Bimodal Nuclear Thermal Rocket Analysis Developments
Michael Belair, Thomas Lavelle, Charles Sarmiento, Albert Juhasz, and Mark Stewart

NASA Glenn Research Center
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
Cleveland, OH
July 28-30, 2014
Agenda

• Introduction
 – Nuclear Cryogenic Propulsion Stage (NCPS) Project
 – Nuclear Thermal Propulsion and Bimodal Reactors
 – Analysis Methodology

• NERVA Systems
 – Overview of NERVA fuel element/tie tube
 – Proposed system diagram
 – Tie tube exit temperatures issues

• ESCORT System
 – Power Mode Analysis

• Conclusions
Introduction

- Nuclear Thermal Propulsion (NTP) preferred technology for manned mission to Mars [1]
- NCPS researching small 33.4 kN (7.5 klbf) engines for flight demo and robotic missions
- and 111.2 kN (25 klbf) engines for human missions
Nuclear Thermal Propulsion Basics

- Chemical propulsion performance limited by available energy stored in chemical bonds
- Nuclear propulsion performance limited by material temperature limitations
- Specific impulse
 - Temperature (T)
 - Molecular Weight (MW)
- Example
 - Hydrogen/Oxygen
 - MW ~ 13.8 g/mol, T ~ 3420 K, Isp ~480 seconds
 - Nuclear Thermal Hydrogen Propellant
 - MW ~ 2 g/mol, T ~ 2700 K, Isp ~ 900 seconds

\[I_{SP} \propto \sqrt{\frac{T}{MW}} \]
Bimodal Basics

- Reactor core contains high amounts of unused ^{235}U
- Long coast periods of inactivity can be utilized
- Reactor operates at highly reduced power (~1/1000th)
- Tie tubes are used as heat source for closed Brayton power cycle with He-Xe working fluid
- Many Brayton cycle variations possible
- Chose most simple direct heat closed Brayton power cycle without a recuperator in order to reduce complexity and mass
Analysis Methodology

• Propulsion Mode
 – Full system model in NPSS (Numerical Propulsion System Simulation)
 – Steady State Solution
 – Custom Reactor Elements
 • Fuel Element
 • Tie Tube Element
 • 1-D Thermo-Fluid Analysis axial temperature profile

• Power Mode
 – Isolated tie tube model in NPSS
 – Steady State Solution
 – Results from NPSS are fed to BRMAPS to compute Brayton cycle
NERVA SYSTEMS
NERVA Design

Image Reference: [3]
NERVA: Propulsion vs. Power Mode

Propulsion Mode
- High Power
- H2 working fluid
- Tie tubes provide power for turbomachinery

Power Mode
- Low Power
- He-Xe working fluid
- Tie tube flow only
NERVA Limitations During Power Mode

- ZrH moderator material
- Elevated temperatures cause H2 to be released
- Moderator temperature limitation ≤ 1000 K
- Potential long term effects on criticality
- Greater concern for power mode
 - Longer duration at elevated temperature
 - He-Xe working fluid
 - Higher temperature moderator
Tie Tube Axial Temperature Profile

- Significant temperature profile difference between power and propulsion
- Results are consistent with previous analysis [5]
- Temperature profile is driven axially rather than radially

Propulsion Mode:
- Flow Rate = 1.41 kg/sec H₂
- Tin = 34.6 K
- Tout = 861 K

Power Mode:
- Flow Rate = 0.285 kg/sec He-Xe
- Tin = 516 K
- Tout = 850 K
Propulsion Mode

- H2 Supply
- Insulator
- Moderator
- Graphite
- Inconel
- H2 Return

Tie Tube 2-D Temperature Distribution - Propulsion Mode (K)
Power Mode

- H2 Supply
- Insulator
- Moderator
- Graphite
- Inconel
- H2 Return
- Inconel
Discussion

• Lower mass flow rate → Lower heat transfer coefficient, Less Heat Flux

• Thermal gradient driven in axial direction rather than radial direction

• Model assumptions may be less accurate in power mode
 - No conduction axially assumed
 - Results show that axial conduction must be considered
 - Better assumption in propulsion mode due to higher heat fluxes
 • $Q_{\text{radial}} \gg Q_{\text{axial}}$
ESCORT MANNED BIMODAL RESULTS
Escort Manned Bimodal System

• Reactor core based on Escort/TRITON Design
 – 24 inch length
 – Central Energy Transfer Duct (ETD) for power mode
 – Ceramic Metallic (CERMET) fuel
• 3 x 25 klbf engines clustered for propulsion mode
• 3 x 16.67 kWe Brayton rotating units in power mode
 – 25 kWe each, design, to provide 50 kWe in event of failure
 – Common radiator
• Temperature during power mode is not an issue due to materials and geometry
50 kWe System Results - Juhasz

HeXe Accumulator Tank
Dia=.5m, L=1.5m; V=.26m³
Capacity=16.7 kg @ 600 psia
Ti tank mass 220 kg, tw=0.2 in

Working Fluid – HeXe (40g/mol);
\(\eta_c = 0.83; \) RPM = 53,500
\(\eta_t = 0.90; \) \(D_{ref} = 0.13 \) m
\(\eta_{th} = 0.2; \) \(T_S = 250 K \)
Conclusions

• NERVA Bimodal
 – Differences in operating characteristics between power and propulsion mode as well as the desire for maximum tie tube exit temperature results in temperatures above allowable for power operation in the NERVA reactor.
 – Improper modeling assumptions exaggerate the trend.
 – Look into new materials or design geometry to mitigate (NERVA not designed for bimodal)

• Escort Bimodal
 – Power mode operation seems feasible for a manned mission
 – Temperature during power mode is not an issue due to materials and geometry
Acknowledgements

• Coauthors
 – Thomas Lavelle
 – Charles Sarmiento
 – Albert Juhasz
 – Mark Stewart

• Colleagues
 – Stan Borowski
 – Jim Fittje

• Organizations
 – NCPS Project
References

