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a b s t r a c t

A surface integral formulation is developed for the T matrix of a homogenous and
isotropic particle of arbitrary shape, which employs scalar basis functions represented by
the translation matrix elements of the vector spherical wave functions. The formulation
begins with the volume integral equation for scattering by the particle, which is
transformed so that the vector and dyadic components in the equation are replaced with
associated dipole and multipole level scalar harmonic wave functions. The approach leads
to a volume integral formulation for the T matrix, which can be extended, by the use of
Green's identities, to the surface integral formulation. The result is shown to be equivalent
to the traditional surface integral formulas based on the VSWF basis.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The purpose of this note is to revisit the derivation of
the transition (a.k.a., T) matrix for a homogeneous particle
of arbitrary shape. The seminal work on this subject was
performed by Waterman [1], the result of which was
computational scheme that has various technical names,
e.g., extended boundary condition method, null field
method, yet which is commonly referred to, among the
scattering community, as “the T matrix method”. Water-
man's derivation begins with the vector Huygen's princi-
ple, which states that the exciting electric field inside the
particle, and the scattered field outside the particle, can be
related to the distribution of the tangential components of
electric and magnetic fields on the surface of the particle.
A representation of the surface fields in a vector spherical
wave function (VSWF) basis ultimately leads to a formula
for the T matrix which involves integrals, over the particle
surface, of vector products of the VSWFs. Improvements in
the computational scheme have been developed over the

years, to address highly aspherical particle shapes, chiral
media, etc. [2,3].

An alternative method for T matrix calculations is via
volume integral methods, such as the discrete dipole
approximation (DDA) [4]. Recently, Litvinov demonstrated
that, as would be expected, Waterman's surface integral T
matrix formulation can be derived from the volume
integral equation (VIE) formulation of Maxwell's time
harmonic equations [5].

This paper will follow the same basic path as that cut
by Litvinov, in that the analysis will begin with the VIE and
will end with a surface integral Tmatrix formula. The main
difference, however, is how the associated formulas are
represented. In particular, the VIE will be transformed, at
the outset, into a scalar form that employs the VSWF
translation elements as basis functions. Subsequent opera-
tions and transformations on the VIE, leading to the T
matrix formulas, can then be done almost entirely in a
scalar representation.

2. Formulation

Consider a particle of arbitrary shape, as illustrated in
Fig. 1. The particle is taken to be homogeneous and
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isotropic in composition, and characterized by a complex
relative refractive index m. The medium in which the
particle is immersed is taken to be non-absorbing. The
interior and exterior regions of the particle are denoted as
Vint and Vext , respectively. Coupled with these volumes are
two additional regions to be used in the formulation,
which are defined by the circumscribing (radius rC) and
inscribing (radius rI) spheres centered about a fixed origin
r0 of the particle. The region Vext,C is that external to the
circumscribing sphere, and Vint,I is internal to the inscrib-
ing sphere.

The electromagnetic scattering problem is typically
described in a dynamical sense, i.e., a particle is excited
by an incident field, which produces a scattered wave that
propagates away from the particle. In a more mathemati-
cally consistent description – which recognizes that the
time variable is removed in the time harmonic formulation
– the exciting field is the field which exists in the overall
system when the particle is absent, and the problem is to
predict the new field which results when the particle is
present. The scattered field, in this context, is the differ-
ence between the external fields with and without the
particle present [6,7].

Since the exciting field contains no singularities in the
vicinity of the particle, it can be described mathematically
as an expansion in regular VSWFs centered about the
particle origin. The scattered field, on the other hand, is
described by an expansion in outgoing VSWFs about the
particle origin, in order to automatically satisfy the far-
field radiation condition [6]. The particle T matrix provides
the relationship between the expansion coefficients for the
exciting and scattered fields, so that

EscaðrÞ ¼ ∑
∞

n ¼ 1
∑
n

m ¼ −n
∑
2

p ¼ 1
amnpNð3Þ

mnpðk0ðr−r0ÞÞ, r∈Vext,C ð1Þ

amnp ¼ ∑
∞

l ¼ 1
∑
l

k ¼ −l
∑
2

q ¼ 1
Tmnp klqf klq ð2Þ

EexcðrÞ ¼ ∑
∞

n ¼ 1
∑
n

m ¼ −n
∑
2

p ¼ 1
f mnpN

ð1Þ
mnpðk0ðr−r0ÞÞ ð3Þ

where r is the position vector of the observation points,
k0 ¼ 2π=λ is the wavenumber in the host medium, λ is the

corresponding wavelength, and Nð1Þ and Nð3Þ denote the
regular and outgoing VSWFs, respectively. These functions,
and their associated properties, will be described in the
subsequent section; for now the analysis will turn to
the VIE.

In the VIE formulation, the electric field at some point r
is governed by

EðrÞ ¼ EexcðrÞþk20ðm2−1Þ
Z
Vint

Gðk0ðr−r′ÞÞ � Eðr′Þ d3r′ ð4Þ

in which EexcðrÞ is the exciting field and Gðk0ðr−r′ÞÞ is the
free space dyadic Green's function, defined by

Gðk0ðr−r′ÞÞ ¼ Iþ 1

k20
∇⊗∇

 !
expðik0jr−r′jÞ

4πjr−r′j ð5Þ

where ⊗ denotes the dyadic product of two vectors, I is
the identity dyadic, and i¼

ffiffiffiffiffiffiffi
−1

p
. The dyadic Green's

function has a singularity at r¼ r′ which makes the actual
solution of the VIE for the internal field nontrivial. This
aspect of the VIE formalism is discussed by Van Bladel [8]
and Lakhtakia and Mulholland [9] who show that when
r∈Vint the integrals in Eq. (4) should be taken as principal
values around the point r′. The way we treat this implicit
singularity will be clarified later.

An operator-based solution to Eq. (4) can be con-
structed by defining a dyadic transition operator T ðr,r′Þ
so that, in regions within the particle [10,11],

EintðrÞ ¼
1

k20ðm2−1Þ

Z
Vint

T ðr,r′Þ � Eexcðr′Þ d3r′, r∈Vint ð6Þ

Replacing this into Eq. (4), and constraining r to lie within
Vint , givesZ
Vint

1

k20ðm2−1Þ
T ðr,r′Þ−δðr−r′ÞI−

Z
Vint

Gðk0ðr−r″ÞÞ � T ðr″,r′Þ d3r″
" #

�Eexcðr′Þ d3r′¼ 0, r∈Vint ð7Þ
This relation will identically hold providing T ðr,r′Þ satisfies

T ðr,r′Þ ¼ k20ðm2−1Þ δðr−r′ÞIþ
Z
Vint

Gðk0ðr−r″ÞÞ � T ðr″,r′Þ d3r″
� �

,

r,r′∈Vint ð8Þ
and a general volume integral relation for the field at all
points r can now appear as

EðrÞ ¼ EexcðrÞþ
Z
Vint

Gðk0ðr−r″ÞÞ �
Z
Vint

T ðr″,r′Þ

�Eexcðr′Þ d3r′ d3r″ ð9Þ
By using Eq. (6) in Eq. (4), the relationship between the

scattered and exciting fields becomes

EscaðrÞ ¼ EðrÞ−EexcðrÞ

¼
Z
Vint

Gðk0ðr−r′ÞÞ �
Z
Vint

T ðr′,r″Þ � Eexcðr″Þ d3r″ d3r′, r∈Vext

ð10Þ
Eq. (10) will provide the basic starting point to identifying
the particle T matrix. Indeed, with some imagination,
Eq. (10) can be seen as analogous to the VSWF T matrix
relationships: the former involves a double integration
over the particle volume, whereas the latter involves

Fig. 1. System configuration.
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a double summation (i.e., the row and the column order/
degree/mode indices) over the particle T matrix. Deriva-
tion of the T matrix from the VIE transition dyadic will
therefore involve the integral transformation of a spatial
distribution into a VSWF expansion. Before proceeding
down this path, however, it will be useful to introduce the
needed features of the VSWFs.

2.1. Vector spherical wave function background

The VSWFs, of type t ¼ 1 (regular) and t ¼ 3 (outgoing),
and order n, degreem, and mode p¼ 1 (TM) and p¼ 2 (TE),
are defined here by

NðtÞ
mn2ðkrÞ ¼

2
nðnþ1Þ

� �1=2

∇� ðrψ ðtÞ
mnðkrÞÞ ð11Þ

NðtÞ
mn1ðkrÞ ¼

1
k
∇�NðtÞ

mn2ðkrÞ ð12Þ

where k is a positive real number and ψ denotes the scalar
wave function

ψ ðtÞ
mnðkrÞ ¼

jnðkrÞYmnðcos θ,ϕÞ, t ¼ 1
hnðkrÞYmnðcos θ,ϕÞ, t ¼ 3

(
ð13Þ

with jn and hn ¼ jnþ iyn denoting the spherical Bessel and
Hankel functions and Ymn denoting the spherical harmonic

Ymnðcos θ,ϕÞ ¼
2nþ1
4π

ðn−mÞ!
ðnþmÞ!

� �1=2

Pm
n ðcos θÞeimϕ ð14Þ

An essential component in transforming the VIE will be
the ability to translate the basis functions from one coordi-
nate origin to another. Translations of the VSWFs are
performed by application of the addition theorem for VSWFs,
which, for the problem at hand, will appear as [12,13]

Nð1Þ
mnpðkðr−r′ÞÞ ¼ ∑

∞

l ¼ 1
∑
l

k ¼ −l
∑
2

q ¼ 1
Jklq mnpð−kr′ÞNð1Þ

klqðkrÞ ð15Þ

Nð3Þ
mnpðkðr−r′ÞÞ ¼ ∑

∞

l ¼ 1
∑
l

k ¼ −1
∑
2

q ¼ 1
Jklq mnpð−kr′ÞNð3Þ

klqðkrÞ,

�jr′j < jrj ð16Þ

Nð3Þ
mnpðkðr−r′ÞÞ ¼ ∑

∞

l ¼ 1
∑
l

k ¼ −1
∑
2

q ¼ 1
Hklq mnpð−kr′ÞNð1Þ

klqðkrÞ,

�jr′j > jrj ð17Þ
in which J and H are the regular and outgoing VSWF
translation matrices; the elements of these identically satisfy
the scalar Helmholtz equation and involve expansions of the
type 1 and 3 scalar wave functions. The summation over
order l in (15)–(17) formally appears as an infinite sum, yet it
is understood that the series will converge to an arbitrarily
small error in a finite number of orders, providing the
convergence radii criteria are met.

Eqs. (15)–(17) can be used to infer the following transla-
tion and factorization properties of the translation matrices:

Jmnp klqðkðr−r′ÞÞ

¼ ∑
∞

n′ ¼ 1
∑
n′

m′ ¼ −n′
∑
2

p′ ¼ 1
Jmnp m′n′p′ðkðr−r0ÞÞJm′n′p′ klqðkðr0−r′ÞÞ

ð18Þ

Hmnp klqðkðr−r′ÞÞ

¼ ∑
∞

n′ ¼ 1
∑
n′

m′ ¼ −n′
∑
2

p′ ¼ 1
Jmnp m′n′p′ðkðr−r0ÞÞHm′n′p′ klqðkðr0−r′ÞÞ,

�jr−r0j < jr0−r′j ð19Þ

Hmnp klqðkðr−r′ÞÞ

¼ ∑
∞

n′ ¼ 1
∑
n′

m′ ¼ −n′
∑
2

p′ ¼ 1
Hmnp m′n′p′ðkðr−r0ÞÞJm′n′p′ klqðkðr0−r′ÞÞ,

�jr−r0j > jr0−r′j ð20Þ

In the formulation developed here, the translation
elements will take on a somewhat more elevated role,
that being the set of basis functions for representing the
fields in the VIE. This will have two distinct advantages in
the formulation, being (1) the vector problem is reduced to
a scalar problem, and (2) the basis functions become
“transparently” translatable, as the components of the
translation operation become the basis functions them-
selves. An equivalence between the VSWFs and the trans-
lation matrix elements can be obtained by letting jrj-0 in
Eqs. (15) and (17), for which the only surviving terms are
those for the electric dipole ðl¼ q¼ 1Þ; this results in

Nð1Þ
mnpðkrÞ ¼

ffiffiffiffiffiffi
1
3π

r
∑
1

k ¼ −1
PkJk11 mnpðkrÞ ð21Þ

Nð3Þ
mnpðkrÞ ¼

ffiffiffiffiffiffi
1
3π

r
∑
1

k ¼ −1
PkHk11 mnpðkrÞ ð22Þ

in which Pk is a unit magnitude Cartesian vector given by

P−1 ¼
1ffiffiffi
2

p
1
−i
0

0
B@

1
CA, P0 ¼

0
0
1

0
B@

1
CA, P1 ¼

−1ffiffiffi
2

p
1
i

0

0
B@

1
CA ð23Þ

The relation between the VSWF of different mode, i.e.

Nð1Þ
mnð3−pÞðkrÞ ¼

1
k
∇� Nð1Þ

mnpðkrÞ ð24Þ

will also lead to

∑
1

m′ ¼ −1
Pm′Jm′11 mnð3−pÞðkrÞ ¼ −

1
k

∑
1

m′ ¼ −1
Pm′

� ∇Jm′11 mnpðkrÞ ð25Þ

and the same relations would hold for the outgoing
functions. The salient point here is that Eqs. (21) and
(22) provide a Cartesian representation of the VSWFs.

It can also be shown that the dyadic Green's function is
related to the outgoing, dipole-level VSWFs by

Gðk0ðr−r′ÞÞ ¼
ik0

2
ffiffiffiffiffiffi
3π

p ∑
1

m ¼ −1
Nð3Þ

m11ðk0ðr−r′ÞÞ⊗Pn

m ð26Þ

where the asterisk denotes complex conjugate, and by
combining the above with Eq. (22), the dyadic Green's
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function becomes

Gðk0ðr−r′ÞÞ ¼
ik0
6π

∑
1

m ¼ −1
∑
1

k ¼ −1
Hk11 m11ðk0ðr−r′ÞÞPk⊗Pn

m ð27Þ

2.2. VSWF transformation of the VIE

The VIE can be transformed so that its vector dimen-
sions (i.e., the Cartesian components) are replaced with
the −1, 0, and 1 azimuthal degrees for the dipole. This
transformation of the transition dyadic produces a so-
called two-point transition matrix T ð2Þðr,r′Þ, in which

T ð2Þ
mkðr,r′Þ ¼

ik0
6π

Pn

m � T ðr,r′Þ � Pk, m,k¼ −1,0,1 ð28Þ

and since

Pm � Pn

k ¼ δm,k ð29Þ
then

T ðr,r′Þ ¼ −
6πi
k0

∑
1

m ¼ −1
∑
1

k ¼ −1
T ð2Þ
mkðr,r′ÞPm⊗Pn

k ð30Þ

and the internal and scattered fields, appearing in Eqs. (6)
and (10), will now be given by

EintðrÞ ¼
1
α

∑
1

m ¼ −1
Pm

Z
Vint

∑
1

k ¼ −1
T ð2Þ
mkðr,r″ÞPn

k

�Eexcðr″Þ d3r″, r∈Vint ð31Þ

EscaðrÞ ¼ ∑
1

m ¼ −1
Pm

Z
Vint

∑
1

m′ ¼ −1
Hm11 m′11ðk0ðr−r′ÞÞ

�
Z
Vint

∑
1

k ¼ −1
T ð2Þ
m′kðr′,r″ÞPn

k � Eexcðr″Þ d3r″
 !

d3r′,

r∈Vext ð32Þ
in which

α¼ ik30
6π

ðm2−1Þ ð33Þ

Using the definition in Eq. (30) along with the VIE of
Eq. (8) results in a VIE for T ð2Þ:

1
α
T ð2Þ
mkðr,r′Þ ¼ δðr−r′Þδm−k

þ
Z
Vint

∑
1

m′ ¼ −1
Hm11 m′11ðk0ðr−r″ÞÞT ð2Þ

m′kðr″,r′Þ d
3r″,

r,r′∈Vint ð34Þ
It should be emphasized that Eq. (34) is fundamentally

equivalent to Eq. (8); the only distinction is that the former
works in dipole degree space, whereas the latter works in
vector component space. The wave function representa-
tion, however, does make it possible to define additional T
matrix operators, that arise once Eq. (10) is formally
integrated over one or both of the volume domains. These
operators will involve wave function expansions beyond
the dipole level, and as such they will have no equivalence
to operators in the vector component model.

Performing such integrations, however, requires that
certain restrictions be made on the nature of the exciting
field and the location of the evaluation point r in Eq. (10).

Specifically, the exciting field is taken to arise from sources
located in Vext,C , i.e., points outside the circumscribing
radius centered about the particle origin r0. A sufficiently
general model representation of the exciting field, for this
restriction, is to take it as that radiated from a single
dipole, of some specified orientation, located in Vext,C; an
arbitrary exciting field – including a plane wave – could be
constructed from a superposition of dipole sources.
Assume that the exciting field originates from a point
dipole source located at position re∈Vext,C . The orientation
of the dipole is specified by unit vector ud relative to the
particle coordinate system, and the field radiated by the
source can be described by

Pn

m:EexcðrÞ ¼ E0ffiffiffiffiffiffi
3π

p ∑
1

k ¼ −1
Hm11 k11ðk0ðr−reÞÞsk, r∈Vext,C ð35Þ

where E0 is a characteristic electric field amplitude, the
presence of which renders the sk coefficients dimension-
less, and

sk ¼ Pn

k � ud ð36Þ
Since the dipole source is located outside the circumscrib-
ing sphere, Eq. (19) can be used to represent the exciting
field at points internal to the particle as a regular VSWF
expansion, given by

Pn

m � EexcðrÞ ¼
E0ffiffiffiffiffiffi
3π

p ∑
μ
Jm11 μðk0ðr−r0ÞÞ ∑

1

k ¼ −1
Hμ k11ðk0ðr0−reÞÞsk

¼ E0ffiffiffiffiffiffi
3π

p ∑
μ
Jm11 μðk0ðr−r0ÞÞf 0μ , r∈Vint ð37Þ

In the above and what follows, Greek subscripts will be
shorthand for the triplet of degree/order/mode, i.e.,
μ¼ ðmnpÞ; this convention will greatly simplify the result-
ing presentation.

The general form of Eq. (37) will hold for any dipole
source located in Vext,C , in that alterations of the exciting
field would only affect the expansion coefficients f 0ν . More
importantly, the form enables the formal integration over
r″ in Eqs. (31) and (32), the process of which defines a one-
point transition matrix T ð1Þ

mνðr′,r0Þ, so that

Pn

m:EintðrÞ ¼
E0

α
ffiffiffiffiffiffi
3π

p ∑
ν
T ð1Þ
mνðr,r0Þf 0ν , r∈Vint ð38Þ

Pn

m:EscaðrÞ ¼
E0ffiffiffiffiffiffi
3π

p ∑
1

m′ ¼ −1
∑
ν

Z
Vint

Hm11 m′11ðk0ðr−r′ÞÞT ð1Þ
m′ ν

ðr′,r0Þ d3r′ f 0ν , r∈Vext ð39Þ
where T ð1Þ is defined as

T ð1Þ
mνðr,r0Þ ¼ ∑

1

k ¼ −1

Z
Vint

T ð2Þ
mkðr,r′ÞJk11 νðk0ðr′−r0ÞÞ d3r′ ð40Þ

A VIE for T ð1Þ is obtained by multiplying Eq. (34) into the
regular translation matrix Jk11 νðk0ðr′−r0ÞÞ and integrating
over r′, to yield

1
α
T ð1Þ
mνðr,r0Þ ¼ Jm11 νðk0ðr−r0ÞÞ

þ
Z
Vint

∑
1

m′ ¼ −1
Hm11 m′11ðk0ðr−r′ÞÞT ð1Þ

m′ νðr′r0Þ d3r′,

r∈Vint ð41Þ
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The same restriction that was placed on the exciting
field can now be applied to the scattered field. Specifically,
the observation point r of the scattered field is constrained
to be located solely in Vext,C . Under this restraint the
outgoing translation matrix Hðk0ðr−r′ÞÞ can be factored
per Eq. (20). And as before, this allows for the integration
over interior points r′ to be separated from the location of
the evaluation point r. The end result is the T matrix
relationship

Pn

m:EscaðrÞ ¼ E0ffiffiffiffiffiffi
3π

p ∑
μ
Hm11 μðk0ðr−r0ÞÞ∑

ν
Tμ νðr0Þf 0ν , r∈Vext,C

ð42Þ
in which

Tμνðr0Þ ¼ ∑
1

m ¼ −1

Z
Vint

Jμ m11ðk0ðr0−r′ÞÞT ð1Þ
mνðr′,r0Þ d3r′ ð43Þ

Tμνðr0Þ ¼ ∑
1

m ¼ −1
∑
1

k ¼ −1

Z
Vint

Jμ m11ðk0ðr0−r′ÞÞ

�
Z
Vint

T ð2Þ
mkðr′,r″ÞJk11 νðk0ðr″−r0ÞÞ d3r″ d3r′ ð44Þ

The integral relations for the matrix operators T ð1Þ
mνðr,r0Þ

and Tμ νðr0Þ, given in Eqs. (41) and (43), are equivalent to
those derived by Litvinov [5]. They are also analogous to
the formulas used to construct the T matrix for a cluster of
spheres, via the superposition T matrix method [12]. And
along the same lines as the superposition method, Eq. (41)
provides an energy conservation statement for the T
matrix. This is obtained by multiplying the equation
through by T ð1nÞ

mν ðr,r0Þ, summing over m and integrating
over r, and employing the properties of the translation
matrices for real k0:

Jμνðk0ðr−r0ÞÞ ¼ Jnνμðk0ðr0−rÞÞ ð45Þ

Hm11 k11ðk0ðr−r′ÞÞþHn

k11 m11ðk0ðr′−rÞÞ ¼ 2Jm11 k11ðk0ðr−r′ÞÞ
¼ 2∑

μ
Jnμ m11ðk0ðr0−rÞÞJμ k11ðk0ðr0−r′ÞÞ ð46Þ

This results in

−Re
1
α

� �
∑
1

m ¼ −1

Z
Vint

jT ð1Þ
mνðr,r0Þj2 d3rþ∑

μ
Tμνðr0Þj2 ¼−Re Tννðr0Þ
��

ð47Þ
When summed over ν and multiplied by π=k20, the two
terms on the left correspond to the random orientation
absorption and scattering cross sections of the particle;
note that Reð1=αÞ will be zero for non-absorbing material.
These equate to the random orientation extinction cross
section, as given by the right term.

3. Calculation of the T matrix

3.1. Surface integral relations

Eq. (41) provides the starting point to calculate the T
matrix for a set particle geometry and composition. The
most direct implementation, in this regard, is to adopt a
discretized volume integral formulation, for which the
integration over volume is replaced with a sum over
discrete control volume elements, and the quantity α is

replaced by an effective polarizability of the element
[14,15]. The result is basically the DDA for homogeneous
particles, applied to T ð1Þ

mνðri,r0Þ at discrete cell positions ri
and for a set degree/order/mode ν component. Upon
solution for a given ν, the contribution to Tμνðr0Þ would
be obtained by the discretized volume integration in
Eq. (43). The practical implementation of this approach
is discussed in [4].

On the other hand, a formal integration of the volume
integral in Eq. (41) will lead to a T matrix calculation
scheme based on a surface integral. The surface integral is
derived from Green's second identity and by recognizing
that the translation matrix H and the one-point matrix T ð1Þ

satisfy the scalar Helmholtz equation (SHE) with wave-
numbers k0 andmk0 (the latter comes from the association
of T ð1Þðr,r0Þ with the internal field via Eq. (38)). This
procedure will split the volume integral into two surface
integrals; one over the particle boundary, and another over
a vanishingly small spherical surface centered about the
singular point at r′-r, plus a third part which accounts for
the singular point contribution [8,9]. To evaluate the
second surface integral, we use the fact that T ð1Þðr′,r0Þ
must contain no singularities for r′∈Vint , and that it must
be locally expandable in regular scalar spherical wave
functions – or, equivalently, in regular translation matrix
elements. Consequently

lim
r′-r

T ð1Þ
mνðr′,r0Þ ¼ ∑

1

m′ ¼ −1
Jm11 m′11ðk1ðr′−rÞÞT ð1Þ

m′ νðr,r0Þ ð48Þ

and the VIE of Eq. (41) becomes

1
α
T ð1Þ
mνðr,r0Þ ¼ Jm11 νðk0ðr−r0ÞÞ

þ 1
m2−1

∑
1

k ¼ −1
½Q ½Hm11 k11ðk0ðr−r′ÞÞ,T ð1Þ

kν ðr′,r0Þ�r′,B

−Q ½Hm11 k11ð−k0r′Þ,Jk11 m11ðk1r′Þ�r′,S0T ð1Þ
mνðr,r0Þ�

−
2πi

k30
T ð1Þ
mνðr,r0Þ, r∈Vint ð49Þ

where B and S0 denote the particle surface and a spherical
surface of vanishingly small radius, and the surface inte-
gral operator Q is defined as

Q ½FðrÞ,GðrÞ�r,S ¼
1

k20

Z
S
n̂ � ð∇FðrÞGðrÞ−FðrÞ∇GðrÞÞ d2r ð50Þ

with n̂ and S denoting the outward surface normal and the
closed surface of integration, respectively.

For a spherical surface – such as that enclosing the
singular point in Eq. (49) – the surface integral can be
analytically evaluated to yield (in the general case)

∑
1

m ¼ −1
Q ½Hμ m11ðkað−rÞÞ, Jm11 νðkbðrÞÞ�r,S0 ¼

2πi

k20k
3
a

ð2k2aþk2bÞδμν

ð51Þ
Algebra will then reveal that the sum of the second and
third terms on the right hand side of Eq. (49) will
identically cancel the left hand side for all r∈Vint .
This results in

Jm11 νðk0ðr−r0ÞÞ
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¼ −
1

m2−1
∑
1

k ¼ −1
Q ½Hm11 k11ðk0ðr−r′ÞÞ,T ð1Þ

kν ðr′,r0Þ�r′,B,

r∈Vint ð52Þ

Eq. (52) is equivalent to the vector Huygen's condition for
points inside the particle, i.e., the null-field condition [1,3].
This can be seen by multiplying through by Pmf ν and
summing over m and ν, for which the left hand side
becomes the exciting field at interior point r and the right
involves a distribution of tangential interior surface fields.

The volume integral relation for the T matrix, Eq. (43),
can be put in a surface integral form by the same
procedure, leading to

Tμνðr0Þ ¼
1

m2−1
∑
1

k ¼ −1
Q ½Jμ k11ðk0ðr0−r′ÞÞ,T ð1Þ

kν ðr′,r0Þ�r′,B ð53Þ

3.2. Representation of the interior fields

The surface integral relations in Eqs. (52) and (53) are an
alternative form to the vector relations initially derived by
Waterman [1]. Getting to this point has basically involved a
contraction of the dependent variables in the VIE. Specifi-
cally, the sought quantities in the surface integral relation of
Eq. (52) are T ð1Þ

mνðr,r0Þ and n̂ � ∇T ð1Þ
mνðr,r0Þ at surface points

r∈B, and these quantities are sufficient to calculate the T
matrix via Eq. (53). Indeed, it can be easily shown, via a
volume-to-surface integral conversion of Eq. (39), that field
at all external points can be obtained from a surface integral
relation analogous to Eq. (53).

The interior field (by which we mean T ð1Þ
mνðr,r0Þ) can also

be obtained from a surface integral relation, although one
that is not derived from the VIE. The principles applied to
derive this relation are, again, based on the facts that
T ð1Þ
mνðr,r0Þ obeys the SHE, and that it contains no singula-

rities for r∈Vint . Because of this, Green's second identity
will state that

∑
1

m′ ¼ −1
Q ½Hm11 m′11ðk1ðr−r′ÞÞ,T ð1Þ

m′ νðr′,r0Þ�r′,SðrÞ ¼ C ð54Þ

must evaluate to the same value C for all closed surfaces
SðrÞ enclosing the point r. This surface can be shrunk to a
vanishingly small sphere centered on r – for which
Eqs. (48) and (51) can be applied to analytically evaluate
the integral – and it can also be extended to the interior
surface of the particle. This results in

6πi

k30m
T ð1Þ
mνðr,r0Þ ¼ ∑

1

m′ ¼ −1
Q ½Hm11 m′11ðk1ðr−r′ÞÞ,T ð1Þ

mνðr′,r0Þ�r′,B,

r∈Vint ð55Þ

The next step in the problem has to do with the
representation of the field in an analytical form; such a
form will be needed to close the problem and obtain
practical matrix equations for T. An application of the
translation in Eq. (19) to Eq. (55) would result in the
regular expansion

T ð1Þ
mνðr,r0Þ ¼∑

μ
Jm11 μðk1ðr−r0ÞÞWμνðr0Þ ð56Þ

with the coefficient matrix W given by

Wμνðr0Þ ¼
k30m
6πi

∑
1

m′ ¼ −1
Q ½Hμ m′11ðk1ðr0−r′ÞÞ,T ð1Þ

mνðr′,r0Þ�r′,B
ð57Þ

yet, per the restriction on Eq. (19), this expansion would
appear to be valid solely for points r within the inscribing
sphere centered about r0. How valid is it, then, to extend
the expansion in Eq. (56) to the surface?

The short answer to this question is yes: Eq. (56) can
represent, in a least-square-error sense, the surface fields.
However, providing a convincing yet easily accessible
explanation as to why this is the case continues to be, in
our opinion, one of the most challenging and frustrating
aspects of the entire effort. Indeed, Waterman's 1979
reformulation of his original 1971 derivation was largely
focussed on the issue of interior field representation and
the validity of the so-called internal Rayleigh hypothesis
(that being the use of Eq. (56) throughout the interior
volume) [1,16]. We will attempt to offer a simple rationale
for the use of Eq. (56), and will refer the reader to Ref. [3]
for a comprehensive mathematical proof of the complete-
ness of the regular wave functions.

The most salient point, to us, is that an expansion of the
field in regular wave functions – such as Eq. (56) – will
automatically satisfy Eq. (55) on a term-by-term basis.
That is, application of the surface integral principle behind
Eq. (55) to the regular wave function will yield

6πi

k30m
Jm11 μðk1ðr−r0ÞÞ

¼ ∑
1

m′ ¼ −1
Q ½Hm11 m′11ðk1ðr−r′ÞÞ,Jm11 μðk1ðr′−r0ÞÞ�r′,B, r∈Vint

ð58Þ

This result, it should be emphasized, has nothing to do
with the translation theorem. Now multiply this relation
through by the coefficient matrix Wμνðr0Þ, defined in
Eq. (57), restrict r to points inside the inscribing sphere,
sum over order/degree/mode μ up to some order trunca-
tion limit L, and subtract the result from Eq. (55). Denoting
the approximation error at point r, ϵLðrÞ, as the difference
between the actual field value T ð1Þ

mνðr,r0Þ and the truncated
regular wave function expansion evaluated at r, this
exercise results in

6πi

k30m
ϵLðrÞ ¼ ∑

1

m′ ¼ −1
Q ½Hm11 m′11ðk1ðr−r′ÞÞ,ϵLðr′Þ�r′,B, r∈Vint,I

ð59Þ

Since points within the inscribing sphere meet the con-
straints on the translation theorem for casting Eq. (55) into
Eq. (56), the error on the left hand side can be made
arbitrarily small by increasing L. The limit of ϵLðrÞ-0 can
only be satisfied by two surface distributions in Eq. (59):
ϵLðr′Þ-0 or ϵLðr′Þ-Hm′11 m11ðk1ðr′−rÞÞ. Yet this second case
cannot be present as the internal field contains no singu-
larities. The implication is that Eq. (56) can approximate, to
an arbitrary precision depending on the truncation limit,
the internal field at all points—including the surface.
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3.3. The matrix equations

When Eq. (56) is substituted into Eq. (52), one obtains

Jm11 νðk0ðr−r0ÞÞ

¼−
1

m2−1
∑
μ′

∑
1

k ¼ −1
Q ½Hm11 k11ðk0ðr−r′ÞÞ,Jk11 μ′ðk1ðr′−r0ÞÞ�r′,B

Wμ′ νðr0Þ, r∈Vint ð60Þ
It is assumed that the expansion for the surface fields is
truncated at some set order L, and this, in general, would
result in 2LðLþ2Þ unknown coefficients in Wμν for a set
column order/degree/mode state ν. The final task of the
problem is generating a system of equations for the
coefficients.

The approach followed byWatermanwas to restrict r to
points inside the inscribing sphere, for which the transla-
tion theorem in Eq. (19) can be applied to cast the right
hand side as expansion of regular wave functions centered
about r0. Since the left hand side is also a regular wave
function, this will imply that W must satisfy

−δμν ¼∑
ν′
Q ð3,1Þ

μν′ ðr0ÞWν′ νðr0Þ ð61Þ

with

Q ð3,1Þ
μν ¼ ∑

1

k ¼ −1
Q ½Hμ k11ðk0ðr0−r′ÞÞ,Jk11 νðmk0ðr′−r0ÞÞ�r′,B ð62Þ

The constant factor k20ðm2−1Þ has been absorbed into W in
going from Eqs. (60) to (61); this quantity would cancel
out in the end. The T matrix is obtained from Eq. (53),
which would now appear as

Tμνðr0Þ ¼∑
ν′
Q ð1,1Þ

μν′ ðr0ÞWν′ νðr0Þ ð63Þ

where Q1,1 is obtained from Eq. (62) with H replaced by J.
It is instructive to examine how the derived formulas

remain consistent to the energy conservation requirement
of Eq. (47). By using the translation properties of regular
wave functions in Eq. (18), it can be shown that

∑
μ
jTμνðr0Þj2 ¼∑

μ
ðQ ð1,1Þ

μν′ ðr0ÞWν′νðr0ÞÞðQ ð1,1Þ
μν″ ðr0ÞWν″ νðr0ÞÞn

¼ Q ½ðJm11 ν″ðk1ðr−r0ÞÞWν″ νðr0ÞÞn,
Q ½Jm11 k11ðk0ðr−r′ÞÞ,Jk11 ν′ðk1ðr′−r0ÞÞWν′ νðr0Þ�r′,B�r,B ð64Þ

in the above and the following equation, summation over
all subscripts not appearing on the left hand side is
implied (i.e., summation over everything except ν). The
double surface integral can be converted directly to a
double volume integral since the integrand is free of
singular points. And since the volume integral over r
would be exactly the conjugate of the volume integral
over r′, the regular wave function Jðk0ðr−r′ÞÞ can be directly
switched with Hðk0ðr−r′ÞÞ; this is basically going back-
wards from the derivation of Eq. (47). The volume integral
can now be converted back into a surface integral, yet this
will now require accounting for the singularity in H per the
procedure in Eq. (49). This results in

∑
μ
Tμνðr0Þj2 ¼Q ½ðJm11 ν″ðk1ðr−r0ÞÞWν″ νðr0ÞÞn,
��

Q ½Hm11 k11ðk0ðr−r′ÞÞ,Jk11 ν′ðk1ðr′−r0ÞÞWν′ νðr0Þ�r′,Bo �r,Bi

þRe
1
α

� �
Q ½ðJm11 ν″ðk1ðr−r0ÞÞWν″ νðr0ÞÞn,

ðJm11 ν′ðk1ðr−r0ÞÞWν′ νðr0ÞÞn�r,B ð65Þ

Both of the surfaces Bo and Bi in the above relation are
formally on the particle surface; the only distinction is that
Bi is enclosed by Bo. That is, Bo contains the singularity in
H, yet Bi does not. Eqs. (55) and (63) can be now applied to
show that the double surface integral reduces to
−Re Tννðr0Þ, and the last term is simple the surface integral
form of the absorption contribution in Eq. (47).

As would be expected, the surface integral formulas for
T are shown to give a result that – for a sufficiently large
truncation order – is consistent with energy conservation.
The caveat with respect to the truncation order is impor-
tant here, as the derivation relied on formally taking the
number of row orders in Eq. (64) to infinity in order to
reduce the product of two regular translation matrices to a
single matrix per Eq. (18). Waterman recognized that his
method did not automatically satisfy energy conservation
for a finite truncation order, and he devised a means of
enforcing the unitarity property of T (for Re½k1�) via an
orthogonalization of the matrix equations [1]. It is inter-
esting to note that Eq. (65) suggests an alternative matrix
formulation which – potentially – would automatically
satisfy energy conservation at each order, that being

−ðQ1,1
νμ Þn ¼ ∑

1

m,k ¼ −1
∑
μ′
Q ½Jnm11 μðk1ðr−r0ÞÞ,

Q ½Hm11 k11ðk0ðr−r′ÞÞ,Jk11 μ′ðk1ðr′−r0ÞÞ�r′,Bo �r,Bi

Wν′ νðr0Þ ð66Þ
Per the discussion with regard to the internal field, the
function Hm11k11ðk0ðr−r′ÞÞ could be represented as an
expansion of regular and outgoing parts, and this would
split the coupled double integral into a product of two
integrals – and doing so would simply recover Eq. (61).
We do not know if implementation of Eq. (66) is practical;
certainly, one would have to devise some way of dealing
with the near-singular point at r¼ r′.

4. Discussion

It occurred to the lead author, at the completion of the
derivation leading to Eqs. (61) and (63), that a more direct
route might have been to simply substitute the Cartesian-
based formulas for the VSWFs, given in Eqs. (22) and (21),
into Waterman's surface integral formulas for the Q and
Rg Q matrices. This is done now to demonstrate the
veracity of the derivation.

The conventional formula for the T matrix can be
written, in usual matrix notation, as [1,3]

T¼ −Rg Q � Q−1 ð67Þ
where (assuming nonmagnetic media)

Qμν ¼
Z
B
n̂ � ðð∇� Nð3Þ

μ ðk0ðr−r0ÞÞÞ � Nð1Þ
ν ðmk0ðr−r0ÞÞ

þNð3Þ
μ ðk0ðr−r0ÞÞ � ð∇�Nð1Þ

ν ðmk0ðr−r0ÞÞÞÞ d2r ð68Þ

with μ denoting the triplet ð−mnpÞ for μ¼ ðmnpÞ, i.e.,
switched signs on the azimuth degree. The formula for
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Rg Q is the same, with the outgoing VSWFs replaced by
the regular VSWFs.

Denote the vector part of the integrand in Eq. (68) that
is dotted into the normal as Kμν. In terms of the Cartesian
based VSWF formulas in Eqs. (21) and (22), this quantity
would appear as

Kμν ¼
1
3π

∑
1

m′ ¼ −1
∑
1

k′ ¼ −1
ðð∇� Pm′f m′ μðrÞÞ � Pk′ gk′ νðrÞ

þPm′f m′ μðrÞ � ð∇� Pk′ gk′ νðrÞÞÞ ð69Þ

where the scalar functions f and g are

f m′μðrÞ ¼Hm′11 μ ðk0ðr−r0ÞÞ ð70Þ

gk′ νðrÞ ¼ Jk′11 νðmk0ðr−r0ÞÞ ð71Þ
By using the vector calculus identities

∇� ðaf ðrÞÞ ¼∇f ðrÞ � a ð72Þ

a� ðb� cÞ ¼ bða � cÞ−cða � bÞ ð73Þ
and switching the m′ and k′ indices to group terms, the
integrand can be written as

Kμν ¼ −
1
3π

∑
1

m′ ¼ −1
∑
1

k′ ¼ −1
ð∇f m′ μðrÞgk′ νðrÞ
�

−f m′ μðrÞ∇gk′ νðrÞðPm′ � Pk′Þ
−Pm′½Pk′ � ð∇f m′ μðrÞgk′ νðrÞ−∇gm′ νðrÞf k′ μðrÞÞ�

	
ð74Þ

The P vectors have the property

Pm′ � Pk′ ¼ ð−1Þm′δm′,−k′ ð75Þ
which, when applied to the first term in Eq. (74), gives a
result that can be reduced, in a few steps that make use of
the symmetry properties of the translation matrices, to the
form of the integrand in Eq. (50).

One would therefore expect that the second term in
Eq. (74) must be equivalent to the first, or that it must be
zero. The actual situation is somewhat more complicated:
the second term is not zero, and it cannot be reduced to
the form of the integrand in Eq. (61), yet its net contribu-
tion to the T matrix will be zero. To show how such is the
case, the term is expanded via

∑
1

m′ ¼ −1
∑
1

k′ ¼ −1
Pm′½Pk′ � ð∇f m′ μðrÞgk′ νðrÞ−∇gm′ νðrÞf k′ μðrÞÞ�

¼ ∑
1

m′ ¼ −1
∑
1

k′ ¼ −1
Pm′½Pk′ �∇ðf m′ μðrÞgk′ νðrÞ−gm′ νðrÞf k′ μðrÞÞ�

− ∑
1

m′ ¼ −1
∑
1

k′ ¼ −1
Pm′½Pk′ � ð∇gk′ νðrÞf m′ μðrÞ−∇f k′ μðrÞgm′ νðrÞÞ�

ð76Þ
The VSWFs have zero divergence, which implies that

∑
1

k′ ¼ −1
∇ � ðPk′f k′ μðrÞÞ ¼ ∑

1

k′ ¼ −1
Pk′ �∇f k′ μðrÞ ¼ 0 ð77Þ

and likewise for the g function; this property eliminates
the last term in Eq. (76). The second term in Eq. (76) is not
zero, yet its contribution to the surface integral can be
evaluated by using the divergence theorem:

∑
1

m′ ¼ −1
∑
1

k′ ¼ −1

Z
B
n̂:ðPm′½Pk′:∇ðf m′ μðrÞgk′ νðrÞ

−gm′ νðrÞf k′ μðrÞÞ�Þ d2r

¼ ∑
1

m′ ¼ −1
∑
1

k′ ¼ −1

Z
Vint

∇ � ðPm′½Pk′ �∇ðf m′ μðrÞgk′ νðrÞ

−gm′ νðrÞf k′ μðrÞÞ�Þ d3r

¼ ∑
1

m′ ¼ −1
∑
1

k′ ¼ −1

Z
Vint

Pm′ � ∇½Pk′ � ∇ðf m′ μðrÞgk′ νðrÞ

−gm′ νðrÞf k′ μðrÞÞ� d3r ð78Þ

The order of the P �∇ operators, and the m′ and k′ indices,
can be switched in the second term on the last line, to
show that the integrand in the volume integral is zero.

An additional check on the formulation can be obtained
by applying Eqs. (61) and (63) to a spherical particle. It has
been verified by the authors that the T matrix for this case
is diagonal and azimuth degree degenerate, and with
elements equal to the Mie coefficients.

In closing, it has been demonstrated that the surface
integral formulas for the T matrix of a homogeneous,
isotropic particle can be formulated entirely with the set
of scalar basis functions provided by the VSWF translation
matrix elements. No claim is made that the resulting
formulas offer any numerical advantage over the tradi-
tional, VSWF-based formulation. However, the new for-
mulation could, conceivably, result in some coding
simplifications.
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Appendix

Explicit formulas for the translation matrix elements
that appear in this work are

Jm11 kl1ðkrÞ ¼
6π

ð2l−1Þð2lþ1Þð2lþ3Þ

� �1=2

� ðlþ1Þð2lþ3Þðl−kÞ!ðlþkÞ!
lð1−mÞ!ðmþ1Þ!ðlþk−m−1Þ!ðl−kþm−1Þ!

� �1=2
"

�ψ ð1Þ
k−m l−1ðkrÞ

þð−1Þm lð2l−1Þðlþk−mþ1Þ!ðl−kþmþ1Þ!
ðlþ1Þð1−mÞ!ðmþ1Þ!ðl−kÞ!ðlþkÞ!

� �1=2

�ψ ð1Þ
k−m lþ1ðkrÞ

i
ð79Þ

Jm11 kl2ðkrÞ ¼ iðmðlþ1Þ−kÞ

� 6πðl−kÞ!ðkþ lÞ!
ðl2þ lÞð1−mÞ!ðmþ1Þ!ðlþk−mÞ!ðl−kþmÞ!

 !1=2

ψ ð1Þ
k−m lðkrÞ

ð80Þ
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The formulas for the outgoing matrix H are the same, with the
regular scalar wave harmonics replaced by the outgoing type.

The gradient of a scalar wave function is given by the
formulas

∂
∂x

þ i
∂
∂y

� �
ψmnðkrÞ

¼ k
1

2nþ1

� �1=2 ðn−m−1Þðn−mÞ
2n−1

� �1=2

ψmþ1 n−1ðkrÞ
"

þ ðnþmþ1Þðnþmþ2Þ
2nþ3

� �1=2

ψmþ1 nþ1ðkrÞ
#

ð81Þ

∂
∂x

−i
∂
∂y

� �
ψmnðkrÞ

¼−k
1

2nþ1

� �1=2 ðnþm−1ÞðnþmÞ
2n−1

� �1=2

ψm−1 n−1ðkrÞ
"

þ ðn−mþ1Þðn−mþ2Þ
2nþ3

� �1=2

ψm−1 nþ1ðkrÞ
#

ð82Þ

∂
∂z

ψmnðkrÞ ¼ k
1

2nþ1

� �1=2 ðn−mÞðnþmÞ
2n−1

� �1=2

ψm n−1ðkrÞ
"

−
ðn−mþ1Þðnþmþ1Þ

2nþ3

� �1=2

ψm nþ1ðkrÞ
#

ð83Þ
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