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a b s t r a c t

First-principle analysis of the functional design of a well-collimated radiometer (WCR)

reveals that in general, this instrument does not record the instantaneous directional

flow of electromagnetic energy. Only in special cases can a sequence of measurements

with a WCR yield the magnitude and direction of the local time-averaged Poynting

vector. Our analysis demonstrates that it is imperative to clearly formulate the physical

nature of the actual measurement afforded by a directional radiometer rather than

presume desirable measurement capabilities. Only then can the directional radiometer

be considered a legitimate part of physically based remote sensing and radiation-budget

applications. We also emphasize the need for a better understanding of the nature of

measurements with panoramic radiometers.

Published by Elsevier Ltd.

1. Introduction

Measurements and computations of electromagnetic
energy flow through a sparse particulate medium are
traditionally viewed as an integral part of solving various
radiation-budget and optical-characterization problems.
For example, the physical state of a cloud of water
droplets or ice crystals in the terrestrial atmosphere can
be affected by an imbalance between the incoming and
outgoing electromagnetic energy, while measurements of
specific manifestations of electromagnetic energy flow
with a suitable device can potentially be analyzed to infer
useful information about the cloud. Conceptually similar
problems are encountered in many other areas of science
and technology.

Let us consider, for example, an idealized liquid-water
cloud illuminated by a plane electromagnetic wave or,
more generally, a quasi-monochromatic parallel beam of

light with infinite lateral extent (Fig. 1). Suppose that we
need to evaluate the radiation budget of a macroscopic
volume element of the cloud DV bounded by the spherical
surface DS: According to the Poynting theorem [1], the net
average rate at which electromagnetic energy enters this
volume element is given by the integral

WDS ¼�
Z
DS
d2r/Sðr,tÞSUn̂ðrÞ, ð1Þ

where Sðr,tÞ is the Poynting vector at the point r at the
moment t, the angular brackets denote averaging over a
sufficiently long period of time, and the unit vector n̂ðrÞ is
directed along the local outward normal to the boundary.
If WDS ¼ 0 then the incoming radiation is balanced by the
outgoing radiation. Otherwise there is absorption of
electromagnetic energy inside the volume element. The
radiation budget of the volume V occupied by the entire
cloud is evaluated similarly, except now the integral in
Eq. (1) is taken over the closed boundary S (Fig. 1).

Suppose that we have at our disposal a Poynting-
meter, i.e., a device that can measure both the direction
and the absolute value of the time-averaged local Poynt-
ing vector. Then measuring /Sðr,tÞS at a sufficiently
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representative number of points densely distributed over
the boundary DS and evaluating the integral in Eq. (1)
numerically would solve the above radiation-budget
problem.

Unfortunately, none of the instruments that have ever
been used in the disciplines of atmospheric radiation and
remote sensing can, strictly speaking, be considered a
Poynting-meter. Despite the wide variety of specific
designs and the alleged ability to quantify the electro-
magnetic energy flow [2], the actual physical nature of the
measurements afforded by these instruments has
remained poorly understood and has rarely been formu-
lated in the context of advanced theories of light–matter
interactions. Furthermore, it is hardly recognized that the
physical meaning of the signal generated by these instru-
ments depends critically on the very nature of the
electromagnetic field transporting radiative energy and
hence on the object creating the electromagnetic field.

Applied radiometry still appears to be dominated by the
two-and-a-half century old phenomenology introduced by
Pierre Bouguer and Johann Lambert [3,4], whereas very little
has been done by way of clarifying the electromagnetic
content of heuristic photometric concepts and putting
measurements of electromagnetic energy flow in the con-
text of modern physics. Even the most recent monographs
on this subject (e.g., Ref. [2] and references therein) fall quite
short of achieving this objective and can be thoroughly
misleading in their usage of terminology borrowed in an ad
hoc fashion from classical electromagnetism and quantum
electrodynamics (QED).

In a series of reviews [5–7], I have attempted to
summarize recent progress in the clarification of the

fundamental physical content of electromagnetic scatter-
ing by particles and particulate media. Among other
subjects, those reviews have focused on the precise nature
of the phenomenon of electromagnetic scattering, the
purely mathematical notions of multiple scattering and
specific intensity in the framework of classical electro-
magnetics, and the derivation of the theories of radiative
transfer and coherent backscattering directly from the
macroscopic Maxwell equations. They have also dispelled
the so-called ‘‘photonic confusion’’ in the context of
phenomenological radiative transfer as well as the mis-
conception of multidirectional propagation of electromag-
netic energy allegedly described by the heuristic specific
intensity.

This sequel is closely related to Refs. [5–7]. Its main
objective is to clarify the physical framework of the
measurement with instruments that can be called ‘‘well-
collimated radiometers’’ (WCRs). They represent by far
the most widely used class of photometers, which makes
it imperative to have a clear understanding of what these
instruments can really measure and how their measure-
ments are related to the requisite measurement of the
Poynting vector. In particular, the following sections are
intended to

� Summarize the basic operational principle of photo-
electric detectors in the context of the QED theory of
the photoelectric effect;

� Clarify the actual role of the optical tract of a WCR;
� Analyze the interaction of the electromagnetic radia-

tion filtered out by the optical tract of a WCR with the
end photodetector;

� Identify quantitative attributes of the electromagnetic
energy flow that can be captured by a WCR depending
on the specific measurement setting; and

� Discuss how these attributes can be modeled theore-
tically for morphologically complex scattering objects
and thereby enter the solution of radiation-budget as
well as optical-characterization problems.

2. Photoelectric detectors

Strictly speaking, the Poynting vector does not char-
acterize the direction and rate of the local electromag-
netic energy flow. Indeed, adding the curl of any vector
field to Sðr,tÞ ¼ Eðr,tÞ �Hðr,tÞ yields a vector field S0ðr,tÞ
which also satisfies the Poynting theorem for the same
pair of the electric and magnetic fields fEðr,tÞ, Hðr,tÞg
[1,8]. It is, however, important to recognize that if we
can measure the (time-averaged) Poynting vector then we
can use Eq. (1) to evaluate the radiative energy budget of
the object in question irrespective of the physical mean-
ing of the vector product Eðr,tÞ �Hðr,tÞ. Therefore, it is the
practical measurability of the Poynting vector that will be
the focus of the following discussion.

Typical devices used for the detection and quantifica-
tion of electromagnetic energy flow are photomultipliers,
photodiods, and photoelectric charge-coupled devices
(CCDs) illustrated in Fig. 2. A photomultiplier or a

V

ΔV

ΔS

S

Plane electromagnetic wave or quasi-monochromatic beam

Fig. 1. Time-averaged radiation budget of a volume element DV of a

cloud bounded by a closed surface DS. The arrows represent the

distribution of /Sðr,tÞS over the boundary DS.
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photodiod is a single photodetector reacting to the elec-
tromagnetic field ‘‘impinging’’ anywhere on its relatively
large sensitive surface, whereas a photoelectric CCD is a
two-dimensional array of smaller detectors (pixels) which
are designed to react to the incoming electromagnetic
field independently of each other. All these devices
are based on the absorption of electromagnetic energy
via the photoelectric effect discovered by Heinrich Hertz
in 1887 [9]. The physical nature of this phenomenon is
well understood, both in the framework of the semi-
classical approach, wherein only the matter is quantized
while the electromagnetic field is treated classically
[10,11], and in the framework of quantum electrody-
namics, wherein one quantizes both the matter and the
electromagnetic field [11].

The essential property of the photoelectric effect is the
Stoletov law according to which the photoelectric current
is proportional to the intensity of the incident light.
Although this law was discovered experimentally in
1889 [12], it has since been confirmed and refined
theoretically. The principal result of the most general
QED treatment today can be formulated as follows [13].
Let us approximate the sensitive element of a photode-
tector as a thin plane-parallel layer. The outer flat surface
of this layer Spd is exposed to a parallel beam of light
which has an effectively infinite lateral extent, propagates
normally to the surface, and consists of NZ1 quasi-
monochromatic components with different angular fre-
quencies on, where n numbers the quasi-monochromatic
beams, so that 1rnrN: The local sensitivity of the
detector is assumed to be uniform over Spd and axially
symmetric with respect to the local normal to Spd. Then
the total number of photoelectrons recorded by the
photodetector during a sufficiently long time interval Dt
is given by

NpeðDtÞ ¼DtSpd
XN
n ¼ 1

KpdðonÞ/InðtÞS, ð2Þ

where /InðtÞS is the time-averaged intensity of the
nth quasi-monochromatic component and KpdðonÞ is
the quantum efficiency of the photodetector at the fre-
quency on:

Despite the fundamental importance of Eq. (2), it is
imperative to always remember the specific conditions of
its applicability formulated in the preceding paragraph.

Any violation of these conditions leads to complications
and potentially significant uncertainties. Indeed, the
angular distribution of the emitted photoelectrons is not
isotropic and, furthermore, can depend on the polariza-
tion state of the incident beam [14,15]. The efficiency
with which the photodetector collects the emitted photo-
electrons propagating in various directions can never be
perfectly uniform and, in reality, can be substantially
anisotropic. This anisotropy can be expected to be espe-
cially pronounced for thicker sensitive layers [16]. As a
consequence, real photodetectors can exhibit strong sen-
sitivity to the direction of propagation and polarization
state of the incident beam [17,18]. The polarization
sensitivity can often be mitigated by placing a depolarizer
in front of the photodetector, but the angular sensitivity
may be more difficult to compensate for. It is, therefore,
essential to limit the practical use of photoelectric detec-
tors to the case of parallel beam illumination in the
direction normal to the detector sensitive surface.

It is important to remember that Eq. (2) was specifi-
cally derived for a parallel polychromatic incident beam
with quasi-monochromatic components propagating in
the same direction, which makes it inapplicable to the
case of uncollimated incident light.

3. Photoelectric detector as a Poynting-meter

The simplest photometer is a ‘‘bare’’ photoelectric
detector with no optical elements, except, perhaps, a
depolarizer, placed in front of its sensitive surface. Let
us first assume that the detector is exposed to a plane
electromagnetic wave propagating perpendicularly to its
sensitive surface, as shown schematically in Fig. 3a. At any

Fig. 2. Typical detectors of electromagnetic energy flow based on the photoelectric effect: (a) a photomultiplier, (b) a photodiod, and (c) a CCD.
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Fig. 3. A photodetector exposed to a plane electromagnetic wave.
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point of the sensitive surface, the direction of the instan-
taneous local Poynting vector is normal to the surface.
Furthermore, the magnitude of the Poynting vector is
uniform across the sensitive surface. It is well known [19]
that the time-averaged Poynting vector of a plane elec-
tromagnetic wave is given by

/Sðr,tÞS¼ n̂I, ð3Þ
where the unit vector n̂ specifies the direction of wave
propagation and I is the intensity of the wave. Since the
direction n̂ is assumed to be known, the measurement
illustrated in Fig. 3a can be thought of as yielding the
time-averaged Poynting vector of the plane wave:

/S r,tð ÞS¼ NpeðDtÞ
DtSpdK

pdðoÞ
n̂, ð4Þ

where o is the corresponding angular frequency.
More generally, let us assume that the detector is

illuminated by a superposition of N parallel quasi-
monochromatic beams propagating in the same direction
n̂ and having angular frequencies close enough so that for
any 1rnrN,

KpdðonÞ � Kpd: ð5Þ
Then Eq. (2) implies that

/S r,tð ÞS¼ NpeðDtÞ
DtSpdK

pd
n̂, ð6Þ

where

/Sðr,tÞS¼
XN
n ¼ 1

/Snðr,tÞS ð7Þ

is the time-averaged Poynting vector of the total beam
and /Snðr,tÞS is that of the nth quasi-monochromatic
component. Thus in the limited measurement setting,
wherein the direction of the Poynting vector is constant
and is assumed to be known, the photodetector can be
said to serve as the Poynting-meter.

In practice, the sensitive surface of the photodetector
may be polarization sensitive, in which case the reading of
the detector is proportional to /ISþaQ/QSþaU/USþ
aV/VS, where one or more of the proportionality factors
aQ , aU ,and aV are non-zero and

/IS¼

/IS¼ 9/SS9

/QS

/US

/VS

2
66664

3
77775 ð8Þ

is the (time-averaged) Stokes column vector of the plane
electromagnetic wave or the parallel beam of light. In
order to make the intensity measurement depicted in
Fig. 3a useful, one must ensure that aQ , aU , and aV are
much smaller (in the absolute value sense) than unity. As
we have indicated previously, this can often be accom-
plished by placing a depolarizer in front of the
photodetector.

The interpretation of the measurement with the
photodetector becomes more problematic if the propaga-
tion direction of the plane electromagnetic wave or the
parallel beam of light is arbitrary and is not known a priori

(see Fig. 3b). In this case the electromagnetic power
intercepted by the sensitive surface scales as cos y, where
y is the (unknown) angle between the propagation direc-
tion and the normal to the sensitive surface. Furthermore,
the proportionality coefficients can also be expected to
have a complex dependence on y: As a consequence, the
reading of the photodetector is now proportional to
cos y½aIðyÞ/ISþaQ ðyÞ/QSþaUðyÞ/USþaV ðyÞ/VS�,
where aIðyÞ is not necessarily equal to unity and y is
unknown. These factors make problematic the use of the
photodetector as a Poynting-meter even if a high-quality
depolarizer is placed in front of the sensitive surface.

Even more problematic is the situation depicted in
Fig. 4. Now the photodetector is placed inside a cloud
composed of M randomly positioned and randomly mov-
ing particles and, thus, is located in the near zone of the
cloud. This implies that the electromagnetic radiation
interacting with the sensitive surface is neither a locally
unidirectional transverse electromagnetic wave nor a
superposition of quasi-monochromatic parallel beams
propagating in the same direction. In other words, the
radiation interacting with the sensitive surface is thor-
oughly uncollimated, which makes Eq. (2) inapplicable
and the measurement afforded by the photodetector
useless.

Even more fundamentally, the local Poynting vector at
any point r of the sensitive surface at any moment in time
is not the same as it would be in the absence of the
detector. Indeed, let us assume for simplicity that the
particles are separated widely enough to satisfy the
conditions of applicability of the far-field Foldy–Lax
equations (see Chapter 4 of Ref. [20]). Then the total
instantaneous electric and magnetic fields at r in the
absence of the detector are superpositions of the respec-
tive incident and M scattered fields:

Eðr,tÞ ¼ Eincðr,tÞþ
XM
i ¼ 1

Esca
i ðr,tÞ, ð9Þ

Hðr,tÞ ¼Hincðr,tÞþ
XM
i ¼ 1

Hsca
i ðr,tÞ, ð10Þ

where Eincðr,tÞ and Hincðr,tÞ represent the incident plane
electromagnetic wave, while Esca

i ðr,tÞ and Hsca
i ðr,tÞ describe

an outgoing spherical wavelet centered at the origin of
particle i. The corresponding local instantaneous Poynting

Fig. 4. A photodetector placed inside the scattering object in the form of

a cloud of M discrete particles.
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vector is given by the vector product Sðr,tÞ ¼ Eðr,tÞ �Hðr,tÞ:
The major side effect of the presence of the photodetector
is to block the spherical wavelets generated by the M0

particles located to the left of the plane through the
sensitive surface shown schematically by the dashed line
in Fig. 4. The resulting ‘‘truncated’’ electric and magnetic
fields at r are now given by

E0ðr,tÞ ¼ Eincðr,tÞþ
XM�M0

i ¼ 1

Esca
i ðr,tÞ, ð11Þ

H0ðr,tÞ ¼Hincðr,tÞþ
XM�M0

i ¼ 1

Hsca
i ðr,tÞ, ð12Þ

respectively, where the sums include only the contribu-
tions from the M�M0 unblocked particles. It is quite
obvious that the corresponding ‘‘truncated’’ Poynting vec-
tor is not equal to the original Poynting vector: S0ðr,tÞ ¼
E0ðr,tÞ �H0ðr,tÞaSðr,tÞ:

In summary, the photodetectors shown in Fig. 2 can be
called direction-insensitive owing to their inability to
accurately decouple the direction and magnitude of the
Poynting vector. The applicability of such instruments to
the measurement of the Poynting vector is quite limited
and relies on the following assumptions:

� the incoming radiation is a plane electromagnetic
wave or a parallel polychromatic beam of light known
to propagate perpendicularly to the sensitive surface of
the photodetector;

� the incoming radiation is (or is made) unpolarized; and
� the range of angular frequencies of the incoming

polychromatic beam is narrow enough that the quan-
tum efficiency of the photodetector can be considered
frequency-independent.

4. Well-collimated radiometers

A hypothetical instrument capable of measuring both
the direction and the magnitude of the Poynting vector of a
plane electromagnetic wave (or a parallel beam of light) is
shown schematically in Fig. 5a. The sensitive surface of this
instrument Sd is polarization-insensitive, is exposed directly
to the incoming radiation, and is assumed to react to the
local instantaneous Poynting vector only if this vector is
directed along or almost along the optical axis of the
instrument defined by the unit vector q̂ normal to Sd.
Specifically, if the direction of Sðr0,tÞ at any point r0 of the
sensitive surface at any moment t is within the small
acceptance solid angle DOq̂ of the detector (e.g., vector S1
in Fig. 5a) then this vector contributes to the cumulative
reading of the instrument. Instantaneous local Poynting
vectors with directions outside DOq̂ (e.g., vectors S2
and S3) are ignored by the instrument and do not contribute
to its reading. The local time-averaged Poynting vector at
the observation point r is then determined by (i) taking the
time-averaged reading of the instrument Npeðr,q̂,DtÞ=Dt at a
dense grid of directions q̂ 2 4p while keeping the sensitive
surface centered at r and (ii) evaluating numerically the

integral on the right-hand side of the following formula:

/S r,tð ÞS¼ 1

SdDOq̂DtK
pd

Z
4p
dq̂Npeðr,q̂,DtÞq̂: ð13Þ

The quantum efficiency of the detector is assumed to be
frequency-independent.

It is obvious that this procedure could be expected to
work in the case of collimated illumination, as illustrated in
Fig. 6. However, the practical implementation of this mea-
surement methodology faces two fundamental obstacles.
First of all, to the best of the author’s knowledge, the directio-
nal detector depicted schematically in Fig. 5a has never been
built, and it remains quite questionable whether it can be
built in principle. Obviously, assessing the very feasibility of a
detector with directional sensitivity to the local instantaneous
Poynting vector requires an advanced quantum-mechanical
analysis of light–matter interaction. It is possible that there
exists a variant of the Heisenberg uncertainty principle
prohibiting such a measurement in principle.

Second of all, as we have already pointed out, if such an
instrument were embedded in a cloud of particles then it
would block the spherical wavelets generated by the particles
located to the left of the plane through the sensitive surface
shown schematically by the dashed line in Fig. 7. As a
consequence, the ‘‘truncated’’ instantaneous local Poynting
vector would be fundamentally different from the actual
Poynting vector in the absence of the detector.

The majority of actual directional radiometers in use
today are WCRs implicitly based on the physical principle
illustrated schematically in Fig. 5b. The main functional
elements of a WCR are the objective and relay lenses, the
diaphragm, and the photoelectric detector. Let us consider
the reaction of a WCR to the electromagnetic field formed by
superposing two plane waves propagating in directions q̂ and
q̂
0
, respectively. The objective lens acts as a linear optical

transformer in that its effect on the total field is a super-
position of its effects on each plane-wave component.
Specifically, the well-known paraxial approximation (e.g.,
Section 5.1 of Ref. [21]) implies that the objective lens
transforms both plane wavefronts into converging spherical
wavefronts with their respective focal points located in the
plane of the diaphragm. However, the ultimate fate of the
two spherical wavefronts is different. The pink spherical
wavefront passes freely through the pinhole, is converted
back into a plane wavefront, and is relayed onto the sensitive
surface of the photodetector, thereby contributing to the
cumulative reading of the WCR. On the other hand, the blue
spherical wavefront gets annihilated by the diaphragm and
does not contribute to the reading of the photodetector.

Thus the combination {objective lens, diaphragm} serves
to ‘‘extract’’ from the total electromagnetic field its compo-
nents in the form of plane (or near-plane) wavefronts
propagating in directions very close to the optical axis of
the instrument and falling within its small acceptance solid
angle

DO¼ pd2

4f 2
, ð14Þ

where d is the diameter of the pinhole and f is the focal
length of the objective lens. The fundamental feature of the
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instrument shown in Fig. 5b is that it selects appropriately
directed wavefronts rather than appropriately directed
instantaneous Poynting vectors [22]. It can thus be said that
a WCR acts as a wave-domain filter rather than a Poynting-

meter.
An important implication of this analysis is that the

typical WCR does not necessarily react to the local Poynting

vector at a point on the exterior surface of the objective lens
even if this vector is directed along the optical axis of the
instrument [22]. To demonstrate this, let us consider two

Plane wave

q̂

Fig. 6. A hypothetical directional detector exposed to a plane

electromagnetic wave.

Fig. 7. A hypothetical directional detector placed inside a cloud of particles.
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Fig. 5. (a) Hypothetical directional detector of electromagnetic energy. (b) Typical optical scheme of a well-collimated radiometer. (c) The conventional

WCR does not respond to the Poynting vector directed along the optical axis of the instrument. (d) Entrance pupil of a WCR. (e) Panoramic radiometer.

(f) 6-m telescope of the Russian Academy of Sciences. (g) NASA’s Hubble Space Telescope.
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plane electromagnetic waves propagating in directions q̂1

and q̂2 such that both form a 451 angle with the optical axis
of the WCR (Fig. 5c). Let us assume that the waves are
linearly polarized, with their electric vectors E1 and E2
oscillating perpendicularly to the paper, and fully coherent
in that at any moment in time E1¼E2 at the central point of
the objective lens. Let the local instantaneous magnetic
vectors of the waves be H1 and H2, respectively, as shown
by the magenta arrows, while the corresponding instanta-
neous electric vectors E1¼E2 are directed towards the reader.
The total local instantaneous field is represented by the
vectors E¼2E1 and H¼H1þH2, the former again being
directed towards the reader. One can see that the resulting
local instantaneous Poynting vector S¼E�H, shown by the
green arrow, is directed along the optical axis of the WCR.
Furthermore, it is easily verified that the Poynting vector at
the central point is always directed along the optical axis of
the instrument. Yet the reading of the photodetector is
identically equal to zero since neither plane wavefront is
passed by the {objective lens, diaphragm} filter of the WCR.

Conversely, a WCR can generate a nonzero signal when
the local Poynting vector is zero. Indeed, let us consider the
superposition of two plane waves propagating in opposite
directions along the y-axis, as shown in Fig. 8. The corre-
sponding electric and magnetic fields are given by

E1ðr,tÞ ¼ Ecosðky�otÞẑ, H1ðr,tÞ ¼Hcosðky�otÞx̂, ð15Þ

E2ðr,tÞ ¼ Ecosðky�otÞẑ, H2ðr,tÞ ¼ �Hcosðky�otÞx̂, ð16Þ

respectively, where x̂ and ẑ are unit Cartesian vectors. One
can see that at the origin (y¼0), the total magnetic field and,
as a consequence, the Poynting vector are identically equal
to zero. Yet theWCRs in Fig. 8b and c block one of the waves
and thereby record a nonzero ‘‘Poynting vector’’ directed
along the positive (Fig. 8b) or negative (Fig. 8c) y-axis.

The failure of the WCR to react to the instantaneous
Poynting vector in Fig. 5c can be traced to the following
fundamental fact: although the Poynting vector is impli-
citly sought at points on the exterior surface of the
objective lens, the actual photodetector is invariably
located very far (compared to the wavelength) from these
points. What the optical scheme of the WCR can relay
from the entrance plane onto the sensitive surface of the
photodetector is a suitable plane (or quasi-plane) wave-
front, but not the Poynting vector of the total field. The
only circumstance in which the WCR relays the Poynting
vector itself is when the total field consists only of one or
several plane or near-plane wavefronts propagating in the
same direction along the optical axis of the instrument.

This is true of any WCR irrespective of its specific
optical scheme. In fact, it is the very principle of serving as
a wavefront angular filter (rather than a Poynting vector
angular filter) that allows one to build a WCR by using
easy-to-fabricate macroscopic optical elements (such as
lenses, mirrors, polarizers, prisms, diffraction gratings,
etc.). In some cases these elements can be very large, as
exemplified by modern astronomical telescopes (Fig. 5f,g).

Thus, contrary to a widespread misconception, a WCR
cannot be said to measure the directional distribution of the
electromagnetic energy flow at an observation point. It is
therefore imperative to formulate precisely what a WCR does

in actuality. Let us assume that it is exposed to an electro-
magnetic field in the form of a superposition of several plane
wavefronts, as depicted schematically in Fig. 9. According to
the above discussion, the WCR does the following:

� selects only the wavefronts with propagation direc-
tions falling within its acceptance solid angle DOq̂ (i.e.,
q̂3, q̂4, and q̂5, but not q̂1, q̂2, q̂6, and q̂7Þ;

� sums up the respective instantaneous electric and
magnetic fields: E0 ¼E3þE4þE5 and H0 ¼H3þH4þH5;
and finally

� integrates the vector product E0 �H0 (which, by its
very construct, is always directed along—or very close
to—the optical axis of the WCR) over the entrance
pupil Sep as well as over time.

Importantly, invoking the concept of the flat entrance
pupil of a WCR, shown in Fig. 5d, helps to accommodate
the following two facts:

� the electromagnetic power enters the WCR through
the objective lens and is, therefore, proportional to the
area of this lens; and

Plane wave 1

x

O

z

y

Plane wave 2

y

y

Fig. 8. A WCR can register a nonzero signal even if the local Pointing

vector is identically equal to zero.
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� the actual registration of the resulting Poynting vector
of the superposition of transmitted wavefronts occurs
at the sensitive surface of the photodetector.

Indeed, the optical scheme of the WCR serves to preserve
the phase relations between the incoming wavefronts as
they are relayed onto the sensitive surface of the detector.
Suppose, for example, that one of two wavefronts propa-
gating along the WCR axis is a plane electromagnetic
wave {E1, H1} while the other one is a spherical wave {E2,
H2} with a large but finite radius of curvature. The phase
difference between these wavefronts varies over a plane
perpendicular to the direction of propagation, thereby
causing lateral variations of the resulting vector product
(E1þE2)� (H1þH2). It is easy to see that the combination
of the objective and relay lenses in Fig. 5b yields the same
phase difference distribution over the sensitive surface of
the detector as that over the flat entrance pupil. We will
see in Section 5 that this functional feature of a WCR is
essential in the practical measurement of extinction.

Another fundamental feature of the basic optical
scheme of a WCR is that the wavefronts impinging on
the sensitive surface of the photodetector always propa-
gate normally to the surface, thereby eliminating one of
the drawbacks of uncollimated radiometers discussed in
Section 3 and making applicable Eq. (2). Although the
photodetector can still have residual polarimetric sensi-
tivity, this problem can be mitigated by inserting a
depolarizer between the relay lens and the detector.

Thus, the operation performed by a WCR is by no
means equivalent to accumulating appropriately directed
local instantaneous Poynting vectors of the total field over

the entrance pupil (cf. Fig. 5a). Despite this fundamental
limitation, the above discussion shows that the measure-
ment afforded by a WCR is well defined and thus can be
modeled theoretically. This, as will be discussed below,
makes WCRs very useful tools in solving radiation-budget
and particle characterization problems. Furthermore, a
WCR can be upgraded to measure even the state of
polarization of the superposition of wavefronts filtered
out by its {objective lens, diaphragm} combination (see,
e.g., Section 2.10 of Ref. [20]). This further increases the
utility of WCRs in optical particle characterization.

The very fact that a WCR serves as a directional filter of
plane or near-plane wavefronts imposes strict limitations on
its practical use. For example, a WCR having a centimeter-
sized or larger entrance pupil cannot be used to characterize
the near field created by a micrometer-sized particle.
Solving this problem requires specifically designed nano-
optical probes [23] and is beyond the scope of this paper.
Instead, as will be discussed in the following section, a WCR
should ideally be located in the far zone of the entire
scattering object and at a distance from the object much
greater than the diameter of the entrance pupil. Then the
part of the scattered spherical wavefront cut out by the
entrance pupil becomes sufficiently flat to pass in its
entirety the {objective lens, diaphragm} filter.

The WCR shown in Fig. 10 is located in the near zone of
the cloud. We have mentioned, however, that if the cloud
is formed by widely separated particles then the total
field at any observation point located in the far zones of
all the constituent particles is a superposition of the
incident field and individual spherical wavelets contrib-
uted by all the cloud particles. If the size of the cloud is
much greater than the diameter of the entrance pupil
then the majority of these wavelets are contributed by
remote particles and have near-plane wavefronts at the
location of the WCR. Therefore, the use of the WCR
appears to be justified as long as these wavefronts
dominate the total local field.

An implicit advantage of a WCR over the hypothetical
directional detector shown in Fig. 5a is that the specific
measurement afforded by the WCR is much less affected by
the WCR’s very presence. Indeed, we have seen before that
placing the hypothetical directional detector inside a cloud
of particles would change the instantaneous local Poynting
vector dramatically by blocking a large fraction of incoming
spherical wavefronts (Fig. 7). The measurement afforded by
the WCR is fundamentally different in that, by definition,
the WCR collects only those incoming spherical wavefronts
that are generated by particles residing in the narrow
conical volume DV q̂ defined by the WCR’s acceptance solid
angle DOq̂ (Fig. 10). It is obvious that placing the WCR
inside the cloud blocks none of these wavefronts.

q1ˆ
q2ˆ
q3ˆ
q4ˆ
q5ˆ
q6ˆ
q7ˆ

q̂

Ω q̂Δ

Fig. 9. Response of a WCR to the electromagnetic field formed by a

superposition of several plane electromagnetic waves.

ΔV

q̂

q̂

Fig. 10. A WCR placed inside a random cloud of particles.
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Admittedly, the addition of a foreign body such as a WCR
modifies the partial wavelets created at the observation
point by the particles residing in the conical volume DV q̂:

However, the WCR can be expected to affect only the
wavelets coming from particles located in a close vicinity
of the WCR. If the size of the WCR is much smaller than that
of the cloud then the fraction of such particles in the conical
volume DV q̂ is relatively small, thereby making the actual
signal measured by the WCR close to the imaginary signal
caused by the same particles in the absence of theWCR. The
situation depicted in Fig. 7 is fundamentally different in that
the hypothetical directional detector essentially destroys
the signal that it is supposed to measure.

5. Far-field scattering

Scattering in the far zone is unique in that the
scattered field always evolves into a simple outgoing
spherical wave irrespective of the physical nature of the
scatterer (e.g., Section 3.2 of Ref. [20]). It should therefore
be instructive to analyze how the main results of the
preceding section apply to this simplest type of electro-
magnetic scattering. Specifically, the aim of this section is
to describe far-field scattering in terms of quantities
directly measurable with a WCR and/or directly quantify-
ing the radiation energy budget of a finite volume ele-
ment enclosing the scattering object.

Consider the measurement configuration involving
polarization-insensitive WCRs located at a distance r from
the origin O in the far zone of the entire scattering object,
as shown in Fig. 11. The origin of the laboratory coordi-
nate system is centered at the object. The total electro-
magnetic field at the location of a WCR is mathematically
represented as a superposition of the incident field in the
form of a plane electromagnetic wave propagating in the
direction of the unit vector n̂

inc
and the scattered field in

the form of an outgoing spherical wave centered at O. It is
important to recognize that the total field is the only real
physical field, while the separation of this field into the
incident and scattered components is notional only [5].
The mathematical relationship between the incident and
scattered fields in the far zone is specified in terms of the
2�2 so-called amplitude scattering matrix [19,20].

The entrance pupils of the four WCRs shown in Fig. 11
are centered at the endpoints of the respective position
vectors r1 ¼ rr̂1, r2 ¼ rr̂2 ¼ rn̂

inc
, r3 ¼ rr̂3, and r4 ¼ rr̂4:

The distance r from the origin is assumed to be much
greater than the diameter D of the entrance pupils to
ensure that the part of the scattered wavefront (shown by
the dashed curve in Fig. 11) cut out by an entrance pupil is
essentially flat. Specifically, it satisfies the inequality

Sep
r2

oDO, ð17Þ

where Sep ¼ pD2=4 is the area of the entrance pupil and, as
before, DO is the WCR acceptance solid angle defined by
Eq. (14).

The optical axis of WCR 3 coincides neither with the
respective radial direction r̂3 nor with the incidence
direction n̂

inc
: According to the discussion in Section 4,

this implies that neither the incident plane-wave compo-
nent nor the locally flat scattered-wave component can
pass the {objective lens, diaphragm} filter, which makes
the reading of WCR 3 identically equal to zero. In other
words, if the optical axis of a WCR does not go through
the origin O and is not parallel to n̂

inc
then the WCR

records no signal.
The optical axis of WCR 4 is parallel to the incidence

direction but does not coincide with the respective radial
direction r̂4, which implies that only the incident plane-
wave component passes the {objective lens, diaphragm}
filter. Therefore, the time-averaged total electromagnetic
power recorded by WCR 4 is given by

/W4S¼ SepI
inc, ð18Þ

where Iinc is given by the intensity of an electromagnetic
field represented by the incident plane-wave component
only, i.e., as if the scattered spherical wave component
were zero.

The optical axis of WCR 1 coincides with the corre-
sponding radial direction r̂1, but not with the incidence
direction n̂

inc
: Therefore, the {objective lens, diaphragm}

filter of WCR 1 passes only the scattered wavefront, and
the time-averaged total electromagnetic power recorded
by WCR 1 is given by

/W1ðr̂1ÞS¼ SepI
scaðrr̂1Þ, ð19Þ

where Iscaðrr̂1Þ is given by the intensity of an electromag-
netic field represented by the scattered spherical wave
component only, i.e., as if the incident plane-wave com-
ponent were zero.

The computation of the electromagnetic response of
WCR 2 oriented along the incidence direction is more
involved because the corresponding {objective lens,
diaphragm} filter passes both the incident and
forward-scattered wavefronts. The integration of the corre-
sponding time-averaged Poynting vector /Sðr0,tÞS over all

WCR 4

Sep

incn̂
r̂1

Scattered spherical
wave

Incident plane wave

ˆ

WCR 1
WCR 2

WCR 3

r3
O

Fig. 11. Electromagnetic response of a WCR depends on the line of sight.

M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 123 (2013) 122–134130



points r0 of the entrance pupil of WCR 2 ultimately yields
the optical theorem [19,20]:

/W2S¼ SepI
inc�CextI

inc, ð20Þ
where Cext is the extinction cross section. The first term on
the right-hand side of Eq. (20) is equal to the electromag-
netic power that would be recorded by WCR 2 in the
absence of the scattering object. The second term is inde-
pendent of Sep and describes attenuation caused by inter-
posing the object between the light source and the WCR.
Thus, the WCR centered at the object along the forward-
scattering direction can be said to measure the power of the
incident plane wave attenuated by the interference of the
incident and scattered wavefronts. The detector centered at
the object along any other radial direction reacts only to the
scattered wavefront.

The fact that the extinction term in Eq. (20) is inde-
pendent of Sep has a simple qualitative explanation.
Although the radius of curvature of the scattered wave-
front at the location of WCR 2 is large, it is still finite.
Because of that, the phase difference between the incident
and scattered wavefronts varies over the flat entrance
pupil (see Fig. 12), thereby causing the interference
component of the cumulative Poynting vector to oscillate
with increasing frequency as the distance of the observa-
tion point r0 from the center of the entrance pupil
increases. These high-frequency oscillations between
positive and negative values effectively cancel each other
upon the integration over the entrance pupil. The only
exception is the immediate vicinity of the exact forward-
scattering direction, where the phase difference between
the incident and scattered wavefronts remains

approximately constant, thereby causing a non-
vanishing negative contribution to the signal measured
by WCR 2 [24–27]. This explanation also demonstrates
the importance of the optical scheme of the WCR preser-
ving the lateral distribution of the phase difference
between the incident and scattered wavefronts as they
are relayed onto the sensitive surface of the photodetector
(recall the discussion in Section 4).

Let us now go back to Fig. 11. It is easily seen that the
Poynting vector of the total field Sðr0,tÞ at any point r0 of the
entrance pupil of WCR 1 is never directed along the optical
axis of the instrument since the electric and magnetic field
vectors Eðr0,tÞ and Hðr0,tÞ of the total field are never parallel
to the pupil plane. Yet, WCR 1 records a nonzero time-
averaged signal described by Eq. (19). Similarly, the Poynting
vector Sðr0,tÞ at any point r0 of the entrance pupil of WCR 4 is
never directed along the incidence direction, and yet WCR 4
registers a nonzero time-averaged signal given by Eq. (18).
On the other hand, the Poynting vector Sðr0,tÞ can be directed
along the optical axis of WCR 3 at certain points of its
entrance pupil and at certain moments in time. Despite that,
WCR 3 records no signal whatsoever. These facts demon-
strate again that in general, a WCR does not measure the
directional flow of electromagnetic energy but rather gen-
erates a certain signal defined by its specific functional
design. The only exception is the case when all the wave-
fronts constituting the local electromagnetic field are parallel
to the entrance pupil of the WCR. Only WCR 2 in Fig. 11
satisfies this condition and hence integrates over its entrance
pupil the actual time-averaged Poynting vector of the total
electromagnetic field. Thus, Fig. 11 demonstrates that it is
imperative indeed to understand the physical nature of the
actualmeasurement afforded by aWCR rather than to ascribe
to the WCR a desirable measurement capability.

The practical usefulness of Eqs. (19) and (20) comes
from the fact that Iscaðrn̂Þ and Cext can be measured
experimentally as well as calculated by using a computer
solver of the macroscopic Maxwell equations. They thus
constitute key ingredients of various optical techniques
intended for non-invasive characterization of morpholo-
gical and compositional properties of natural and artificial
particulates. The versatility and accuracy of these techni-
ques can be further enhanced by converting polarization-
insensitive WCRs into high-accuracy polarimeters and
using appropriate ‘‘vector’’ generalizations of Eqs. (18)–(20)
(see, e.g., Sections 3.7 and 3.8 of Ref. [20]).

Let us now assume that we want to measure the
radiation budget of a spherical volume element DV
surrounding the scattering object and centered at O. The
radius r of the spherical boundary DS in Eq. (1) is assumed
to be sufficiently large for the boundary to reside in the
far zone of the object. The application of the Poynting
theorem (1) to the volume element DV yields

WDS ¼�
Z
DS
d2r/Sðr,tÞSUn̂ðrÞ ¼�r2

Z
4p
dn̂Iscaðrn̂ÞþCextI

inc: ð21Þ

Comparison of Eqs. (18)–(20) with Eq. (21) shows that
although WCRs 1 and 4 never react to the local time-
averaged Poynting vector of the total field, they can still
be used to evaluate the radiation budget of the volume
element DV experimentally.

incn̂

O

Scattered spherical
wave

Incident plane wave

Entrance pupil

Fig. 12. The scattered spherical wavefront ‘‘interacts’’ with the incident

plane wavefront only in the immediate vicinity of the exact forward-

scattering direction.
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The results of this section can easily be generalized to
the case of polychromatic radiation assuming, as before,
that the quantum efficiency of the photodetectors
remains constant over the entire spectral range involved.

6. Near-field scattering

Let us now discuss what happens when a WCR is
placed inside a random cloud populated by M sparsely
distributed particles (Fig. 10). Again, the instantaneous
real electric and magnetic vectors at an observation point
r can be represented mathematically as superpositions of
the respective vectors of the incident field and the partial
fields ‘‘coming’’ from all the individual particles according
to Eqs. (9) and (10), where each pair fEiðr,tÞ,Hiðr,tÞg
represents an outgoing spherical wavelet originating at
the center of the respective particle. At a large distance
from the particle this wavelet can be considered locally
flat. Therefore, the WCR will select only those wavelets
that come from the particles located within the ‘‘accep-
tance volume’’ DV q̂ of the radiometer defined by its
acceptance solid angle DOq̂ (Fig. 10) and will integrate
the corresponding composite Poynting vector over the
entrance pupil Sep. Assuming for simplicity that DOq̂ does
not subtend the propagation direction of the incident
light n̂

inc
, we conclude that the instantaneous value of the

composite Poynting vector is given byX
l0

X
m0

El0 ðr,tÞ �Hm0 ðr,tÞ, ð22Þ

where the primed indices l0 and m0 number particles
positioned inside the acceptance volume DV q̂: Note that
since DOq̂ is very small, each term in the sum (22) is a
vector directed essentially along the unit vector q̂ in
Fig. 10. Averaging this reading over a sufficiently long
time interval Dt yields the following average signal per
unit area of the entrance pupil:

X
l0

X
m0

El0 ðr,tÞ �Hm0 ðr,tÞ
* +

: ð23Þ

This quantity can be computed analytically using the
standard assumptions of the microphysical theory of
radiative transfer [20] such as ergodicity of the random
M-particle ensemble, the limit M-1, the Twersky
approximation, and the ladder approximation. The result
of this computation [22] implies that the reading of the
WCR in Fig. 10 per unit time is given by the product

SepDOq̂
~Iðr,q̂Þ, ð24Þ

where ~Iðr,q̂Þ is the first element of the four-element
column ~Iðr,q̂Þ satisfying the following integro-differential
equation:

q̂Ur~Iðr,q̂Þ ¼�n0/Kðq̂ÞSx
~Iðr,q̂Þþn0

Z
4p
dq̂

0/Zðq̂,q̂0ÞSx
~Iðr,q̂0Þ:

ð25Þ
Here, n0 ¼N=V is the average number of particles per unit
volume, V is the volume occupied by the cloud, /Kðq̂ÞSx is
the 4� 4 single-particle extinction matrix averaged over
all M particles, and /Zðq̂,q̂0 ÞS is the 4� 4 single-particle
phase matrix, also averaged over all particles [20].

A companion result of the microphysical theory of
radiative transfer [22] allows one to compute the time-
averaged Poynting vector at the observation point r by
integrating the product q̂~Iðr,q̂Þ over all directions of the
unit vector q̂ :

/Sðr,tÞS¼
Z
4p
dq̂q̂~Iðr,q̂Þ: ð26Þ

Eqs. (24)–(26) are quite useful in practice. Firstly,
Eq. (24) implies that if the underlying assumptions about
the particulate medium are valid then a WCR such as that
shown in Fig. 10 measures the quantity ~Iðr,q̂Þ provided
that the reading of the WCR is averaged over a sufficiently
long period of time. Therefore, by sampling a sufficiently
dense grid of incoming directions q̂, one can determine
the local time-averaged Poynting vector according to
Eq. (26) and thereby solve the radiation-budget problem
experimentally by using Eq. (1). Alternatively, by solving
Eq. (25) and substituting the result in Eq. (26), one can
solve the radiation-budget problem theoretically.

Secondly, the angular dependence of the measured
function ~Iðr,q̂Þ can be analyzed by solving Eq. (25) for a
representative range of physical models of the cloud and
thereby retrieve valuable macro- and microphysical infor-
mation about the particulate object. Furthermore, since
the WCR selects only locally plane wavefronts propagat-
ing in directions very close to q̂, it is straightforward to
convert the WCR into a directional photopolarimeter
capable of measuring the entire column vector ~Iðr,q̂Þ: This
measurement has been shown to contain additional
implicit information about particle microphysics which
can often be retrieved since solving Eq. (25) yields all four
elements of ~Iðr,q̂Þ at once (see, e.g., Refs. [28–31] and
references therein).

7. Panoramic radiometers

The WCR depicted schematically in Fig. 5b is an
inherently monodirectional instrument. The basic optical
scheme of a multidirectional panoramic radiometer is
shown in Fig. 5e. In this case the role of the diaphragm
is played by each individual pixel of the L-pixel CCD. For
example, the pink wavefront propagating along the opti-
cal axis in the direction q̂ is detected by the central pixel
of the CCD, while the blue wavefront propagating in the
direction q̂

0
is not annihilated (cf. Fig. 5b) but rather is

detected by an off-center pixel. In other words, each pixel
is expected to measure the cumulative Poynting vector of
the superposition of plane or near-plane wavefronts
propagating in the direction defined by the corresponding
{objective lens, pixel} filter. As a result, a single exposure
of the CCD yields L simultaneous measurements which
can be thought of as forming a two-dimensional image.

For a host of technical reasons not discussed here
specifically, accurate radiometric measurements with
CCDs are more problematic than those with photomulti-
pliers and photodiodes. However, the following note is
of a more basic nature. As was discussed in Section 2,
the quantum theory of the photoelectric effect is well
established in the case of photodetection of a plane
electromagnetic wave or a parallel polychromatic beam.
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The main practical result of this theory is summarized by
Eq. (2) and helps making the measurement with a WCR a
well-characterized and interpretable procedure. It also
further illustrates the essential role played by the relay
lens in Fig. 5b.

Unlike the optical scheme of a WCR shown in Fig. 5b,
that of a panoramic radiometer shown in Fig. 5e implies
that each pixel is located at the focal point of a converging
spherical wavefront rather than being exposed to a plane
wavefront. To the best of the author’s knowledge, the
quantum theory of photodetection of a converging sphe-
rical wave has not been developed yet. As a consequence,
the quantitative relationship between the individual
intensities of the plane wavefronts in Fig. 5e and the
signals generated by the respective CCD pixels remains
uncertain. This obviously makes theoretical interpreta-
tions of measurements with panoramic radiometers more
uncertain than those with WCRs.

8. Concluding remarks

The issue of directional flow of electromagnetic energy
is a very complex one. We have already indicated that the
Poynting vector cannot be interpreted as characterizing
the direction and rate of the local electromagnetic energy
flow. This is especially true of a volume element DV
containing absorbing matter since then the Poynting
theorem (1) implies infinite energy accumulation inside
DV : In fact, this example, illustrates a major weakness of
classical macroscopic electromagnetics which describes
only linear interactions of the electromagnetic field with
matter. This is acceptable in the case of nonabsorbing
dielectrics since they are not modified by the field, but
causes problems in the case of absorbing dielectrics. It is
therefore not surprising that microscopic quantization of
the electromagnetic field in absorbing dielectrics requires
linking the dielectric to a thermal field reservoir [32–34].
The heuristic way to circumvent this issue in classical
macroscopic electromagnetics is to postulate that if
WDS40 in Eq. (1) then the excess electromagnetic energy
is transformed into other forms of energy via physical
mechanisms not encompassed explicitly by the macro-
scopic Maxwell equations.

It is this heuristic patch that is at the very heart of
applying classical macroscopic electromagnetics to the
solution of radiation-budget problems. In particular, a
disperse medium is called conservatively scattering if
WDS ¼ 0 in Eq. (1). If, however, the application of
Eq. (21) or Eqs. (25), (26), and (1) yields WDS40 then it
is usually claimed that the excess electromagnetic energy
is converted into heat.

The complete modern description of the interaction of the
electromagnetic field and matter is provided by QED. It is
imperative to recognize that in general, the Hamiltonian
describing the field–matter interaction is not controlled by
the Poynting vector of the electromagnetic field but rather is
defined in terms of the electric and magnetic field vectors.
This factor has two important implications: (i) Eq. (2) has a
rather narrow range of applicability; and (ii) although it is the
intensity of the incident parallel beam that enters Eq. (2), it
appears in the form of an average over a sufficiently long

period of time. As a consequence, a photoelectric detector
cannot measure the instantaneous local Poynting vector
under any circumstances.

Despite this profound limitation, making a photoelectric
detector the end component of the optical tract of a WCR
can serve a useful purpose. Indeed, we have seen that if one
makes far-field measurements described in Section 5 or
places the WCR inside a very large random cloud composed
of sparsely distributed particles then the time-averaged
signal generated by the WCR can be modeled theoretically
by solving the macroscopic Maxwell equations directly or
by using a corollary of the Maxwell equations in the form of
Eqs. (24) and (25). As a consequence, the WCR can be made
a legitimate part of optical-characterization and radiation-
budget applications.

This does not mean, however, that a WCR can be
considered a universal quantifier of directional electro-
magnetic energy flow. The physical nature of the specific
measurement afforded by a WCR depends on the type of
the ambient electromagnetic field and thus on the object
causing the field. Unless the actual functionality of
the WCR is rigorously defined, endowing it with desirable
rather than real measurement characteristics can be
thoroughly misleading and can result in significant errors.

Our final remark concerns Eq. (25). One might claim
that this is the standard radiative transfer equation postu-
lated in the phenomenological radiative transfer theory
based on vague energy-conservation and directional-
energy-propagation arguments. Furthermore, one might
attribute to ~Iðr,q̂Þ primordial physical significance as the
quantity specifying the angular distribution of electromag-
netic energy flow at the point r over all propagation
directions q̂ 2 4p:

The recently developed microphysical approach to
radiative transfer [20,22] shows that this interpretation
of Eq. (25) and the quantity ~Iðr,q̂Þ, traditionally called the
specific intensity, is thoroughly incorrect [7]. The quantity
~Iðr,q̂Þ does enter the formula (26) for the time-averaged
Poynting vector. However, we have already seen that even
the Poynting vector cannot be legitimately claimed to
specify the direction of time-averaged electromagnetic
energy flow, and so there is even less justification for
ascribing any ‘‘directional energy’’ content to the specific
intensity. The quantity ~Iðr,q̂Þ is nothing but a formal
solution of the intermediate Eq. (25) and appears as a
byproduct of the purely mathematical derivation of
Eqs. (24) and (26) from the macroscopic Maxwell equations.

To summarize the above discussion, there has been a
paradigm-changing shift in the physical understanding of
the discipline of directional photometry established phe-
nomenologically 250 years ago by Bouguer and Lambert.
From allegedly describing the ‘‘directional flow of light’’
(or, more generally, electromagnetic energy), photometry
has been reduced to making measurements with WCRs
and modeling these measurements theoretically on the
basis of fundamental physical theories. In the words of
Roy Glauber, ‘‘A photon is what a photodetector detects’’ [35].
Paraphrasing Glauber, we can say that the specific intensity is
what a WCR measures, provided that the parameters of the
particulate medium in question are consistent with the
assumptions used in the derivation of Eqs. (24)–(26). There
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is still an urgent need to understand the practical function-
ality of a WCR in more complex situations not discussed in
this paper.

The physical theory of measurements with panoramic
radiometers needs further refinement. Needless to say, a
useful byproduct of this refinement would be a better
understanding of the optical functionality of the most
important panoramic radiometer called the human eye.
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