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TAO Occurs

Slender Half Tube

— Closed at warm end (or slight flow)
— Open at cold end (either in vapor or liquid)

Spontaneous
Critical temperature ratio needed to initiate TAO

TAO transfers heat from the warm end to the cold end
because gas absorbs heat from the walls as it expands
at the warm end and gives up heat to the walls as it is
compressed at the cold end

Can increase heat transfer 1- 3 orders of magnitude
over that of conduction
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TAO Process

Cold gas enters the warm end and rapidly expands
Expanding gas pushes warmed gas into the cold open end
Inertial forces cause a low pressure to form in warm end

The low pressure causes the flow to reverse

Cold dense gas moves into warm end

Creates large radial temperature gradient Tt
Cold gas gets heated <=0
Process repeats 8
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TAO Happens

« Cryogenic Boil Off Reduction System
— Unexplained heat

— Oscillation observed with high-speed
pressure-transducer
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TAO Frequency

« Tube acts as 72 wavelength acoustic resonator
e f=c/A
— Ais the 4 x V4 wavelength tube, for lowest frequency

 without liquid in the tube
— c is the speed of sound at vapor temperature

/_\_/

— Example
« Hydrogen at 20K, R = 4124J/kgK, k = 1.41
e c=341m/s
* A=4m
e f=85s"1
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Where TAO Does Not Occur

Closed system
— e.g. between two valves
— Can occur after a valve is open

Open at both ends
— e.g. an open vent
— Very small openings may appear as closed

Small ratios of T, /T4

— e.g. a <8 fora 1m long tube
— 300K/20K =15

Very small inside diameter tubes
— e.g. 1D <0.015” for a 1m long tube
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The Equations

* Solution of TAO stability curves depends on solution of combined mass,
momentum, energy for a compressible fluid:

0
—p+V0p1=0
ot -
v
pa—"“=—VP+FB+,uV3v (2D)
't - ~
pCPa—T=—Voq+alnI/ dp—z':Vv+S
ot -~ O0InT|, dr - -
P=ZpRT

* Standard method of solution is a perturbation solution about the mean value for
p.u,v,PT

* Example: P=P 4 Pc+ P’ +...

* If asinusoidal wave is assumed, p— p +}518+j5282 + only the first order term is

m

retained, because P =( and higher order terms are small.

.. P=gPRexp(ior),u=su exp(iar),etc. Real part of w is oscillation frequency
* Substitute perturbed solutions into 5 equations, solve numerically

TFAWS 2014 — August 4-8, 2014 8



TAO Critical Conditions
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Example
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Open end in vapor
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2 UNSTABLE
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Open end 0.1m below liquid surface
Mass of liquid in tube will lower the

oscillation frequency
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Dipping Effects
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Dipping Effects

« LHZ2 did not enter tube until submersed 20cm

— Ref. 4 - :
S No capillary leak
~ /
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Note difference in behavior between He and H2. Use caution when applying He findings to H2 applications
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TAO Forces

 Forcesin TAO
— Driving force
» Temperature ratio and gradient

» Heat transfer area
— Length and radius of warm section
— ‘Driving force is directly proportional to warm end tube length’

— Viscous resistance
» Viscosity in warm section predominates when & >1
* Length ratio critical

— Inertial force
* Oscillating Mass
* Pressure, temperature, volume
 Features
— More easily excited when cold end is in fluid
— Lower frequency when fluid is in fluid
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Jg 5 TAO Stability Limits

* To increase stability
— Reduce temperature gradient

Omin = 9 (end not in liquid)

Onin = 2 (end in liquid)

— Increase length ratio
« Applies to right hand region

* Increase L,

 Decrease L
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: ‘ Changing Tube Size or Temperature Ratio N@\;S‘A

Increase viscous damping
Decrease radius QS 1
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Mitigation Methods

Reduce driving force

— Change temperature ratio o
Reduce temperature gradient
Make warm end colder
— Insulation

— Change length ratio &
Make warm end shorter
— Reduces driving force

Increase viscous damping

— Reducing tube radius
e.g. add restrictor to cold end

Increase inertial damping

— Increase tube radius

— Change temperature gradient
* Insulation

Block line

— Check valve

— Add filter

Use as acoustic absorber

 Connect Fill with Vent

 Resonator
— Add resonator to warm end
— Works theoretically

« Parallel % wavelength tube
* Other

— Get away from g =1

— Adding a large cavity to warm end can
have the same effect as opening the
closed end

e.g. add a vent

— Get open end out of liquid
Raises minimum critical temperature ratio

— Fill tube with liquid

Oscillations would need to drive a large mass
e.g. add vent to warm end of dip tube
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Change effective length of dip tube
by allowing liquid to fill it

Possible Fix: Vent Hole

ENIB'9S
3SOH X314

Drill hole in warm end
Effective when tank is relatively full in 1g

When fluid level is low, vapor length will
increase and TAO may return
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Actual Fix: Cross Over Valve

T=290K

Bypass
T=290K Valve

X

|— Cryocooler
Fill/Drain Strap

Line

Vent Line

(Gas H2

T=21K

Liquid H2 at 21K

Ref. 7
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Out-of-Phase Parallel Tubes

If a /4 wave-length tube and a % wave-length tube are in parallel,
their out of phase oscillations will cancel each other

Yal
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Warm End Resonator

NECK
TUBE

OSCILLATING TUBE I:

RESONATOR

Shown to work theoretically
Ref. 1
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Check Valve

Good location
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