Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

Yuan (James) Liu, N&R Engineering
Jonathan Litt, NASA Glenn Research Center
T. Shane Sowers, Vantage Partners, LLC
A. Karl Owen, Consultant
Ten-Huei (OA) Guo, NASA Glenn Research Center

50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
28-30 July 2014
Contents

• Background
• Objectives
• Simulations & Results
• Summary & Conclusions
Background

- NASA Aviation Safety Program
- Emergency situations (e.g., runway incursion, airframe damage) may warrant unconventional usage of aircraft engines
- Overthrust (OT): Increase maximum thrust output
- Faster response (FR): More responsive transient thrust response
- Development of risk-based control modes that enhance engine performance for emergency use

Control Mode: Overthrust

• Control mode relaxes limits on temperature and rotational speeds
• Thrust available is increased
• Maximum overthrust at any operating condition is defined by a predetermined disk/blade failure risk level

Control Mode: Faster Response

- Control mode activation increases thrust responsiveness to throttle changes
- Modification to engine control system gains, schedules, etc.
- Risk of stall related to minimum stall margin attained during transient
- Reduction of minimum stall margin to consistent level

Objectives

- **Apply control modes to aircraft simulation**
 - Propulsion: Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), NASA Glenn
 - Airframe: Transport Class Model (TCM), NASA Langley
 - Piloted flight simulator: Modular Flight Deck (MFD), Precision Flight Controls, Inc.

- **Evaluate effectiveness of control modes through simulations of emergency scenarios**

- **Runway incursions**
 - Computer simulation (i.e., autopilot)

- **Flight control surface failure**
 - Autopilot and piloted evaluations
Runway Incursion

- Aircraft stationary
- Throttles 0 to 90%

- Incursion detected
- Throttles 90% to 100%
- Pull up to 15° pitch

- Aircraft clears 50 feet above ground level (AGL)
Runway Incursion

- **Test cases:**
 - Baseline vs. enhanced performance
 - New vs. end-of-life (EOL) engines
 - Vary XP (point where incursion is detected)

- **Metric:** additional distance required to clear 50 feet AGL (XC-XP)

- Greater improvement with earlier detection (but also less useful)

- OT mode with EOL engines nearly recovers baseline/new performance
Flight Control Surface Failure

- Failure of all primary flight control surfaces (elevator, aileron, rudder)
- Propulsion Controlled Aircraft (PCA): control system reconfigured to command engine power setting

Control Surface Failure: Evaluations

- Evaluations of longitudinal and lateral aircraft maneuverability with baseline and enhanced engines
- Tests conducted by autopilot (“unaware” of control surface failure) and human pilot
- Engine power settings are indirectly controlled through PCA control system
Control Surface Failure
Longitudinal Maneuvers—Autopilot

- Altitude profile of PCA with enhanced control modes nearly identical to that of nominal aircraft (fully functional flight controls)
- PCA with baseline engines results in instability
 - Autopilot does not compensate for slow response of baseline engines (commands too aggressive)
 - PCA control gains may not be optimal
- Performance-enhancing control modes provide protection against instabilities
Control Surface Failure
Longitudinal Maneuvers—Piloted

- Maneuver requirements relaxed for piloted evaluations
 - Exact trajectory not required
 - Just hit the altitude waypoints (e.g., 5000 feet, 6000 feet, 3000 feet)
- Pilot was aware of control surface failure, but unaware of engine control mode status
- Aircraft control with baseline engines more difficult, though the pilot was able to prevent instabilities for 1 of 3 baseline PCA runs
Control Surface Failure
Lateral Maneuvers—Autopilot

- Roll response not ideal, but faster engines prevent instabilities
- Autopilot too aggressive in trying to maintain altitude during rolling maneuvers
Control Surface Failure
Lateral Maneuvers—Piloted

- Pilot had to hit heading waypoints (no trajectory requirement)
- No instabilities for baseline or enhanced engines
- Pilot tried to maintain altitude, but not at expense of stability
- Autopilot had tighter altitude control, but only successful with faster thrust response
Summary & Conclusions

- Control modes: engine performance enhancements based on failure risk elevation
- Control mode implementation on aircraft/propulsion simulation and flight simulator test bed
- Evaluated control modes using example flight emergency scenarios (runway incursion & flight control surface failure)
- Extra thrust reduces takeoff distance
- Faster response protects against instabilities if aircraft must be maneuvered with engines only
Overthrust: Implementation

- Reduced-order risk function used for control design and implementation (NOT used when evaluating results)
- Disk failure risk as function of core speed
- Blade failure risk as function of core speed and single turbine temperature
- Allowable elevated risk (10^{-3}) manifested as:
 - Core speed limit for disk failure
 - Speed-temperature boundary for blade failure
Overthrust: Implementation

- Core speed and turbine temperature regulators used to maintain engine operating point on risk boundary
- Overthrust activation: PLA mapping switches from idle-to-max to idle-to-overthrust
Overthrust: Results

- Tested at 180 operating points (0 to 4000 feet, Mach 0 to 0.3, standard to +40°R ambient temp, new to full deterioration)
- Maximum power setting: baseline vs. overthrust
- Nc-T48 reduced-order risk boundary (LPT inlet temperature)
Faster Response: Risk Function

- Risk of stall modeled as normal distribution
 - Stall margin reported by simulation equals mean
 - Root-sum-square of random effects equals 3 standard deviations
- Stall probability of 10^{-3} corresponds to $\sim 2.3\%$ stall margin

<table>
<thead>
<tr>
<th>Destabilizing Effects</th>
<th>Non-random</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Distortion</td>
<td>0.7%</td>
<td>-</td>
</tr>
<tr>
<td>PLA Transient</td>
<td>6.0%</td>
<td>-</td>
</tr>
<tr>
<td>Fuel Control Tolerance</td>
<td>-</td>
<td>$\pm 1.15%$</td>
</tr>
<tr>
<td>Engine-to-Engine Variation</td>
<td>-</td>
<td>$\pm 1.25%$</td>
</tr>
<tr>
<td>Surge Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>0.36%</td>
<td>-</td>
</tr>
<tr>
<td>Inlet Distortion</td>
<td>7.5%</td>
<td>-</td>
</tr>
<tr>
<td>Engine-to-Engine Variation</td>
<td>-</td>
<td>$\pm 1.35%$</td>
</tr>
<tr>
<td>Total</td>
<td>14.56%</td>
<td>2.17%</td>
</tr>
</tbody>
</table>

![Stall Margin Distribution](image.png)

![Stall Probability](image.png)
Faster Response: Implementation

- Shifting acceleration schedule allows for faster dynamic response with lower minimum stall margin
- Iterative search conducted at 60 operating points (0 to 4000 feet, Mach 0 to 0.2, standard to +40°R ambient temperature, new to full deterioration) to determine offset values
- Implementation: 4-D interpolation on operating conditions to determine offset value

Faster Response: Results

- Tested at 540 operating points (within interpolation range)
- PLA from flight idle to maximum in 0.1 seconds
- Rise time: time to traverse 10% to 90% of difference between initial and final thrust levels
Flight Simulator

- Full cockpit with standard pilot/copilot controls and instrumentation
- PC 1: X-Plane
- PC 2: Displays
- PC 3: Everything else
 - Models and control systems for aircraft and engines (TCM + C-MAPSS40K)
 - Flight path predictor
 - MPARS flight/propulsion control override algorithms
Flight Simulator