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a b s t r a c t

The exact multiple sphere superposition method is used to calculate the coherent and

incoherent contributions to the ensemble-averaged electric field amplitude and Poynting

vector in systems of randomly positioned nonabsorbing spherical particles. The target

systems consist of cylindrical volumes, with radius several times larger than length,

containing spheres with positional configurations generated by a Monte Carlo sampling

method. Spatially dependent values for coherent electric field amplitude, coherent

energy flux, and diffuse energy flux, are calculated by averaging of exact local field and

flux values over multiple configurations and over spatially independent directions for

fixed target geometry, sphere properties, and sphere volume fraction. Our results reveal

exponential attenuation of the coherent field and the coherent energy flux inside the

particulate layer and thereby further corroborate the general methodology of the

microphysical radiative transfer theory. An effective medium model based on plane

wave transmission and reflection by a plane layer is used to model the dependence of the

coherent electric field on particle packing density. The effective attenuation coefficient of

the random medium, computed from the direct simulations, is found to agree closely

with effective medium theories and with measurements. In addition, the simulation

results reveal the presence of a counter-propagating component to the coherent field,

which arises due to the internal reflection of the main coherent field component by the

target boundary. The characteristics of the diffuse flux are compared to, and found to be

consistent with, a model based on the diffusion approximation of the radiative transfer

theory.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modern, parallel-based computational hardware,
coupled with superposition methods for calculating the
net scattered field by a collection of particles, have made
feasible the use of direct simulation strategies to investi-
gate the characteristics of electromagnetic energy trans-
port in dense particulate systems. A direct simulation,
by definition, provides an exact description of the

electromagnetic field both within and external to a target
containing a large yet finite number of particles, and
which is excited by an external source of radiation. In
this sense, results generated by direct simulations can be
considered a benchmark for evaluation of analytical or
phenomenological theories to describe the propagation of
electromagnetic energy in discretely inhomogeneous
media. As a case in point, we have recently used the
multiple sphere T matrix (MSTM) code to calculate the
scattering matrices of targets containing up to several
thousand spheres, with the individual spheres having size
parameters up to 4 [1–3]. The targets, in these calcula-
tions, consisted of spherical volumes, with the spheres
randomly distributed within the volume with a set overall
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volume fraction; volume fractions used in the calculations
ranged from 0.01 to 0.4. Since the number of spheres in
the targets was large, we assumed that the configuration-
averaged scattering matrix (i.e., that obtained from aver-
aging scattering matrices, each obtained for a fixed
realization of the sphere properties and a fixed incident
direction) could be approximated by the orientation
averaged scattering matrix for a single realization; this
allowed us to exploit the analytical orientation averaging
properties of the target T matrix as calculated by MSTM.
Results from these calculations have provided definitive
evidence to support microphysical theories of radiative
transfer and coherent backscattering [4].

The objective of this work is to present a similar
comparison between numerically exact computer simula-
tions and analytical theory. The phenomena under exam-
ination, in this case, are the attenuation of the coherent
field, and the propagation of the coherent and diffuse
components to the time-averaged Poynting vector in a
particulate medium, due to scattering by the particles.
The simulation procedure is relatively straightforward:
local electric and magnetic field amplitudes will be
calculated for a statistically representative sequence of
randomly generated targets of spheres, with each target
configuration corresponding to the same sphere proper-
ties and average concentration. The local coherent field
and time-averaged Poynting vector are then obtained by
assuming ergodicity and averaging over the sequence of
configurations. An important difference in the procedures
used here, as opposed to our previous investigations [2,3],
is that they will not employ analytical T matrix averaging:
our focus is on the local field amplitudes within the
medium as opposed to the far-field scattering behavior.

A well established theoretical framework has been
developed to describe coherent field attenuation in dis-
cretely inhomogeneous media. On the most basic level is
the standard radiative transfer theory, which represents
the dilute concentration limit [2,4]. The imaginary part of
the effective propagation constant in the medium, for this
approximation, is obtained from the product of the
particle number density and average extinction cross
section.

The radiative transfer theory is based on the far-field
version of the Foldy–Lax equations [4] and will fail for
wavelength-sized particles with concentrations appro-
aching and exceeding 0.1. For such cases comprehensive
effective medium (EM) formulations have been devel-
oped, most notably by Ishimaru and the Varadans [5–7].
Such theories begin with the same basic superposition
model employed in the direct simulation, for which the
exciting field at a particular sphere is given by the
incident (i.e., externally exciting) field and the sum of
fields scattered from every other sphere in the system.
Unlike a direct simulation – which solves the superposi-
tion equations for each sphere in the system and then
averages over multiple configurations – EM formulations
attempt to average the superposition equations analyti-
cally, with subsequent derivation of relations for the
effective propagation constant. Performing this averaging
requires knowledge of the pair correlation function of the
particles in the random medium, and it also invokes

simplifying assumptions regarding the high-order corre-
lations among the particle positions and scattered fields,
e.g., the quasi-crystalline approximation (QCA) [8–10].

Both computational and experimental evidence has
been collected to validate EM theories. Tsang et al. [11]
inferred the attenuation rate from direct simulations of
far-field scattering by a particulate volume and obtained
good correspondence with theory, although the simula-
tions were limited to spheres with a relatively small size
parameter of 0.2. Analytical estimates of EM theories have
been shown to accurately predict laboratory measure-
ments of extinction in random suspensions of monodis-
perse spheres having size parameters of order unity or
greater [12].

The investigations in [11,12] were focussed entirely on
the effective propagation constant (or, equivalently, effec-
tive refractive index) of the spherical-particle system.
As predicted by theory, this quantity depends solely on
the sphere properties, concentration, and pair correlation
function; it is not a function of the geometry of the system
containing the particles. Unlike Ref. [11], the objective of
this work is to examine how the target geometry affects
the coherent field within the target. In particular, we will
employ targets which model a fixed-thickness slab of
particles. In an EM model, such a system would represent
a plane layer. It is well known that interference of the
forward and backward-propagating plane waves in a
homogeneous plane layer can strongly affect the reflec-
tance and transmission of the layer. We will show that the
coherent field, in a slab of random spherical particles, can
also cause interference effects.

An additional objective of this work is to examine the
character of electromagnetic energy transport in the
random medium. In particular, the direct simulations,
combined with configurational averaging, will be used
to calculate the coherent and diffusive components to the
time-averaged Poynting vector in the medium. We will
apply the diffusion approximation of the radiative trans-
fer theory to model the diffuse flux.

2. Methodology

2.1. Basic definitions

We assume that the time dependence of the electric
and magnetic fields is harmonic and described, in the
complex-field representation, by the simple complex
exponential expð�iotÞ, where o is the angular frequency,
t is time, and i¼

ffiffiffiffiffiffiffi
�1

p
. In other words, we assume that the

complex electric and magnetic fields can be factorized as
Eðr,tÞ ¼ expð�iotÞEðrÞ and Hðr,tÞ ¼ expð�iotÞHðrÞ respec-
tively, where r is the position (radius) vector, while the
actual real-valued fields are obtained by talking the real
part of the respective complex fields. The complex field
amplitudes EðrÞ and HðrÞ are constant if the scattering
target is fixed, but vary with time implicitly if the
scattering object undergoes temporal changes. In what
follows, we will assume that temporal fluctuations of EðrÞ
and HðrÞ caused by changes in the scattering object occur
much more slowly than the harmonic oscillations of the
factor expð�iotÞ.
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It is well known (see, e.g., Ref. [4]) that the instanta-
neous direction and rate of the electromagnetic energy
flow at r are described by the Poynting vector
Sðr,tÞ ¼ Re½Eðr,tÞ� � Re½Hðr,tÞ�. Averaging the Poynting vec-
tor over a time interval capturing a sufficiently large
number of time-harmonic oscillations of the electromag-
netic field yields /Sðr,tÞS¼ Re½SðrÞ�, where the complex
Poynting vector is defined by SðrÞ ¼ ð1=2ÞEðrÞ �HnðrÞ and
the asterisk denotes a complex-conjugate value.

Let us consider the scattering object in the form of a
volume of discrete random medium. The statistical ran-
domness of this object is caused by chaotic movements of
the participating particles resulting in relatively slow
temporal fluctuations of the complex field amplitudes
EðrÞ and HðrÞ. At each given moment these amplitudes can
be computed by solving the frequency-domain Maxwell
equations for the corresponding instantaneous multi-
particle configuration. In the majority of practical applica-
tions, one needs to calculate the average of a specific
optical observable such as Sðr,tÞ over a time interval
typically required to take an actual measurement. In what
follows, we will assume that the scattering object is
ergodic (e.g., Ref. [4]) and will replace averaging over
time by averaging over a large statistically representative
set of randomly created realizations of the multi-particle
object. In other words, we will assume that
0Sðr,tÞT¼ Re½0SðrÞT� ¼ SðrÞ where the overbar denotes
ensemble averaging and 0 . . .T denotes averaging over a
time interval much longer than the typical period of
random fluctuations caused by chaotic movements of
the particles.

For the sake of brevity, we will often refer to EðrÞ and
HðrÞ as the electric and magnetic field, respectively, which
is a common practice. It should be remembered, however,
that these quantities represent only the time-independent
(or slowly fluctuating) amplitudes of the actual time-
harmonic physical fields.

2.2. Target generation

The targets used in the simulations consisted of a
cylindrical volume of radius R and axial length L. Within
this volume are placed the origins of NS nonoverlapping
spheres, each with identical radius a and refractive index
m. The axis of the cylinder is taken to be the z axis in a
global coordinate system. The quantities NS and L were
varied in the simulations, whereas R was set to a value
sufficiently large, relative to both the sphere radius a and
L, so that the average Poynting vector, calculated in
regions close to the target axis, was unaffected by the
lateral boundary of the target. A maximum value of
L¼10a was used in the simulations, and for this length
a target radius of R¼ 30a to 40a was sufficient to simulate
plane-layer conditions.

For a set R and L, the positions of the NS spheres in
the target were generated via a Monte Carlo sampling
procedure. Specifically, a trial sample of the cylindrical
coordinates ri, fi, zi of sphere i in the set is obtained
according to

ri ¼ RR1=2, fi ¼ 2pR, zi ¼ zi�1þRDz, ð1Þ

with

Dz¼ 4a3

3fR2
ð2Þ

in which R denotes a random number uniformly distrib-
uted between 0 and 1 (each occurrence of R is implied to
be a new sample), and f is the average volume fraction of
the spheres. This procedure automatically constrains the
volume fraction of the spheres in the target volume to be f.
The trial obtained from Eq. (1) is now checked against the
positions for sphere i�1, i�2, . . ., and the trial is accepted
if no overlap occurs between spheres and is rejected and
resampled if overlap does occur. A starting value of z1 ¼ 0
is arbitrarily set, and the procedure is carried out to some
value Nsamp � 1:522 times NS, where NS denotes the
desired number of spheres in the target. The actual
positions of the target spheres are then chosen as those
of the topmost NS samples in the set; the rationale here is
that any pair-correlation artifacts in sphere positions
occurring at startup will be washed out in the topmost
samples.

Fig. 1 shows a typical target configuration used in the
simulations. The target has dimensions R¼ 40a, L¼ 10a,
and contains NS¼6000 spheres; the corresponding
volume fraction is f¼0.5.

2.3. Calculation procedure

The Multiple Sphere T Matrix (MSTM) code [1,13] was
used to calculate the electric EðrÞ, magnetic HðrÞ, and
Poynting SðrÞ vector fields in and around a fixed multi-
particle target for a sequence of sampled targets. Para-
meters held constant in the target sequence were the
sphere size parameter and refractive index, the target
radius R and thickness L, and the number of spheres NS;
the latter constraint is equivalent to fixing the average
volume fraction of the spheres in the target. The target
was excited with a plane wave, propagating in the x–z
plane at an angle b relative to the positive direction of the
z axis and linearly polarized either parallel or perpendi-
cular to the x–z plane.

The formulation employs a superposition representa-
tion of the electric field exterior to the spheres, that being

EextðrÞ ¼ EincðrÞþEscaðrÞ ¼ EincðrÞþ
XNS

i ¼ 1

Esca,iðrÞ ð3Þ

Fig. 1. Random sphere target.
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The scattered field, from a particular sphere, is described
by outgoing vector spherical wave functions (VSWFs)
centered about the origin of the sphere, and the incident
field is described by a regular VSWF expansion centered
about a common target origin:

EincðrÞ ¼
XLT
n ¼ 1

Xn
m ¼ �n

X2
p ¼ 1

f mnp N
ð1Þ
mnpðk0rÞ ð4Þ

Esca,iðrÞ ¼
XLS
n ¼ 1

Xn
m ¼ �n

X2
p ¼ 1

aimnpN
ð3Þ
mnpðk0ðr�riÞÞ ð5Þ

In the above, k0 is the wavenumber in the external
medium, ri is the position vector of the center of the ith
sphere, and Nmnp denotes the VSWF of either type 1
(regular) or 3 (outgoing), of order n, degree m, and mode
p¼1 (TM) or 2 (TE). The truncation orders for the spheres,
LS, is set by inspection, i.e., by comparison of results
computed with successively higher LS. For the conditions
examined here, LS was not dependent on the sphere
concentration, and the required number of orders would
depend solely on the size parameter and refractive index
of the spheres. The truncation order for the incident field,
LT, will typically scale with the dimensionless distance
k09r9 of the evaluation point from the target origin, and
the incident field coefficients f mnp will depend on the
direction and propagation state of the incident field.

The translation theorem for VSWFs, combined with the
Mie relations for the sphere, results in a system of
equations for the scattering coefficients aimnp:

1

anp
aimnp�

XNS

j ¼ 1
jai

XLS
l ¼ 1

Xl
k ¼ �l

X2
q ¼ 1

Hi�j
mnpklq

aj
klq

¼ f mnpe
ik0ðxi sin bþ zi cos bÞ

ð6Þ

where anp are the Mie coefficients, which are functions of
the sphere size parameter k a and refractive index m, and
Hi�j is the outgoing translation matrix, which depends
solely on the distance and direction of translation from
origins j to i.

Eq. (6) represents 2NSLSðLSþ2Þ complex valued equa-
tions for the set of scattering coefficients. Iterative meth-
ods, combined with techniques to accelerate the
translation operations, are employed in the MSTM code
to generate a solution. All relevant microscopic and
macroscopic electromagnetic properties of the target,
i.e., external and internal field amplitudes, cross sections,
scattering matrix elements, can be obtained analytically
from the solution, and the predicted values are exact to
the truncation error of the VSWF expansions. Of particular
relevance here is the calculation of the complex electric
and magnetic field vectors at arbitrary points. This is
accomplished using the superposition of scattered and
incident fields in Eqs. (3)–(5) for points exterior to the
spheres, while at interior points, say within sphere i, the
electric field is given by an expansion of regular VSWFs,
evaluated in the sphere medium

Eint,iðrÞ ¼
XLS
n ¼ 1

Xn
m ¼ �n

X2
p ¼ 1

cimnpN
ð1Þ
mnpðmk0ðr�riÞÞ ð7Þ

in which the internal field coefficients cimnp are obtained
from the scattering coefficients aimnp via the Mie relations.

2.4. Configurational averaging

The basic strategy of the calculations was to calculate
and record electric and magnetic field amplitudes on a set
of fixed sample points rp, p¼ 1,2, . . ., for a sequence of
randomly generated sphere configurations, with each
configuration corresponding to a set target geometry,
sphere properties, and sphere volume fraction. The sam-
ple points are placed on a grid within a rectangular
sample volume centered on the target axis. This sample
volume, which is depicted in Fig. 2, has dimensions of
W�W�H, where the lateral length W is typically around
1/4 to 1/2 of the target radius R, and the axial height H is
set so the volume extends both above and below the top
and bottom surfaces of the target.

The so-called coherent electric field, at a fixed sample
point rp, is defined as the average of the electric field
amplitude EðrÞ over a sufficiently long period of time.
Assuming ergodicity, it can be obtained by averaging the
calculated field amplitude values at the point over the
sequence of random configurations, i.e.,

0EðrpÞT¼ EðrpÞ ¼
1

Nc

XNc

k ¼ 1

Eðrp,ckÞ ð8Þ

where ck denotes the parameters for configuration k and
Nc is the number of sampled configurations. As explained
in Ref. [14], the coherent electric field is not a real
physical field since it is obtained by averaging the com-
plex amplitude of the electric field rather than the electric
field itself. The practical usefulness of this purely math-
ematical vector field and its magnetic analog will be clear
from the following discussion.

Since the incident field propagates in the x–z plane –
and, for a target of infinite lateral extent (R-1), the
coherent field would be independent of y – we would
further refine the coherent field estimate by averaging
over the sample points in the y direction for a fixed xp, zp,

Fig. 2. Target and sampling configuration.
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via

Eðxp,zpÞ ¼
1

Np

X
yp

Eðxp,yp,zpÞ ð9Þ

where Np denotes the number of points in the y direction.
For the specific case of normal incidence (b¼ 0), the
coherent field would depend solely on z, and averaging
was performed over both the x and y directed sample
points.

To avoid complicating the subsequent analysis, we will
not distinguish between the normal and oblique inci-
dence cases and their associated strategies for coherent
field calculation: the coherent field at a point r will be
denoted simply as EðrÞ, and it is implicitly understood
that calculation of this quantity involves both configura-
tional and spatial averaging. Given this, the electric field
amplitude at a specific sample point rp, corresponding to
a specific configuration c, can now be decomposed into
the coherent and incoherent parts [5,6], via

Eðrp,cÞ ¼ EðrpÞþE0ðrp,cÞ ð10Þ

where the ensemble average of E0ðrp,cÞ is zero. An analo-
gous decomposition holds for the magnetic field at point
rp and configuration c.

The short-time average of the real-valued Poynting
vector, at a sample point rp and for a specific target
configuration c, is given by

/Sðrp,c,tÞS¼ 1

2
Re½Eðrp,cÞ �Hnðrp,cÞ� ð11Þ

The long-time average of this quantity at a point rp can be
calculated per the strategy used to calculate the coherent
field, i.e., assuming ergodicity and averaging over config-
urations and over the spatially independent direction in
the sample volume. By the use of Eq. (10), the Poynting
vector, averaged over a sufficiently long period of time,
can be decomposed into a coherent part and a diffuse part
[5,6]:

/Sðrp,c,tÞS ¼ SðrpÞ ¼ ScohðrpÞþSdðrpÞ ð12Þ

in which

ScohðrpÞ ¼
1

2
Re½EðrpÞ �HnðrpÞ� ð13Þ

SdðrpÞ ¼
1

2
Re½E0ðrp,cÞ �H

0nðrp,cÞ� ð14Þ

The quantities that can be calculated directly, on the

set of grid points rp, are the coherent fields EðrpÞ and

HðrpÞ, the average Poynting vector SðrpÞ, and the coherent

flux ScohðrpÞ. The scattering flux is obtained from Eq. (12).

3. Results

3.1. General trends

We begin by examining the general characteristics of
the coherent field and the coherent and diffuse fluxes for
targets exposed to oblique-incidence plane waves. The
target, for this case, has a dimensionless radius k0R¼ 60,
dimensionless thickness k0L¼ 15, and contains NS¼2250
spheres, each with size parameter k0a¼ 2 and refractive
index m¼ 1:48 (characteristic of quartz in the visible
wavelengths); the average volume fraction for this case
is f¼0.25. Three orders were used to represent the
scattered fields from the spheres, and the interaction
equations in Eq. (6) contained 67,500 unknowns for each
incident state and target configuration. The maximum
order required to evaluate the incident field at points
within the sample volume, via Eq. (4), was approximately
LT � 60. The MSTM code was run on the Auburn Univer-
sity College of Engineering compute cluster, using 64
processors, and complete solution for a set target config-
uration and incident angle (corresponding to two solu-
tions to Eq. (6) for two mutually perpendicular incident
polarizations) required around 15 min. A total of 60
random configurations were used to compute the coher-
ent fields and extinction and scattering fluxes.

Fig. 3 contrasts the structure of the local electric field
amplitude for a particular configuration vs. that for the
coherent field following configurational and spatial aver-
aging. Both plots show levels of Re ŷ � E in the x–z plane. The
incident field has b¼ 301, and is polarized perpendicular to
the plane. Axes coordinates are k0x and k0z, with the center
of the target corresponding to the origin, and the target is
contained within k0z¼ 77:5. The coherent field on the right
has been averaged over 60 configurations and over 21 planes
in the y direction evenly spaced between k0y¼ 720.

Fig. 3. Local value of Reðŷ � EÞ (left), and coherent field Reðŷ � EÞ.
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The coherent field in Fig. 3 contains characteristics
associated with the reflection and transmission of a plane
wave by a homogeneous layer. In particular, a refraction
and retardation of the wave is evident as the field
propagates through the target medium. This behavior is
more apparent when the average Poynting vector is
decomposed into coherent and diffuse parts. Shown in
Fig. 4 are stream plots of the local Poynting vector in the
y¼ 0, x–z plane for a fixed configuration, along with total
average Poynting vector, and the coherent and diffuse
contributions to the total average, for b¼ 301 incidence
and perpendicular polarization.

The two top plots in Fig. 4 display the directional flow
of the total energy transfer in and about the target, with
the left being a ‘‘snapshot’’ for a particular configuration,
and the right showing the average flow pattern. The
average flux entering the system is primarily in the
direction of the incident beam, and it is steered toward
the normal direction during the transport across the
target. A simple radiative transport interpretation of this
effect is that scattering by the particles results in an
effective retardation of the energy flow, and the effect of
this is to shift the overall direction of the flow toward the
normal directions.

A more concrete interpretation, in our view, makes use
of the principle of energy conservation. The spheres, for
this specific example calculation, are nonabsorbing, and
for such a situation S must be divergence free at all points.
Furthermore, for a target of infinite lateral extent, this
condition would imply ẑ � S ¼ constant at all axial posi-
tions. Scattering by the spheres (and absorption, if pre-
sent) act to extinguish the coherent field – as observed in
Fig. 3 – and this results in a sink in the coherent flux per
the definition in Eq. (13). Due to overall conservation of
energy, this sink must reappear as a source in the diffuse
flux. The two lower stream plots in Fig. 4 illustrate this
interaction between coherent field destruction and diffuse
flux (or, equivalently, incoherent field) formation.
The coherent flux vector field behaves analogously to a
plane wave interacting with a absorbing homogeneous

layer, in which the effective absorption describes the
destruction of the coherent field by scattering. Likewise,
the diffuse flux is created within the target, and emerges
from both the top and bottom surfaces.

3.2. Effective medium model of coherent field

We will now focus attention on the extinction of the
coherent field within the medium, with the objective of
identifying, via direct simulations coupled with modeling,
the effective refractive index of the target. To simplify the
presentation, we will restrict the examination to the
normal incidence case (b¼ 0).

The effective medium theories of [5,7] were based on a
half-space model of the inhomogeneous medium – for
which the regions zo0 and zZ0 consisted of free space
and a random distribution of particles, respectively – that
was excited by an x̂ polarized, unit amplitude plane wave
propagating in the þz direction. The coherent field, for
this case, is a plane wave characterized by an effective
propagation constant, i.e.,

EcohðzÞ ¼ x̂eikez ð15Þ

The most straightforward estimation of the effective
refractive index me ¼ ke=k0, from the simulation results,
would therefore be obtained from

me � 1

ik0L
ln

x̂ � EcohðLÞ
x̂ � Ecohð0Þ

 !
ð16Þ

where Ecohð0Þ and EcohðLÞ are the calculated complex
coherent field at the target boundaries.

The half space model of Eq. (15) neglects the existence
of a downward-propagating component in the coherent
field, which could arise from a reflection of the upward-
propagating component from the top boundary. To exam-
ine such effects, we performed a more detailed modeling
of the coherent field based on a homogeneous layer
(or film) of thickness Le and refractive indexme. The model

Fig. 4. Vector field of S in x–z plane (top left), averaged (top right), and coherent (bottom left) and diffuse (bottom right) components of S . Shading
represents magnitude of vector.
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formula for EcohðzÞ is given by

EcohðzÞ ¼ x̂

eik0zþre�ik0z, zo0

aeikezþbe�ikez, 0rzoLe

teik0z, zZLe

8><
>: ð17Þ

with

r¼ 1

D
½ðm2

e�1Þð1�e2imeLe Þ� ð18Þ

a¼�2ðmeþ1Þ
D

ð19Þ

b¼�2ðme�1Þe2imeLe

D
ð20Þ

t¼�4meeiðme�1ÞLe

D
ð21Þ

and

D¼ e2imeLe ð1�meÞ2�ð1þmeÞ2 ð22Þ
The coherent field model has three parameters, being

the real and imaginary parts of me and the effective
thickness Le. We keep the thickness Le a parameter – as
opposed to setting it equal to thickness L used to generate
the targets – because the target does not have sharp,
distinct boundaries. That is, since all sphere origins must
lie between z¼0 and L, there will be a region, of thickness
equal to the sphere radius, over which the medium
transitions from inhomogeneous to homogeneous. Values
of me and Le, for a given set of coherent field simulation
data, were obtained by a nonlinear least square error fit of
Eq. (17) to the data. To perform this fit, the point z¼ Le=2
in Eq. (17) was made to coincide with the target center in
the simulation data.

Simulations were performed using spheres with
k0a¼ 2:645 and m¼ 1:194, which correspond to the latex
spheres-in-water experimental measurements conducted
in [15] and examined theoretically in [16]. The target
thickness and radius were k0L¼ 26:45 and k0R¼ 79:35
(i.e., 10 and 30 sphere radii), and volume fractions ranged
from f¼0.01 to 0.5.

Results appear in Fig. 5, which show the coherent field
phase and magnitude as a function of position, for four
values of volume fraction f ranging from 0.025 to 0.5. The
solid lines are the simulation results, and the dashed lines
show the predictions of Eq. (17) using the fitted me and
k0Le values for the data set. The simulation results and
model predictions are presented so that z¼0 represents
the lower boundary of the slab, and the vertical colored
lines, in the neighborhood of k0z¼ 25230, mark the fitted
value of k0Le for the particular set. The phase results
indicate the increasing retardation of the coherent wave
as concentration increases; results for f¼0.025 are not
shown in this plot because they are negligibly different
than those for f¼0.079. The magnitude results, which are
plotted on a log scale, show an exponential decrease in
amplitude. Of particular interest are the oscillations in
9EðzÞ9 seen for the relatively large f values. This can be
interpreted as an effect of interference between the
downward and upwards propagating wave components
that are present in a finite-thickness layer. The model
results overestimate the amplitude of the downward
component – likely because of the representation of the
boundaries as sharp interfaces – yet the simulation results
do reveal that a downward-propagating component is
present in the coherent field.

The specific values of sphere size parameter and
refractive index, used in the results of Fig. 5, were chosen
to allow a comparison of the predicted attenuation
coefficient at ¼ 2k0 ImðmeÞ of the medium with that
derived from effective medium theory, and measured by
experiment, as described in [16]. A useful indicator of the
packing density effects on attenuation is the ratio of the
exact result to that predicted from radiative transfer
theory, given by

g¼ at

3fCext=ð4pa3Þ
¼ 4 ImðmeÞk0a

3fQext

ð23Þ

where Cext and Qext are the extinction cross section and
extinction efficiency of the sphere. For sufficiently small f
this ratio should go to unity. Results are given in Fig. 6,
which show attenuation ratios as a function of volume
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fraction f. Two sets of simulation results are presented,
corresponding to at derived the simple plane wave model
of Eq. (16) and the layer model of Eq. (17). Also appearing
are the theoretical and experimental results reported in
[16].

The results in Fig. 6 show that, for the specific condi-
tions examined here, the attenuation coefficient can be
accurately predicted by treating the target as a half
space—in that the values of at derived from Eq. (16) are
not significantly different than those obtained from a
more comprehensive model. Furthermore, the simulation
results are highly consistent with both effective medium
theory and experiment, especially for f greater than
around 0.1. For smaller volume fractions the simulation
results show a small degree of scatter around the asymp-
totic limit of unity. We suspect that this is an artifact of
the averaging process, as a smaller number of spheres in
the target – corresponding to smaller f – leads to a
relatively larger standard deviation in the configuration-
dependent properties of the target. Consequently, a num-
ber of configuration samples greater than the 100 used
here for each point may be required to accurately resolve
the coherent field properties, yet, at the same time, the
simple, independent scattering model works quite well in
this limit.

3.3. The diffuse flux

Per the discussion in Section 3.1, the divergence of the
average Poynting vector SðrÞ is zero for the nonabsorbing
spheres examined here. The destruction of the coherent
flux ScohðrÞ by ‘‘effective’’ absorption – as manifested in a
nonzero imaginary part of the effective refractive index
me – must be balanced by the creation of the diffusive flux
SdðrÞ.

Ishimaru et al. [17] applied the diffusion approxima-
tion to the radiative transport equation to model the
diffuse intensity and flux in systems containing relatively
large densities of scattering particles. It should be empha-
sized that the intensity – being, per the common radiative
transport definition, a scalar quantity describing the flow
of energy in a particular direction and contained within a
differential solid angle – cannot be extracted from the
simulations results [18]. That is, the only physically
meaningful quantities obtained from the simulations are
the electric and magnetic field amplitudes and the Poynt-
ing vector. In this sense, a comparison of a radiative
transport equation solution for the diffuse intensity with
a direct simulation, based on Maxwell’s equations, is
impossible. However, a radiative transport prediction of
the diffuse flux, which is obtained from an integral of the
diffuse intensity, can be compared with the simulation
results.

To do this, we adapt the diffusion approximation
developed in Ref. [17] to the conditions of the simula-
tions. In particular, under normal incidence conditions,
the diffuse flux will be parallel to the z axis and will be a
function solely of z. For the nonabsorbing conditions
examined here (albedo of unity), the diffuse flux will be
related to the average diffuse intensity U(z) via,

Sd,zðzÞ ¼
1

1�g1
I0g1e

�at z� 4p
3at

dUðzÞ
dz

� �
ð24Þ

where Sd,zðzÞ ¼ ẑ � SdðzÞ, I0 is the intensity of the incident
field (¼ 1=2 for the unit-amplitude incident electric field),
and g1 is the dimensionless scattering asymmetry para-
meter of the particles (i.e., a characteristic of the fraction
of energy single-scattered by the particles into the for-
ward directions). The average diffuse intensity, for non-
absorbing conditions, satisfies

d2UðzÞ
dz2

¼�3I0a2
t

4p e�at z ð25Þ

with the boundary conditions,

Uð0Þ ¼� 1

2p Sd,zð0Þ ð26Þ

UðLÞ ¼ 1

2p Sd,zðLÞ ð27Þ

where the fluxes at the boundaries, Sd,zð0Þ and Sd,zðLÞ, are
related to U via Eq. (24). The solution for the diffuse flux is
obtained as

Sd,zðzÞ ¼ I0
5�e�atL

4�3atLð1�g1Þ
�e�atz

� �
ð28Þ

To compare the model with simulation results, we set
at ¼ 2k0 ImðmeÞ and L¼ Le, where me and Le correspond to
the values obtained, for a specific volume fraction f, by
fitting the coherent field to the plane layer model.
We then determined a value of the asymmetry parameter
g1, for each f, by minimizing the least square error
between the simulation and diffusion model predictions
of the diffuse flux.

Shown in Fig. 7 are the simulation and model predic-
tions of the diffuse flux, as a function of dimensionless
position k0z. For f up to around 0.2, the diffusion model

0.0

0.2

0.4

0.6

0.8

1.0

Volume fraction f

A
tte

nu
at

io
n 

ra
tio

sim., half space
sim., layer
Ref. [16], exp.
Ref. [16], theory

0.01 0.02 0.05 0.10 0.20 0.50

Fig. 6. Attenuation ratio g (Eq. (23)) vs. volume fraction f, for simulation

results predicted by the layer model (Eq. (17)) and the half-space model

(Eq. (16)), along with experimental and theoretical results of [16].

Sphere and target properties are the same as Fig. 4.

D.W. Mackowski, M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 123 (2013) 103–112110



does an excellent job of capturing the magnitude and
distribution of the diffuse flux as calculated by the
simulations. The simulation results for f¼0.5, and to a
lesser extent for f¼0.22, show characteristics near z¼0
that could not be represented by the exponential model of
Eq. (28). It is interesting to note that the oscillations seen
in the f¼0.5 data have a wavelength roughly equal to
twice the sphere size parameter, and this may point to an
effect due to an emerging lattice structure among the
spheres.

The fitted values of asymmetry parameter g1 are
shown in Fig. 8 as a function of f. The values of g1 are
fairly constant for f up to around 0.2, and are roughly 0.8
of the single-sphere Mie value. Undue emphasis should
not be placed on the correspondence (or lack thereof) of
the fitted g1 results to the Mie value. The largest optical
depth atLe among the simulation results is 0.42 for
f¼0.33, and conditions for fo0:1 could be justifiably
described as optically thin and would contradict the
optically thick assumptions inherent in the diffusion
approximation. What is more relevant, in regard to the
results in Fig. 8, is the transition in g1 from a constant, at
low f, to a decreasing function of f. This behavior indicates
an increasing effect, for large f, of pair-correlated positions
among the particles, and is consistent with the results of
Ref. [19] obtained using the structure-factor approach
coupled with the Percus–Yevick approximation [20].

4. Summary

We have demonstrated that numerically exact solutions
of Maxwell’s equations in multiple sphere systems, com-
bined with configurational and spatial averaging, can pro-
vide direct simulations of the coherent field and the
coherent and diffuse energy fluxes that are entirely consis-
tent with theoretical formulations of radiative transport in
random, discretely inhomogeneous media. We should
emphasize that the performed simulations are quite tract-
able on modern parallel computer platforms; the total
computational time involved in this investigation was on
the order of 10’s of hours. Indeed, we will submit that direct
simulations have a future role not as simply verifying
radiative transfer theories, but rather as a practical means
of calculating radiative transfer in high-concentration parti-
cle systems such as regoliths, pigment layers, deposits, etc.
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