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Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing 

and delivering in-space propulsion technologies for NASA’s Science Mission Directorate 

(SMD). These in-space propulsion technologies are applicable, and potentially enabling for 

future NASA Discovery, New Frontiers, Flagship and sample return missions currently 

under consideration. The ISPT program is currently developing technology in three areas 

that include Propulsion System Technologies, Entry Vehicle Technologies, and 

Systems/Mission Analysis. ISPT’s propulsion technologies include: 1) the 0.6-7 kW NASA’s 

Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-

effect electric propulsion (HEP) system for low cost and sample return missions; 3) the 

Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies 

(ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV).  The NEXT Long 

Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, 

corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the 

High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the 

XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary 

science missions. The XFCM and ULTT are two component technologies which being 

developed with nearer-term flight infusion in mind. Several of the ISPT technologies are 

related to sample return missions needs: MAV propulsion and electric propulsion.  And 

finally, one focus of the Systems/Mission Analysis area is developing tools that aid the 

application or operation of these technologies on wide variety of mission concepts.  This 

paper provides a brief overview of the ISPT program, describing the development status and 

technology infusion readiness. 
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Nomenclature 

AO = Announcement of Opportunity  NDI) = Non-Destructive Inspection 

CDR = Critical Design Review  NEO = Near-Earth Object 

CTPB = carboxyl terminated polybutadiene  NEXT = NASA’s Evolutionary Xenon Thruster 

DRM = design reference mission  NRA = NASA Research Announcement 

EDL = entry, descent, and landing  NSTAR = NASA Solar Electric Propulsion 

Technology Application Readiness 

EDU = engineering development unit  PAT = performance acceptance test 

EM  = engineering model  PM = prototype-model 

ERV = Earth Return Vehicle  PPU = power-processing unit 

GFE = Government-Furnished Equipment  PSD = Planetary Science Division 

HEP = Hall-effect electric propulsion  QCM = Quartz-Crystal Microbalance 

HIVHAC = High-Voltage Hall Accelerator  RGA = Residual Gas Analyzer 

HTPB = hydroxyl terminated polybutadiene  SEP = Solar Electric Propulsion 

ISPT = In-Space Propulsion Technology  SMD = Science Mission Directorate 

I-V = current-voltage  SNAP = Simulated N-body Analysis Program 

JPL = Jet Propulsion Laboratory  SOTA = State-of-the-Art 

LDT = Long Duration Test  TAC = The Aerospace Corporation 

LTTT = low-thrust trajectory tools  TIM = Technical Interchange Meeting 

MALTO = Mission Analysis Low Thrust 

Optimization 

 TRL = technology readiness level 

MAV = Mars Ascent Vehicle  TSSM = Titan/Saturn System Mission 

MLC = multi-layer ceramic  ULTT = ultra-lightweight tank technology 

MSL = Mars Science Laboratory  XFCM = Xenon Flow Control Module 

MSR = Mars Sample Return     

I. Introduction 

ISSIONS carried out for the Planetary Science Division (PSD) of NASA’s Science Mission Directorate 

(SMD) seek to answer important science questions about our Solar System. To enable or significantly 

enhance PSD’s future planetary science missions, the In-Space Propulsion Technology (ISPT) program has been 

developing critical propulsion, entry vehicle, and other spacecraft and platform subsystem technologies since 2001. 

ISPT’s objective is to achieve technology readiness level (TRL) 6 and reduce risk sufficiently for mission infusion. 

The ISPT program aims to develop technologies in the mid TRL range (TRL 3 to 6+ range) that have a reasonable 

chance of reaching maturity in 4–6 years.  ISPT strongly emphasizes developing propulsion products for NASA 

flight missions that will be ultimately manufactured by industry and made equally available to all potential users for 

missions and proposals. ISPT focuses on the development of new enabling technologies that cannot be reasonably 

achieved within the cost or schedule constraints of mission development timelines.   

The ISPT program is currently developing technology in four areas. These include Propulsion System 

Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), 

Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and 

Systems/Mission Analysis.  The ISPT developed in-space propulsion technologies will enable and/or benefit near 

and mid-term NASA robotic science missions by significantly reducing cost, mass, risk, and/or travel times which 

will help deliver spacecraft to PSD’s future destinations of interest.  These in-space propulsion technologies are 

applicable, and potentially enabling, for future NASA Discovery, New Frontiers, and sample return missions 

currently under consideration, as well as having broad applicability to potential Flagship missions. 

ISPT’s propulsion system technology investments are currently being made in the area of Solar Electric 

Propulsion (SEP). SEP is both an enabling and enhancing technology for reaching a wide range of targets. Several 

key missions of interest: sample return, small body rendezvous, multi-rendezvous, Titan/Saturn System Mission 

(TSSM), Uranus Orbiter w/Probe, etc., require significant post-launch ΔV and therefore can benefit greatly from the 

use of electric propulsion.
1,2

 High performance in-space propulsion can also enable launch vehicle step down; 

significantly reducing mission cost.
3
 The performance of the electric propulsion systems allows direct trajectories to 

multiple targets that are otherwise infeasible using chemical propulsion. The technology allows for multiple 

rendezvous missions in place of fly-bys and, as planned in the Dawn mission, can enable multiple destinations. SEP 

offers major performance gains, moderate development risk, and significant impact on the capabilities of new 

missions. ISPT’s approach to the development of chemical propulsion technologies is primarily the evolution of 

M 
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component technologies that still offer significant performance improvements relative to state-of-art technologies. 

The investments focus on items that would provide performance benefit with minimal risk with respect to the 

technology being incorporated into future fight systems.  This paper describes the technology development in the 

areas of electric propulsion, propulsion components, Mars ascent vehicle, and mission/systems analysis. For more 

background on ISPT, please see Ref. 4-8. 

II. NASA’s Evolutionary Xenon Thruster  

The NASA’s Evolutionary Xenon Thruster (NEXT) ion propulsion system was developed for a wide range of 

NASA robotic science missions, including near-term New Frontiers and Discovery class mission opportunities. The 

GRC-led NEXT project was competitively selected to develop a highly throttle-able 7 kW ion propulsion system.
4,5

The objectives of this development were to improve upon the state-of-art (SOA) NASA Solar Electric Propulsion 

Technology Application Readiness (NSTAR) system flown on Deep Space-1 and Dawn, and enable flagship class 

missions by achieving the performance characteristics identified in Table 1. 

Table 1. Performance Characteristics of NEXT vs. NSTAR SOA 

Characteristic300 
NSTAR

(SOA) 
NEXT 

Thruster Power Range (kW) 0.5-.3 0.5-6.9 

Max. Thrust (mN) 92 236 

Max. Specific Impulse (sec) >3100 >4100 

Max. Thruster Efficiency >61% >70% 

Total Impulse (x10
6 
 N-sec) >5 35.5 

Propellant Throughput (kg) 135 918 

PPU Specific Mass (kg/kW) 6.0 4.8 

PMS Single String Mass (kg) 11.4 5.0

PMS Unusable Propellant Residual 2.40% 1.00% 

The ion propulsion system components developed under the NEXT project included the ion thruster, the power-

processing unit (PPU), the xenon feed system, and 

a gimbal assembly. The NEXT thruster was 

developed to TRL6 via the fabrication and 

successful environmental testing of a prototype-

model (PM) fidelity thruster manufactured by 

Aerojet Rocketdyne Corporation. To demonstrate 

the performance and life of the NEXT thruster, a 

comprehensive test program was executed 

involving both NEXT Engineering Model thrusters 

and components and the NEXT PM thruster. The 

NEXT PM thruster completed a 2000 hour wear 

test in which overall ion-engine performance was 

steady with no indication of performance 

degradation.  The NEXT PM thruster subsequently 

passed qualification level environmental testing, 

both thermal vacuum and vibration testing.  

The Long Duration Test (LDT) of the NEXT 

engineering model (EM) thruster recently 

completed a 9-year test, demonstrating over 918 kg 

propellant throughput, 51,200 hours operation, and 

35.5 million Newton seconds total impulse.  The 

test was voluntarily concluded in March 2014, with 

the thruster capable of operating over the entire throttle range at the end of the test.  During the final phase of the 

test, repairs of several of the in-situ diagnostics that had failed over the test duration were completed, without 

exposure of the thruster to atmosphere.  The repair of the diagnostics allowed for collection of end-of-test data for 

 
Figure 1. NEXT LDT Diagnostics 
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comparison to beginning-of-life data. The NEXT LDT diagnostics suite is shown in Fig. 1, and includes a planar 

probe rake, Residual Gas Analyzer (RGA), a Quartz-Crystal Microbalance (QCM), Ion Gage next to thruster, and 

lighting for the in-situ photo documentation imaging system.
4 

The
 
NEXT thruster has now been removed from 

GRC’s vacuum facility VF-16, and extensive post- test inspection and analysis of the thruster  (Fig. 2).
5 
 

The NEXT LDT life test demonstrated the largest 

total impulse, highest propellant throughput, and 

longest operating duration of any electric propulsion 

thruster in the history of space propulsion. 
6
 

A collaborative test program with The Aerospace 

Corporation (TAC) in El Segundo, CA examines the 

plume, particle, and field environments of the NEXT 

thruster. A series of measurements was completed to 

verify basic characteristics of NEXT operation, and 

expand on the available public-domain and internal 

databases regarding NASA technology and its potential 

use on non-NASA spacecraft systems. Among the work 

elements underway are in-depth electromagnetic 

interference, plume particle and plasma probe, optical 

emission, laser diagnostic measurements, plume erosion 

and molybdenum contamination effects, absolute thrust 

and thrust correction factors. This work is of 

considerable relevance to future spacecraft integration of the subject thrusters.
7,8,9

 Fig. 3 shows the NEXT thruster 

installed in the vacuum facility at TAC. Among the work elements going forward are detailed characterizations of 

accelerator grid wear over the entirety of the NEXT thruster throttle table via Laser Induced Fluorescence 

spectroscopy of eroded products, as well as plume (beam divergence 

and beam charge state) measurements of the thruster over nominal and 

expanded throttling ranges.  

NEXT thruster life validation is being determined via combination 

of test and analyses. In-situ erosion measurements of key, critical, 

thruster components indicated rates are consistent with NEXT life 

model projections, for both operating duration and for thruster throttle 

level.  The first anticipated “failure mode”, structural wear-through of 

the ion optics accelerator electrode due to erosion via charge-exchange 

ion wear, was conservatively assumed to occur simultaneous with first-

penetration of the electrode thickness.  In-situ measurements of the 

accelerator electrode erosion indicated rates consistent with model 

projections through approximately 36,000 hours of LDT operation. At 

that point, the thruster had demonstrated over 600 kg xenon throughput 

and over 22.5 MN-s total impulse. Subsequent in-situ measurements 

yielded higher uncertainty due to degraded diagnostics and lighting 

conditions, and the observations that the accumulation of deposited 

carbon onto the thruster from facility surfaces may have begun masking 

the wear mechanism.  All in-situ measurements and associated analyses 

of the LDT indicate that the impact of carbon deposition is a secondary mechanism relative to enhanced 

(accelerated) charge-exchange erosion experienced in the ground-test facilities.  That is, the ground life test yields a 

conservative estimate of thruster life relative to anticipated in-space life. 

Another recent activity has been to update the NEXT Throttle Table based on the most recent testing, modeling, 

and analysis. Throttle table 11 updates include the incorporation of extensive diagnostic test data and measured 

thrust generated in testing at TAC, information obtained from the thruster Long Duration Test, and assessment of 

operating margins. Additional Extended Throttle Level (ETL) throttle points were also characterized during testing 

at TAC, and include points for higher thrust-to-power capability, with operations at higher beam currents and 

propellant flow rates for some beam voltages. While performance verification of these points is extensive, thruster 

lifetime characterization has not yet been completed.  These points could be considered as offering the potential for 

increased capability (performance margin) for missions benefiting from high thrust-to-power.  NEXT Throttle table 

11 can be found in the NEXT Discovery Library documents. 

 
Figure 3. NEXT 

characterization testing at TAC 

 
Figure 2. NEXT LDT Thruster post-test 

inspection 
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One of the challenges of developing the NEXT ion 

propulsion system was the development of the 

Engineering Development Model Unit PPU, shown in 

Fig. 4. The test program identified a number of part 

problems that required extensive investigations to 

resolve and implement corrective actions,
10

 typical of 

parts problems experienced in technology 

development projects.  

One of the more interesting part problems was the 

failure of multi-layer ceramic (MLC) capacitors in 

multiple beam power supplies. The investigation 

process utilized an extensive and knowledgeable team that investigated all branches of the fault tree. The corrective 

actions identified that a custom-built MLC had piezoelectric properties that made it susceptible to an oscillating 

current in the beam supply circuit. The corrective actions in this case were to replace the custom-build MLC 

capacitor as well as to eliminate the oscillating current.
11

 The corrective actions for the MLC capacitor issues were 

implemented in the EM PPU, and resolved the problems.  

A major review of NEXT Phase 2 development activity was conducted in late 2012.  A key outcome from the 

review was the formation of a multi-organization team to define a PPU maturation plan. The technical team assessed 

verification gaps and PPU design weaknesses that needed to be addressed. The team completed Electrical, 

Electronic, and Electromechanical (EEE) parts and high voltage component assessments, reviewed and updated PPU 

requirements, and created a Safety and Mission Assurance Plan in preparation for future PPU development. In 

parallel, the existing PPU was reassembled for use as a test bed to support continuing design evaluation.   

The PPU parts issues precluded completion of environmental testing of the PPU and full TRL6 validation.  Go-

forward planning of the PPU involves development of dual-use PPU under a government-industry partnership to 

complete TRL6 and transition to flight.  Most recently, the Planetary Science Division (PSD) announced that it is 

considering providing two NEXT thrusters and PPUs as Government-Furnished Equipment (GFE) to mission 

proposers as part of an upcoming Discovery Announcement of Opportunity (AO). NASA Glenn is working with 

PSD to finalize development plans in alignment with the anticipated AO release this fall. Additional information on 

the NEXT system can be found in the NEXT Ion Propulsion System Information Summary in the New Frontiers and 

Discovery Program libraries.
9,12,13 

III. High Voltage Hall Accelerator 

ISPT is investing propulsion technologies for applications to low-cost Discovery-class missions and Earth-

Return Vehicles for large and small bodies. The first example leverages the development of a High-Voltage Hall 

Accelerator (HIVHAC) thruster into a lower-cost electric propulsion system.
4,14

 Advancements in the HIVHAC 

thruster include a large throttle range from 0.3–3.9kW allowing for a low power operation. It results in the potential 

for smaller solar arrays at cost savings, and a long-life capability to allow for greater total impulse with fewer 

thrusters. The benefits include cost savings with a reduced part count and less-complex lower-cost propulsion 

system.   

HIVHAC is the first NASA electric propulsion thruster specifically designed as a low-cost electric propulsion 

option. It targets Discovery and New Frontiers missions and smaller mission classes. The HIVHAC thruster does not 

provide as high a maximum specific impulse as NEXT, but the higher thrust-to-power and lower power 

requirements are suited for the demands of some Discovery-class missions and sample-return applications.  

After several design changes to the first HIVHAC engineering development unit (EDU-1), the new unit 

designated EDU-2 underwent the performance acceptance test (PAT).  Vacuum Facility 12 (VF-12) at NASA GRC) 

was used to conduct the PAT, given the pumping speed and resulting vacuum chamber background pressure. The 

results indicate that performance and operational requirements met expectations, with significant improvement to 

the thermal margins of key components. Vibration testing was completed with performance tests conducted both 

before and after vibration tests. The HIVHAC EDU-2 thruster was successfully vibration tested to approximately 

11.5 g in three axes, which were consistent with the specifications used to qualify the NEXT ion thruster. 

Preliminary visual inspection of the thruster indicates that the thruster passed the vibration testing with no visual 

damage evident, and no change in thruster performance was measured.  

 
Figure 4. NEXT PPU developmental unit 
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Component integration tests of major HIVHAC system components was conducted in NASA GRC Vacuum 

Facility 5, as shown in Fig. 5 and 6.
15

 During the test, thrust, current-voltage 

(I-V) characteristics, and a number of plasma diagnostics were implemented 

to study the effect of varying the facility background pressure on thruster 

operation.
16

 These diagnostics include thrust stand, Faraday probe, ExB 

probe, and retarding potential analyzer.
17

 The test results indicated a rise in 

thrust and discharge current with background pressure. The I-V 

characteristics also varied with background pressure.
20

 Test results indicated 

that the thruster discharge specific impulse and efficiency increased as the 

facility background pressure was elevated. The voltage-current profiles 

indicated a narrower stable operating region as the background pressure was 

increased from the lowest attainable background pressure to three and ten 

times. Experimental observations of the thruster operation at high discharge 

voltages indicated that increasing the facility background pressure shifted the 

ionization and acceleration zones upstream towards the thruster’s anode.
20

 

There was a decrease in ion energy per charge, an increase in multiply-

charged species production, a decrease in plume divergence, and a decrease in ion-beam current with increasing 

background pressure.
21,18

 Future tests of the HIVHAC thruster will be performed at facility background pressure 

conditions that are lower than 1×10
-6

Torr.

The HIVHAC EDU-2 thruster advancement mechanism on inner and outer boron nitrate channels was 

successfully demonstrated immediately after 

thruster hot-fire operation in VF-12. The 

advancement mechanism showed smooth 

advancement of both channels as a full 

qualification vibration test post-test validation of 

the mechanism. The actuation test was conducted 

immediately following thruster shutdown, assuring 

high-temperature conditions within the thruster. In 

the future, the test sequence will include 

performance acceptance tests, the remaining 

thermal vacuum environmental tests, and a long 

duration wear test. Current plans include the design, fabrication, and assembly of a full Hall propulsion system that 

can meet a variety of Discovery and Earth Return Vehicle needs.  

In addition to the thruster development, the HIVHAC project is evaluating power processing unit (PPU) and 

xenon feed system (XFS) development options. These were developed under other efforts, but can apply directly to 

a Hall Propulsion system. The goal is to advance the TRL level of key components of a Hall propulsion system 

(thruster, PPU/DCIU, feed system) to level 6 in preparation for a first flight.  

The functional requirements of a HIVHAC PPU are operation over a power throttling range of 300 to 3,900 W, 

over a range of output voltages between 200 and 650 V, and output currents between 1.4 and 15 A as the input 

varies over a range of 80 to 160 V. A performance map across these demanding conditions was generated for one 

candidate option 
4,19

 that is being developed through the NASA 

Small Business Innovation Research (SBIR) Program.
19

 In 2013 

a second brass board unit was received from Colorado Power 

Electronics (CPE).  Over 2,000 hours of steady-state operation 

under vacuum conditions have accumulated on this unit. In the 

summer of 2014 an engineering model (EM) unit will be 

delivered to NASA GRC. The EM unit will have the form and 

fit of the flight unit in addition to having a digital control 

module unit that will control PPU and xenon feed system 

operation (Fig. 7).  The SBIR and ISPT programs, working in 

partnership with JPL, GRC, the Space Technology Mission 

Directorate’s Game Changing Division (STMD/GCD), and 

other interests recently decided to fund the development and 

qualification of a flight model of the CPE PPU.  The input 

voltage range of the PPU will be adjusted to 68 to 140V to 

improve applicability to commercial spacecraft buses. Other 

 
Figure 5. HIVHAC 

thruster Engineering 

Development Unit (EDU) 

 
Figure 7. Colorado Power Electronics Hall 

propulsion system Power Processing Unit. 

 
Figure 6 HIVHAC EDU Thruster and Colorado 

Power SBIR PPU undergoing performance testing. 
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design changes will be incorporated to improve the ability of this PPU to work with other Hall thrusters like the XR-

5 and the SPT-140 to enable the potential of implementing these thruster in NASA missions. 

To continue to simplify and reduce the cost of the HIVHAC system, the ISPT program leveraged the reliable, 

lightweight, and low-cost xenon flow control system.
20

 A follow-on contract was awarded to VACCO as a joint 

ISPT and Air Force effort to qualify a Hall system flow control module. This module would significantly reduce the 

cost, mass, and volume of a Hall thruster xenon control 

system while maintaining high reliability and decreasing 

tank residuals. This is the first time the ISPT program 

advanced a component technology to TRL 8 to further 

reduce the risk and cost of the first user. The new Hall 

module, shown in Fig. 8, completed its qualification 

program in June 2012.  Another version will be qualified at 

the end of 2014 with on-board electronics to accommodate 

additional Hall systems currently based on the Moog xenon 

flow controller; increasing infusion potential.  The VACCO 

module is planned for inclusion in a HIVHAC thruster long 

duration wear test along with the SBIR PPU as an 

integrated string test of the HIVHAC system.  

The Near-Earth Object (NEO) mission was evaluated, 

and the HIVHAC thruster system delivered over 30 percent more mass than the NSTAR system. The performance 

increase accompanied a cost savings of approximately 25 percent over the State-of-the-Art (SOTA) NSTAR system. 

The Dawn mission was evaluated, and the expected HIVHAC Hall thruster delivered approximately 14 percent 

more mass at substantially lower cost than SOA, or decreasing the solar array provided equivalent performance at 

even greater mission cost savings.
4,19

 ISPT has also been assessing commercial Hall systems for planetary science 

mission applicability. The program funded additional life-testing of the BPT-4000 thruster to extend the 

demonstrated total impulse and life capability. 

A Hall system Technical Interchange Meeting (TIM) was held December 2013 to discuss the state of recent Hall 

thruster testing and development.  The following priorities were identified:  1) the development of a common flight 

Hall 4.5kW-class modular PPU with capabilities for PSD mission needs for any Hall thruster (COTS or NASA 

developed), and then to qualify unit and procure three flight PPU’s as GFE; 2) the evaluation of commercial Hall 

thrusters (BPT-4000 (XR-5), SPT-140), and looking at delta qualification (as necessary) for planetary science 

mission environments/life, assess test facility effects, and develop ground-test-to-flight-modeling protocols; 3) the 

completion of a HIVHAC system,  to assess/incorporate magnetic shielding, and qualify the thruster; 4) leverage 

STMD Hall system developments for planetary science mission needs; and 5) maintain mission analysis capabilities 

and tool development for SEP.  Plans going forward include completing the development of the qualification model 

CPE PPU, and working with JPL to develop, model, and evaluate a “magnetically shielded” design iteration for 

HIVHAC which would extend the magnetic field for reduced channel wear and result in longer life.  .  A HIVHAC 

system industry workshop is also being planned to provide a status of HIVHAC system/component development, 

and seek interest and partnerships for commercial development and infusion of HIVHAC components.  The goal 

would be for commercially viable and commercial-of-the-shelf (COTS) products that could also meet NASA’s 

future mission needs.  For more HIVHAC information, see Ref. 18-21, 23.   

IV. Mars Ascent Vehicle Propulsion 

For many years, NASA and the science community have asked for a robotic Mars Sample Return (MSR) 

mission. There were numerous studies to evaluate MSR mission architectures, technology needs and development 

plans, and top-level requirements. Because of the technical and financial challenges of the MSR mission, NASA 

initiated a study to look at MSR propulsion technologies through the ISPT Program Office. The largest new 

propulsion risk element of the MSR campaign is the Mars Ascent Vehicle (MAV). The current architecture for the 

MSR lander is to use the Mars Science Laboratory (MSL) entry, descent, and landing (EDL) system.
21

 Using the 

MSL sky crane concept places significant environmental, physical envelope and mass limitations on the MAV 

system options. 

Beyond the limitations of the EDL system, the MAV has specific requirements to deliver the orbiting sample 

(OS) into an orbit suitable for the Earth Return Vehicle (ERV) to rendezvous with and capture the sample. Many of 

the subsystem requirements of the MAV are still to be determined, with many to be defined by the prime integrator 

during development.  The driving top-level requirements of the MAV are described in Ref. 22.  

 
Figure 8. Hall thruster xenon flow control 

module.  
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The environmental requirements for the mission are a 

critical challenge for the MAV. The environmental 

requirements include the Earth launch, transit within the 

cruise stage, the Mars EDL, and finally a long surface stay 

on Mars. The environments anticipated to influence the 

system design are the vacuum environment during cruise, 

the 15g quasi-static lateral load during EDL, and the diurnal 

temperature cycling, during the surface stay. The thermal 

requirements necessitate a thermal enclosure or “igloo” in 

order to maintain practical lander power requirements. A 

detailed set of requirements and system design standards 

and guidelines has been established for all study 

participants to ensure comparable system capability and 

margins.
23

  

Through the NASA Research Announcement (NRA) 

process, the ISPT program solicited MAV system designs 

and plans to initiate propulsion system development. 

Multiple contractors were selected to proceed in October of 

2010 and efforts were initiated in February 2011. Awards 

were made to ATK, Lockheed Martin, and Northrop 

Grumman to develop MAV concepts using solid-solid, solid-liquid, and liquid-liquid 1st and 2nd stage propulsion 

systems respectively. During the NRA efforts, the contractors completed Principal Investigator led collaborative 

engineering designs of the MAV and began contract options to develop the required technologies in early FY12. 

Additionally, Firestar Technologies is working, under an SBIR, to develop a Nitrous Oxide Fuel Blend propulsion 

system applicable to the MAV.
24

 The results of the industry efforts indicate that while technology development 

remains, there are multiple paths to meet performance and requirements of the Mars Ascent Vehicle. The industry 

efforts and designs are documented in four 2012 IEEE Aerospace Conference papers.
26,25,26,27

 The baseline MAV 

concept design is shown in Fig. 9.  The Government baseline design is pre-decisional and for understanding design 

trades and sensitivities, and does not represent any concept selection. 

NASA performed system design studies with the Jet Propulsion Laboratory’s (JPL) Team-X and GRC’s 

COMPASS teams.
26 

The collaborative designs included a system level optimization using the industry designs and 

an internal “leveled” design to allow comparison of system mass, complexity, and maturity. The trades included the 

MAV support systems and lander impacts to minimize the total landed mass. The preliminary results of the studies 

indicate that the baseline solid-solid system appears to offer the lowest mass solution. The solid-liquid option has 

slightly higher mass, imposing more thermal requirements on the lander, but can reduce dispersion errors. The 

liquid-liquid option has the highest mass growth potential due to its mass fraction relative to a solid motor, but 

requires the least lander resources and has very tight dispersions. The preliminary NOFBx system evaluation 

indicates it may be a competitive option, but is unlikely to offer a single stage to orbit solution with a lower mass 

than the two-stage solid. 

Each of the MAV concepts was 

evaluated for risk and technology maturity 

and additional technology development 

work was recommended, primarily in the 

propulsion elements. The MAV NRA work 

initially focused on the key risks of the 

individual propulsion systems at the 

component level. The MAV project team 

hoped to address the key risks of each option 

and determine the final viability of various 

concepts. If the most promising MAV concept(s) was viable with respect to mass, volume, and risks, an integrated 

propulsion stage demonstration could be the next step. The final step would likely be an engineering model MAV 

development with an objective of a vehicle terrestrial flight demonstration. However, the MAV technology 

development in large part has been placed on hold.  

Some on-going MAV related studies are being completed, and a long-lead activity to assess the aging of solid 

rocket motor propellants under Mars environmental conditions (landing shocks and thermal cycling) will proceed 

until future decisions determine the future MSR architecture and MAV requirements (Fig. 10).  NASA initiated the 

 
Figure 9. Government Baseline MAV 

Concept Design 

 
 

Figure 10. MAV Solid Propellant Aging Test Chamber 
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development of a new propellant formulation activity with ATK.  NASA and ATK traded a wide range of solid 

motor propellant formulation options to increase the mechanical properties at low temperatures for hydroxyl 

terminated polybutadiene (HTPB) and to increase performance for carboxyl terminated polybutadiene (CTPB) 

formulations.  Both HTPB and CTPB propellant options have been found to meet the requirements of the MAV.  

While CTPB traditionally has better mechanical properties at cold temperature, and CTPB has Mars heritage, neither 

option has heritage for the anticipated environments of the MAV.  The newer HTPB formulation began a long 

duration aging test in November of 2013 at the Marshall Space Flight Center.  The propellant aging facility is shown 

in Fig. 10.  The propellant will undergo 18 months of testing including an initial simulation of the Mars transit at 

high vacuum followed by Mars surface environment of surface pressure and temperature conditions.  Samples will 

be removed at 6-month intervals for performance and mechanical property testing. 

In addition to the propellant aging task, investments are being made to mature the first stage solid motor design 

for a flexible MAV.  Internal JPL studies indicated that a single motor can be designed with flexibility through off-

loading propellant to accommodate a MAV design that ranges from a conservative spun upper-stage to a low mass 

three-axis control second stage.  The preliminary design is expected to be completed by June of 2014. 

V. Ultra Lightweight Tank Technology 

ISPT invests in the evolution of component technologies that offer significant performance improvements 

without increasing system level risk. The ISPT Program invested in ultra-lightweight tank technology (ULTT) led 

by JPL. The ULTT efforts in the past focused on manufacturability and non-destructive evaluation of the lightweight 

tanks. The tank effort continues to validate defect-detection techniques to maintain NASA standard compliance for 

ultra-thin wall tanks.  While this particular tank design is being designed for the Sky Crane application (Fig. 11), the 

ultra-lightweight technology will be applicable for a wide range of future science missions. Propulsion tanks remain 

the highest dry-mass reduction potential within chemical propulsion systems. This technology would significantly 

push the state-of-the-art with the promise of a 2X improvement over 

conventional tank designs.   

The development effort is divided into two main tasks: a Non-

Destructive Inspection (NDI) task and the ultra-lightweight tank 

design/manufacturing/testing task. The NDI task completed an initial 

assessment of several NDI techniques, such as eddy-current and 

surface wave ultrasonic techniques. The results from the tests indicate 

that these techniques are adequate to find cracks as small as 0.003 

inches in the titanium lining. The objective for the NDI task is to 

establish the crack size that can be detected consistently using these 

new methods. The ultra-lightweight tank development task would 

incorporate the NDI technique in the manufacturing and qualification 

of the new tank. 

In order for the tank design to be a success, the approach must 

demonstrate “safe life.” Safe life for non-toxic materials requires 

proving a design will leak-before-burst. Safe life for toxic liquids, like 

hydrazine, is more stringent. The NDI technique must be able to detect small cracks in the thin liners, then the NDI 

results need to be verified, by test, that worst-case crack growth will not grow to failure. An automated eddy current 

inspection technique has been developed and tested for the detection of small fatigue cracks in thin titanium panels. 

An improved detection capability promises to find 0.003 inch cracks reliably, which represents a 2x improvement 

over SOA detection techniques.  Additional information is in References 
4,28

 on the NDI work.   

The design phase was concluded with a Critical Design Review (CDR), which was held on February 6, 2014. 

Significant progress was made in the design and analysis of the propellant tank, but a number of technical challenges 

still remain.  It is recommended that a delta-CDR be held once the NDE and validation methods are fully matured.  

Unfortunately due to funding constraints, fabrication of a tank will not proceed until additional funding can be found 

to retire the remaining technical challenges needed to complete the design and pass a delta-CDR, and to proceed 

onto manufacturing and acceptance/qualification test phases. 

VI. System/Mission Analysis 

Systems analysis is used during all phases of any propulsion hardware development. The systems analysis area 

serves two primary functions:  

 

Figure 11. Ultra-lightweight tank.  
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1) to define the requirements for new technology development and the figures of merit to prioritize the return 

on investment  

2) to develop new tools necessary for mission implementation, and to easily and accurately determine the 

mission benefits of new propulsion technologies allowing a more rapid infusion of  the propulsion products 

Systems analysis is critical prior to investing in technology development. In today’s environment, advanced 

technology must maintain its relevance through mission pull. Systems analysis is used to identify the future mission 

needs for decadal missions and design reference mission (DRMs). The mission studies identify technology gaps, and 

are used to quantify mission benefits at the system level. This allows studies to guide the investments and define 

metrics for the technology advancements. Recent systems analysis efforts include quantitative assessment of higher 

specific impulse Hall thrusters,
29

 higher thrust-to-power gridded-ion engines, and evaluation of monopropellant 

system anomalies to assess failure modes and potential mitigation options. In addition to informing project 

decisions, the mission design studies provide an opportunity to work with the science and user communities. 

The second focus of the systems analysis project area is the development and maintenance of tools for the 

mission and systems analyses. Improved and updated tools are critical to allow the potential mission users to 

quantify the benefits and understand implementation of new technologies. A common set of tools increases 

confidence in the benefit of ISPT products both for mission planners as well as for potential proposal reviewers. For 

example, low-thrust trajectory analyses are critical to the infusion of new electric propulsion technology. The ability 

to calculate the performance benefit of complex electric propulsion missions is intrinsic to the determination of 

propulsion system requirements. Improved mission design tools demonstrate the ability to enable greater science 

with reduced risk and/or reduced transit times. Every effort is made to have the ISPT program tools validated, 

verified, and made publicly available. Additional information on the ISPT tools is available at the ISPT website, 

http://spaceflightsystems.grc.nasa.gov/Advanced/ScienceProject/ISPT/LTTT/, including background information and 

instructions to request the software. 

The ISPT office invested in multiple low-thrust trajectory tools that independently verify low thrust trajectories 

at various degrees of fidelity. The ISPT low-thrust trajectory tools (LTTT) suite includes Mystic,
30

 the Mission 

Analysis Low Thrust Optimization (MALTO),
31

 Copernicus,
32

 and Simulated N-body Analysis Program (SNAP). 

SNAP is a high fidelity propagator. MALTO is a medium fidelity tool for trajectory analysis and mission design. 

Copernicus is suitable for both low and high fidelity analyses as a generalized spacecraft trajectory design and 

optimization program. Mystic is a high fidelity tool capable of N-body analysis and is the primary tool used for 

trajectory design, analysis, and operations of the Dawn mission. While some of the tools are export controlled, the 

ISPT web site does offer publicly available tools and includes instructions to request tools with distribution 

limitations. The ISPT systems analysis project team 

had conducted a series of courses for training on the 

ISPT supported trajectory tools. On-going tool 

advancements include providing MALTO and Mystic 

on all platforms, bug fixes, and increased capabilities.  

The ISPT program awarded three Astrodynamics 

research grants in 2013.  The three awards are 

research and tool development for outer planet moon 

tours, low-energy trajectories, and a guess tool to 

initialize Mystic trajectory optimization.  The awards 

were provided to University of Texas-Austin, Purdue 

University and University of California at Irvine 

respectively.  The efforts were solicited through the 

SMD Research Opportunities in Space and Earth 

Sciences (ROSES) call, started in the spring of 2013, 

and will conclude in the spring of 2014.  The 

resulting products will be made available to the entire community when complete.  Fig. 12 is a screenshot from 

Purdue’s low-energy trajectory tool that will interface with General Mission Analysis Tool (GMAT) led by NASA 

GSFC.  More information on GMAT can be found at http://gmat.gsfc.nasa.gov.  

VII. Conclusion 

The ISPT program is currently funded through FY2014.  The focus this year will be concluding on-going efforts, 

documenting the accomplishments, and systematically closing-out the program. The ISPT program is making a 

concerted effort to adjust our remaining development activities to improve the infusion paths for ISPT developed 

 
Figure 12. Low-energy trajectory tool screenshot 
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technologies. ISPT personnel will actively be seeking out infusion opportunities for the ISPT developed 

technologies, and are exploring a number of paths to get our technologies out of NASA and into the commercial 

world.  ISPT lead or co-lead several strategic planning activities that include a Technology Infusion Study, a TRL 

Assessment Study, and the formulation of development plans for Hall-effect electric propulsion applicable to 

Discovery-class missions.   

In 2013 and 2014 the NEXT team wraps-up long-duration testing, power processing unit development, and 

completes closeout documentation. In 2013 HIVHAC completed a test in GRC’s VF-5 facility with the same 

diagnostics suite used for a test of a commercial Hall thruster. This test will help to understand facility effects on 

Hall thruster testing. The VF-5 facility is undergoing improvements in 2014 to boost its already world-class 

capabilities, and the program hopes to get the HIVHAC thruster back into the improved facility for another test 

sequence.  HIVHAC will conclude its FY14 activities with verification test of its life extension mechanism, 

magnetically shielded design iteration, and continued support of the CPE PPU SBIR development.  The Ultra-

lightweight tank (ULTT) will conclude its development at a CDR in January of 2014.  The MAV propellant task 

will continue through early 2015 with an 18-month solid propellant aging test at Mars surface environment 

conditions.   

The Planetary Science Decadal Survey identified the need for future work in propulsion, entry vehicles, and 

spacecraft bus and other platform technologies.
33

 ISPT will continue to work with the PSD to identify the propulsion 

technologies that will be pursued in the future. ISPT will continue to look for ways to reduce system level costs and 

enhance the infusion process. As the ISPT program concludes in FY2014, the Space Science Projects Office at 

NASA Glenn will be available to users who are interested in the ISPT-developed technologies. Regardless, if the 

mission requires electric propulsion, or a conventional chemical system, ISPT technology has the potential to 

provide significant mission benefits including reduced cost, risk, and trip times, while increasing the overall science 

capability and mission performance.  
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