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1. Introduction

The impetus for the current paper is the environment around
NEAs (Near-Earth Asteroids). Debris might be thrown off a solitary
NEA via Yarkovsky-0O’Keefe-Radzieevski—-Paddack (YORP) spin-up
(Paddack, 1969; Rubincam, 2000), from the fission of an NEA into
a binary system (e.g., Jacobson and Scheeres, 2011), from tidal
encounters with planets (e.g., Richardson et al., 1998), or from im-
pacts. Debris orbiting around an NEA could be a factor in the safety
of a manned mission to one of these tiny asteroids. Hence under-
standing the forces on possible debris is desirable.

Orbital debris will be acted upon by radiation forces (photon
thrust) as well as by gravitation. Solar radiation pressure and the
Poynting-Robertson effect are the best known of all the radiation
forces. Poynting-Robertson is a V/c effect (where V is the speed
and c is the speed of light); it causes orbit decay for dust or ice par-
ticles orbiting a luminous body (e.g., Poynting, 1903; Robertson,
1937; Burns et al., 1979). Being a surface-to-mass effect, the smal-
ler the particle, the faster the decay in the geometric optics limit.
Poynting-Robertson drag will act on Earth satellites as well,
though at a much slower pace than on ice or dust particles, because
of the unfavorable surface-to-mass ratio.

The Poynting-Robertson effect is most commonly applied to
small particles orbiting the Sun, but it also applies to particles
orbiting planets (e.g., Burns et al., 1979; Goldreich and Tremaine,
1982; Mignard, 1984; Burns et al., 1984, 1999; Vokrouhlicky
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et al., 2007), as well as moons, comets, and asteroids, since these
all reflect visible light and emit in the infrared. Complications arise
in computing Poynting-Robertson drag for orbits around these ob-
jects, because the body being orbited is not the only source of pho-
tons; the Sun shines on the particles as well. The sunshine ceases
when a particle enters the body’s shadow, and both the sunshine
and its cessation must be dealt with. What happens when the par-
ticle orbit intersects the body’s shadow is less clear.

Vokrouhlicky et al. (2007, on-line Appendix B) investigated the
solar Poynting—Robertson effect in Saturn’s icy rings and concluded
that V,,/c enters into the calculation at a significant level, where V,,
is the speed of the body in its orbit about the Sun. They found that
the Poynting—-Robertson force on a particle from the solar photons
does not average out when integrating around its orbit when the
orbit intersects Saturn’s shadow. Usually only the order-of-magni-
tude of the particle’s orbital decay rate is desired, so that for parti-
cles orbiting about Saturn or Jupiter with speed v, V},, ~ v (Table 1),
and whether V}, enters the calculation or not would not make a big
difference in the orbital decay rate and is therefore not particularly
important.

However, the situation changes when considering a particle
orbiting an NEA. In this case the NEA’s mass is small, so that »
might be on the order of ~1ms~!, while V,=~3 x 10*ms~! if
the asteroid is in an Earth-like orbit (Table 1). Hence V,, > v and
shadow passage could be highly important for the Poynting—-Rob-
ertson effect when considering particles orbiting NEAs if V}, indeed
enters into the Poynting-Robertson drag at a significant level.

The present paper works the problem of what happens to the
Poynting-Robertson drag when a particle in a circular orbit about
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Table 1

Parameters for six planets and two asteroids.
Body Vy? Vp/c®  R/d! ve v/c Vplv

(10°ms™) (107°) (107°) (10°ms™ ') (107°)

Mercury 47.62 1587 417 3.00 1.00 15.87
Venus 35.05 11.68  5.60 7.33 2.44 4.78
Earth 29.74 9.91 4.26 7.90 2.63 3.76
Mars 24.12 8.04 1.49 3.55 1.18 6.79
Jupiter 13.04 435 917 42.09 14.03 031
Saturn 9.61 320 420 25.08 8.36 0.38
NEA' 29.74 9.91 0.0007 0.0007 0.0003 3 x 10*
Ida 17.59 586 0.004 0.013 0.004 1.4 x10*

@ Speed of the body about the Sun.

Speed of light.

Radius of the body.

Distance of the particle from the Sun.

Speed around the body for r=R.

f Hypothetical asteroid with radius R = 10°> m, density =2 x 10> kg m~
Earth’s orbit.
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a spherical Solar System body intersects the body’s shadow and the
Sun’s light is cut off. The resultant equations indicate that V}, is not
nearly as important as found by Vokrouhlicky et al. (2007). The
reason is that, even though the solar photons emanate from the so-
lar direction, the shadow does not point directly away from the Sun
when viewed from the Sun’s rest frame. A body in a circular orbit
about the Sun travels at a speed V,, at right angles to a field of pho-
tons traveling at a speed c, so that there is the aberration of star-
light, with the star being the Sun. The body’s shadow is thus
rotated slightly. This slight rotation causes the direct solar radia-
tion pressure on the particle to act in such a way as to cancel to or-
der Vy/c the solar Poynting-Robertson effect from the sunlit
portion of the orbit.

2. Circular coplanar orbits

Consider a spherical particle of mass M, and radius R, at a dis-
tance d from the Sun. Burns et al. (1979) in their Eq. (2) show that
the acceleration in the Sun’s inertial rest frame due to solar radia-
tion pressure from the Sun is given by

B -
fpress - ? (1)
and the Poynting-Robertson acceleration fpg from the Sun is

B[ v (v.d\,] B[V (v.d
fPR_dZ{_C_<C>d} el (e ?

where V is the particle’s speed in the Sun’s rest frame, d is the unit
vector from the Sun to the particle (karats (hats) over quantities sig-
nify unit vectors), and d = dd is the particle’s position in the Sun’s
frame. Also,

TQR: Fra}
= 3)

where c is the speed of light, Q is a factor which depends on the way
the particle absorbs and emits light, and Fz=1361]m2s™! is the
insolation at the Earth’s distance ar=1 AU from the Sun (Kopp
and Lean, 2011).

Eqgs. (1)-(3) are general. The simplest qualitative explanation for
the null result relies on considering the particular case of coplanar
orbits (Fig. 1). The body is assumed to be spherical and at the cen-
ter of the (x, y, z) coordinate system; the x-axis points down and
the y-axis points to the right. The Sun is assumed to be at rest in
an inertial coordinate system and is a point-source of light on
the —y axis far enough away from the body so that the Sun’s rays

e .
- N '

v

X

Fig. 1. Schematic geometry of coplanar orbits as seen from the Sun’s rest frame,
assuming no rotation of shadow. A particle (black dot) moves around a spherical
body in a circular orbit. The body orbits the Sun in a circular orbit with orbital
velocity Vj, (large black arrow) in the —x direction. The Sun is on the —y axis, so that
its rays come in from the left (wavy arrows). The part of the Poynting-Robertson
force which is proportional to —Vy/c on arc DE is not canceled out at arc AC because
of the shadow.

travel on parallel trajectories (wavy arrows). The system travels
with a speed V,, in the —x direction. In the particular case consid-
ered in Fig. 1, a spherical particle (black dot) happens to move in
its circular orbit in the positive sense; moving in the opposite sense
is discussed later.

The position in the Sun’s frame of a particle orbiting a Solar Sys-
tem body can be written

d=dd=r, 1 4)

where 1y, is the vector from the Sun’s center to the body’s center,
and r is the vector from the body’s center to the particle. The parti-
cle’s velocity in the Sun’s rest frame is then

d=r,+r=V,+V (5)
where Vj, is the body’s velocity in the Sun’s frame, with |Vy| =V},
and v is the velocity of the particle in the (x, y, z) frame of the body,

with |v| = 2. The distance d from the Sun to the particle can be
written

2rp-r 2\ '?
d=r(1+2%74 1) ©
Ty Ty

where |rp| =1 and |r| = 1. Using (4) and (5) in (2) allows the Poyn-
ting-Robertson acceleration to be written

B Vp (Vb~rb> <Vb~1‘> v <V-l‘b> <v~r> j|
for— (2 ) |- b d- a-Y_(Y:I)g_ (Y T\g
a <d2>{ ¢ \de dcc) ¢ \dc e

=fpr1 -+ fpr2 +fprs + fora + Fors + fors

(7)

where

G

etc., correspond to the various terms in (7).

Consider qualitatively the role of (8) in the particle’s motion.
Viewed from the Sun’s inertial frame, it would appear from Fig. 1
that —Vp/c should contribute to the Poynting-Robertson drag
when averaging the force around the orbit. If the shadow (gray re-
gion) points directly away from the Sun, then the body’s umbra is a
cylinder whose axis stretches along the positive y-axis as shown in
the figure. The shadowed portion of the orbit is confined between
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the horizontal dotted lines. The particle enters the shadow at A and
exits at C. The force on the portion of the orbit between points D
and E is not canceled out by the shadowed portion between A
and C, and so a net contribution to the force should result from
(8). This force would actually be a boost instead of a drag because
the Poynting—-Robertson force acts in the direction opposite to Vy;
between D and E the particle is pushed along in its orbit, according
to (8). (See also Vokrouhlicky et al., 2007, second term in B.11.)

However, viewed from the (x, y, z) frame of the body, Vp van-
ishes and its only effect is the Sun apparently shifting its position
due to the aberration of starlight (Fig. 2), so that there is no Vy/c
contribution to Poynting-Robertson. Thus there seems to be a con-
tradiction: the results differ, with Vp/c appearing or not, depending
upon which frame is chosen.

The resolution of the contradiction lies in examining what hap-
pens in the Sun'’s rest frame more closely (Fig. 3). Because the sys-
tem is traveling at speed V), the shadow (gray region) is rotated by
an angle o, where

tana =V,/cx~ o 9)

with respect to the y-axis due to the aberration of starlight (e.g.,
Sommerfeld, 1964, pp. 63-66). A fuller treatment of the shadow
rotation is given in the Appendix. The particle gets a Poynting—Rob-
ertson boost between G and H from (8). It would also have gotten a
boost between F and A from solar radiation pressure (wavy arrows),
except now the shadow is there and the radiation pressure vanishes
between F and A. Between B and C direct solar radiation pressure
(given by (1)) acts against the motion. It will be shown quantita-
tively below that these combine to cancel the Poynting-Robertson
boost at GH, leaving a null result to order V,/c for circular coplanar
orbits.

There is also a null result if the particle orbits in the sense oppo-
site to that shown in Fig. 3. In that case there would now be Poyn-
ting-Robertson drag on the arc HG, but there is a solar radiation
pressure boost between CB, and again nothing at AF, once more
giving a null result. Hence there is no net effect regardless of the
sense of motion around the body. (While eccentric orbits are not
treated here, the semimajor axis of eccentric orbits will change
as particles move at an angle through the shadow. However, the ef-
fect is periodic due to the precession of pericenter and so are unim-
portant in the long run. See Mignard (1984) and Horanyi and Burns
(1991).)

What follows next is a quantitative proof of a null result to or-
der Vp/c for an inclined circular particle orbit when (8) combines
with (1). The coplanar orbits discussed above are simply a special
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Fig. 2. The orbits as seen in the body’s frame. The Sun’s position appears shifted by
an angle ~V,/c because of the aberration of starlight, and there is no net Poynting-
Robertson effect which is proportional to —Vy/c.
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Fig. 3. Coplanar orbits seen from the Sun’s rest frame as in Fig. 1, this time with the
shadow rotated due to the aberration of starlight. The radiation pressure on BC and
its lack on FA cancels out the —Vy/c Poynting-Robertson effect on GH.

case where the inclination is zero. The other terms in (7) are dis-
cussed later.

3. Inclined circular orbit

The geometry of the particle’s inclined orbit is shown in Fig. 4.
Once again the Sun is on the —y axis and the coordinate system
travels in the —x direction. The orbit is now inclined by the angle
I to the z-axis and the unit vector

n = (sinlsin Q)X — (sinlcos Q)y + (cos )z

is normal to the orbital plane, where X,y, and Z are unit vectors
along the respective axes. The angle in the x-y plane of the ascend-
ing node is given by Q, while the argument of pericenter is angle «»
and the true anomaly is angle f. Because the orbit is assumed here to
be circular, only the angle w + f is meaningful. The axis of the cylin-
drical umbra lies in the x-y plane and is rotated by an angle o from
the y-axis because of the aberration of starlight; « is positive for the
sense shown. Note that this is opposite to the usual convention. The
unit vector along the axis of the cylinder is thus

U = sinaX + cos oy

Qg

&
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Fig. 4. The inclined particle orbit as seen from the Sun’s rest frame. The particle’s
circumplanetary orbit is assumed to be circular. Once again the Sun is on the —y
axis and the (x, y, z) frame travels with velocity Vj, in the —x direction. I is the
inclination to the plane to the solar orbit; f is the unit vector normal to the
particle’s orbital plane. Also, € is the ascending nodal angle in the x-y plane, w is
the argument of pericenter, and f is the true anomaly. Only the sum w +f is
meaningful for the circular orbit considered here. The axis of the umbra is rotated
from the y-axis by an angle o in the x-y plane. u is the unit vector along the umbra’s
axis.
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The intersection of the particle’s orbit plane with the cylinder of
the umbra is half an ellipse, with the unit vector in the direction of
the long axis of the ellipse being given by

W=1 x (@ xn)/|nx (@xn)]
where

L o 2
I % (@ x A1) = [cos? [ + sin [sin®(Q + )] '

Let i be the angle between w and the nodal line. Then

COS Y = W - (cos QX + sin Qy) = sin(@2 +a) 73
[cos? I + sin” I'sin(Q + )]
and
siny = (1 — cos? l/])1/2 _ coslcos(Q+ o) (10)

[cos? [ + sin® I'sin®(Q + «)]

The shadowed portion of the orbit can be found with the aid of
Fig. 5. The x'-y’ coordinate system lies in the particle’s orbital
plane, with the long axis of the half-ellipse (and w) lying along
the x' axis. The orbit is the equation for the circle

)+ ) =r (1
while that of the ellipse is

®)? )’

K2 + R? =1 (12)
where R is the radius of the body and h is given by

R

h= |sinlcos(Q + o) (13)

The orbit is in shadow when r < h. The shadowed portion lies
between ¢ as shown in Fig. 5. Solving (11) and (12) for sin ¢
=y'|R and using (13) gives

. R {1 — (5)*sin® I cos?(2 + oc)] "
sing = = : 73

(14)
cos? I 4 sin’ I'sin*(Q + )]

The Poynting-Robertson acceleration fpg; given by (8) can be
written

>
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Fig. 5. The intersection of the particle’s orbital (x’, y’) plane with the umbra is half
an ellipse. The ellipse’s semiminor axis R is the radius of the body, and the long axis
lies along the x'-axis. W is the unit vector along the x’ axis. Sunlight streams in from
the left. y Is the angle between the x’ axis and the nodal line shown in Fig. 4. The
circular orbit has a radius r and is in shadow between ¢ only when r < h.

_ B(Vy\ _ B(Vy\. B .
fpmf—?<7>~+¥<?>x7+riax (]5)

where Vp/c ~ o by (9) and d ~ 1, since in all cases of interest V}, < ¢
and r < 1. The sign on the right-hand side of (15) is plus because Vj,
is in the —x direction and the force is opposite to V.

The rate of change in the semimajor axis r of the circular parti-
cle orbit is given by

dr _ 2Spr1
dt™ n
(e.g., Blanco and McCuskey, 1961, p. 178), where n the mean motion

and Spg; is the along-track acceleration. Spg; is the dot-product of
(15) with the along-track unit vector

(16)

t = [- cos Qsin(w + f) — cosIsin Qcos(w + f)]X
+ [~ sinQsin(w + f) + cosIcos Qcos(w + f)]y + [sin
x cos(w + f)]z (17)

(e.g., Rubincam, 1987, p. 1291). The integral of Spg; averaged over
one revolution of the particle orbit will be

2n N vte N
Sm) =ty [ BN~y [
i +f) (18)

assuming €2 and I do not change significantly over one revolution of
the particle about the body. The first integral is the acceleration
assuming the whole orbit is sunlight; the second integral corrects
for this by subtracting out the shadowed portion.

The first integral in (18) is 0 because integrating sin (w + f) and
cos(w + f) from O to 27 is zero. This leaves only the second integral.
The following expressions are used in evaluating the second
integral:

/WP sin(w + f)d(w +f) = 2siny sin¢
v=¢

/M’ cos(w + f)d(w + f) = 2cosysin ¢
0

Using these two expressions in (18) along with (15) and (17)
yields

o
(Serr) ~ ‘“n% /M x-t)d( +f)

r

B cost (%) [1- @ sin'icos ] 19

~ +0— cosl —
nry [cos? ]+ sin” Isin” Q]

to first order in o. (See also the treatment of the shadow by Vok-
rouhlicky et al. (2007).)

The solar radiation pressure contribution to the along-track
acceleration needs to be found next. By (1) and (17) this is

B 2n . B U+ R
Ses) =5z [, 0 0@ 1) =0 [ 90
d(w+f) (20)
Using (14), (17), and
2sinQcos(Q+ o) = sin(2Q + o) — sina ~ sin(2Q + o) — a

2cos Q2sin(Q+ o) = sin(2Q + a) + sino ~ sin(2Q + o) + o

in (20) shows that the average along-track acceleration from solar
radiation pressure turns out to be
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B e
<Spress> ~ - 2 / (y : t)d(a) +f)
ry Jy—¢

~ —0— cosl
mry

r

? cost (%) [1- (7 sin’1cost0]"” @

[cos? I + sin” I'sin® Q]

to first order in o. Eq. (21) is the negative of (19), so that
(Spr1) + (Spress) =0 and hence by (16) there is no net orbital
evolution to first order in V,/c when the solar radiation pressure
(1) is combined with the Poynting-Robertson drag (8).

What about the other two terms in (7) in which V}, appears?
One is

e (8) (e

which is zero for the assumed circular orbit about the Sun, because
V), is perpendicular to ry. The final term in (7) in which Vy, appears is

()5

D. Vokrouhlicky (private communication, 2013) has suggested
that (23) may contain secular terms, so that there is a secular drag
which contains Vj, to the first power. This is confirmed by the fol-
lowing argument. Assume that

d ~ 1y, = 1(COS NptX + Sin npty) (24)
where t is time, n, is the mean motion of the body about the Sun,
d~rp, and

Vp ~ V(- sinnytX + cos nyty) (25)
Also,

r = r{[cos Q cos(w + f) — cosIsin Qsin(w + f)]X

+ [sin Q cos(w + f) + cosIcos Qsin(w + )]y + [sin]

x sin(w +f)]2} (26)
(e.g., Rubincam, 1987, p. 1291). There will be a drag from (23) if tak-
ing the dot product of (Vy, - r)rp, with the unit along-track unit vector
t as given by (17) produces secular terms. This is the case:

(Vp - 1)(rp - £) = —V,rry[cos I cos? Qsin® (@ + f) cos? nyt + cos |
x sin” Qcos®(w + f) cos? nyt + cos I'sin® @ sin®(w
+ f) sin® nyt + cos I cos® Q cos?(w + f) sin® nyt]
+ periodic terms

Averaging the above expression over one revolution of the body
about the Sun and the particle about the body yields

(Vo - 1)(rs - £) = —(Virry COST) /2 (27)

Using this in (23) shows that not all terms to the first power in
V), vanish in the Poynting-Robertson effect. However, V;/c is mul-
tiplied in (23) by r/d. Table 1 shows that r/d ~ V}/c for the planets
when r ~ R, and R/d <« V,/c for NEAs and main belt asteroids, so
that (23) is of magnitude (V,/c)* or smaller. Hence (23) is tiny for
most Solar System applications.

4. Other Poynting-Robertson terms

While there appear to be no significant V,/c contributions, the
Sun does have other direct effects on Poynting-Robertson, in
addition to its indirect effect of illuminating and heating the
body that the particle orbits around. It is a v/c effect, rather than
a Vy/c effect. This can be seen by examining the remaining terms
in (7):

e (2
() 52)
and

()5

In (30) v - r =0 for circular orbits; this leaves (28) and (29). There is
Poynting-Robertson drag from (28) because the acceleration acts
against the velocity vector. There is also drag from (29), as may
be seen from the following argument. Once again assuming (24),
noting that v = ot, and taking the dot-product of (17) with ry, yields

V-r,= vt 1
= vrp[—cos Qsin(w + f) cos npt — cosIsin Qcos(w + f)
x cosnpt + [—sin Qsin(w + f) sinnyt 4+ cos I cos Q2 cos(w
+ f) cos npt]
so that
vt -1p)° = v[cos? Qsin’(w + f) cos? yt + cos? |
x sin” Q cos?(w + f) cos? nyt + sin® Qsin’(w
+f) sin® nyt + cos® I cos? Q cos? (w + f) cos? nyt]
+ periodic terms (31)

assuming I and © do not change significantly over one revolution of
the particle about the body or one revolution of the body about the
Sun. Averaging the above expression over these revolutions give

(v(E 1)) = (vr? /4)[cos® Q + cos? I'sin® Q + sin® Q + cos? |
x cos? Q]
= vri(1 +cos?1)/4 (32)

assuming no shadow passage. Thus (32) is nonzero and when used
in (29) the resulting equation agrees with Burns et al. (1979), Goldr-
eich and Tremaine (1982), Mignard (1984), Vokrouhlicky et al.
(2007), and Bottke et al. (2013).

5. Discussion

The Sun shines on the particle as the body orbits the Sun with
speed V.. The question addressed here is whether the Sun shining
directly on the particle produces a significant Poynting—Robertson
effect on the particle’s orbit of order V,/c. Any V}/c effect would not
be particularly important for particles orbiting Jupiter or Saturn
where V,, ~ v. But the effect would be large for the inner planets,
where V, ~ 57, and gigantic for NEAs, where V}, ~ 3 x 10%v(last col-
umn of Table 1).

It was shown above that, for spherical bodies and for circular
orbits of the particle and body, that there are no significant terms
of order Vj/c. This was demonstrated from the point of view of the
Sun’s rest frame and from the frame traveling with the body. As
(27) shows, there are Poynting-Robertson terms with Vj, to the first
power in them, but these are multiplied by r/d, which tends to be
<1 in the Solar System. The ratio r/d is particularly small for main
belt asteroids and NEAs (Table 1). Hence there is no huge Poyn-
ting—Robertson effect from V,/c on particles orbiting asteroids for
the stated assumptions.

A fuller treatment would include eccentric orbits and relaxing
the assumption that the change in the position of the body in its
orbit about the Sun is negligible over one revolution of the particle
about the body, and that Q and I are fixed. Further, the Sun is not a
point source of light, and Solar System bodies are not perfect
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Fig. 6. The terminator and shadow of the spherical body as seen in the Sun’s rest
frame. A photon (wavy arrow) on a streamline (left horizontal line) grazes the body,
which is moving up with speed V,, to meet it. « is the angle of the terminator. The
lower rightmost horizontal lines mark photon streamlines, the rears of which mark
the edge of the body’s shadow.

spheres, particularly asteroids. However, these considerations
seem unlikely to change the main result.

The framework of the present paper is Newtonian (Burns et al.,
1979). There may well be contributions of order (V,/c)* to Poyn-
ting—Robertson. Any investigation at the (V;/c)? level would entail
the full machinery of special relativity, as the Lorentz transforma-
tions are of this order. One suspects this would be very involved.
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Appendix A

The terminator on the body can be found from the viewpoint of
the Sun’s rest frame with the aid of Fig. 6. Slices of the spherical
body parallel to the body’s orbit plane will be circles, one of which
is shown in the figure. Assume photons from the Sun come in on
parallel streamlines. The body is moving up in the figure. Let the
last photon which grazes the leading side at a particular instant
be one which travels on the streamline shown in the figure (left
upper horizontal line); all of the photons following behind on that
streamline will strike the sunny portions of the body as the body
cuts across the streamline. Thus the last photon marks the
terminator.

Perhaps the easiest way to find the terminator is by going back-
ward in time by At before the graze. The place on the body where
the photon grazes will be moving down and travel a distance V,At
from the graze; the photon will be traveling horizontally at speed ¢
and cover a distance cAt. The small right triangle with sides V,At

and cAt must be situated where the hypotenuse is tangent to the
circle; this place is at an angle o, where tan o = (V,At)/(cAt) = V3|
c. If the graze point were any further around the circle than «, then
going back further in time the photon would have to travel through
the body to make it back to the Sun.

That the body’s shadow is rotated by an angle « can also be seen
with the aid of Fig. 6. Photons that were on the streamline ahead of
the grazing photon made it past the body, so that the streamline is
full of photons from the terminator to the indefinite right. The last
grazing photon that was on a streamline at time 6t before was at a
position V;,ét below and has traveled a distance cét to the right. No
photons follow it, being blocked by the body, so the shadow begins
there. Likewise, the last grazing photon at time 246t before was on a
streamline 2V},ét below and traveled 2¢6t to the right, with no pho-
tons following, and so on. The trailing edge of these preceding
streamlines (rightmost horizontal lines) is marked by a dashed line
in Fig. 6 and delineate the edge of the shadow. The dashed line can
be shown to be at an angle « with the horizontal, where once again
tan o = Vp/c.
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