given the narrow baseline of the spectral features,
but its effect can be significant for the 4000 Å break (MacArthur
2005). Consequently, although the absorption features of the 3D-
HST stacks will be effectively independent of dust extinction,
the rest-frame color can change significantly in the presence
of dust due to its sensitivity to the continuum shape. We
cannot rule out that the reddest galaxies have a potentially
significant contribution from younger, dusty quiescent galaxies.
Nonetheless, despite this caveat, we measure a significant age

difference between the two populations of 0.7 Gyr that is
consistent with the observed rest-frame color differences.

The key result from this Letter is that we have conclusively
demonstrated that old, quiescent galaxies exist in large numbers
at z ∼ 2. This is not a surprise given extensive previous results
that were based on broadband and medium-band photometry
(e.g., Brammer et al. 2011), and ground-based spectroscopy for
small samples (e.g., Onodera et al. 2012), but our detection of
metal lines in the stacked spectrum puts any lingering concerns
to rest. Our result also implies that the “UVJ technique,” first
described in Labbé et al. (2005), is very effective in identifying
quiescent galaxies at z ∼ 2.
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manuscript. This research was supported by an appointment to
the NASA Postdoctoral Program at the Goddard Space Flight
Center, administered by Oak Ridge Associated Universities
through a contract with NASA. Support from STScI grant
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Kriek, M., Labbé, I., Conroy, C., et al. 2010, ApJL, 722, L64
Kriek, M., van der Wel, A., van Dokkum, P. G., et al. 2008, ApJ, 682, 896
Kriek, M., van Dokkum, P. G., Franx, M., et al. 2006, ApJL, 649, L71
Kriek, M., van Dokkum, P. G., Franx, M., et al. 2007, ApJ, 669, 776
Kriek, M., van Dokkum, P. G., Labbé, I., et al. 2009, ApJ, 700, 221
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Labbé, I., Huang, J., Franx, M., et al. 2005, ApJL, 624, L81
Lamastra, A., Bianchi, S., Matt, G., et al. 2009, A&A, 504, 73
Lusso, E., Comastri, A., Vignali, C., et al. 2010, A&A, 512, A34
MacArthur, L. A. 2005, ApJ, 623, 795

Mendel, J. T., Simard, L., Ellison, S. L., et al. 2013, MNRAS, 429, 2212
Nicol, M.-H., Meisenheimer, K., Wolf, C., et al. 2011, ApJ, 727, 51
Olsen, K. P., Rasmussen, J., Toft, S., et al. 2013, ApJ, 764, 4
Onodera, M., Renzini, A., Carollo, M., et al. 2012, ApJ, 755, 26
Papovich, C., Momcheva, I., Willmer, C. N. A., et al. 2010, ApJ, 716, 1503
Patel, S. G., Holden, B. P., Kelson, D. D., et al. 2012, ApJL, 748, L27
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