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ABSTRACT

Addressing the astrophysical problems of the 2020’s requires sub-arcsecond x-ray imaging with square meter
effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the
young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes.
We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based
on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting
area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film
piezoelectric “cells” deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will
also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more
stringent than those which are well understood and proven on the current Chandra X-ray Observatory.
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1. INTRODUCTION: SCIENCE DRIVERS

SMART-X will be a major observatory, used by astronomers all over the world, with observations selected by
peer review. It will be used to observe every kind of known astronomical system, and to contribute to all areas
of astrophysics research. Trying to optimize an observatory for all such possible objectives would lead to over-
complex and even contradictory requirements. We have derived the key requirements by focusing on a few major
scientific problems, as defined by the 2010 decadal survey of astronomy and astrophysics.1 SMART-X will be
particularly well adapted to pursue scientific investigations2 “. . .searching for the first stars, galaxies and black
holes;” and “ . . .understanding of the fundamental physics of the universe,” as defined by that study.1 It is
unlikely these problems will be solved by the end of the 2020’s, as they are not accessible to any other x-ray
mission currently being prepared.

The Sloan Digital Sky Survey (SDSS) has detected many quasars at redshifts z≈6, when the universe was
about a billion years old. These quasars must have a masses of 109 times that of our sun (1M⊙ =2×1033 gm) in
order to be radiating at the observed luminosities. It is expected that the first stars, galaxies, and black holes
formed in the redshift range z=10 to 20, based on the epoch of reionization of the universe inferred from cosmic
microwave background observations.3 The SDSS quasars must have arisen from these first black holes, but it
is problematical how they could have grown to such a large mass in only 109 years. If we trace them back to
redshift 10 by assuming they accreted mass at the Eddington limited rate, they would have a mass of 3×104 M⊙.
Such objects might radiate at 30% of the Eddington luminosity in the x-ray band, which would be 2×1042 ergs
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Figure 1. Confusion limit as a function of angular resolution. The blue line shows the maximum source density, above
which individual sources cannot be reliably detected and located, as a function of the telescope angular resolution.4

Abscissa is the half power diameter in arcsecond. The right hand ordinate gives the density of x-ray sources in the 0.5 to 2
keV band, corresponding to the given density in deg−2 of the left hand ordinate.5 Note that the flux increases downward
while the source density increases upwards.

s−1, and the flux at earth would be 6× 10−19 ergs cm−2 s−1. The number density of x-ray sources at that flux
level is about 70,000 deg−2, so to overcome the confusion limit4 requires an angular resolution of 2.

′′3 half-power
diameter at the edge of the useful field of view, as shown in Figure 1.

The off-axis aberrations of a Wolter-Schwarzschild design can achieve6 this resolution up to about 12′ off-axis,
provided the on-axis figure quality is better than about 1 arcsecond. The actual on-axis resolution requirement
should be similar to that of the Chandra Observatory, namely 0.

′′5 half power diameter on-axis.

2. TECHNOLOGY AREAS

The design of an x-ray observatory can be classified into three major areas: the spacecraft systems, the x-ray
instrument systems, and the x-ray telescope systems.

2.1 Spacecraft Systems

Major spacecraft functions include the pointing control; communications, command, on-board data storage and
management; electrical power; thermal control; angular momentum management and propulsion; structures;
mechanisms; software; safe modes; and radiation protection for the science instrument detectors. For SMART-X
we expect these to have very similar requirements and implementation as for the Chandra mission,7 primarily
driven by the same angular resolution requirement of 0.

′′5. In particular, alignment, stability, pointing control,
aspect determination, ground and flight operations, ground software, data analysis software, thermal control,
assembly and test are essentially the same. The power requirement will be increased from 2900 W (beginning
of life) for Chandra to about 5000 W. This results since the 7 m2 mirror area will radiate 1500 to 2000 W to



space according to the Stefan-Boltzmann law, with the uncertainty depending on the efficiency of the thermal
pre-collimator. We anticipate an increase of about 200 kg for the science instrument module, and an increase
in the average data rate from 32,000 bps to 1 Mbps. We benefit from an overall decrease of the mirror mass
assembly from about 1600 kg for Chandra to about 1100 kg for the SMART-X design we will be presenting.

The actual cost of SMART-X development and operation should therefore be the same or somewhat less than
that of Chandra in same year dollars.

2.2 X-ray Instruments

The x-ray instruments detect and measure the position, energy, and arrival time of individual x-ray photons.
Transmission or reflection gratings may be inserted or removed from the optical path, to disperse the incoming
x-ray beam allowing energy resolution E/∆E ≥ 4000, below 2 keV.

The science instruments will most likely be procured via a competition to carry out a specific program of
astrophysical observations. We can anticipate functional requirements to cover a 20′ × 20′ field of view, to
oversample the 0.

′′5 resolution of the telescope, and to provide a very large dynamic range of photon counting
rate, ≤10−5 to ≥10’s of counts per second.

Many groups have independently been working on such state-of-the art instruments8–11 as candidates for
previous mission concepts such as Constellation-X (CON-X), the International X-ray Observatory (IXO), AX-
SIO, and ATHENA. The payload concept could include a microcalorimeter array,12 critical angle transmission
gratings,13 off-plane reflection gratings,14 and large format self-triggered CMOS arrays.15

2.3 X-ray Optics

The critical technology need for SMART-X is large area, light-weight, half-arcsecond resolution mirrors. Our
group has been pursuing adjustable x-ray optics to realize such a mirror. A suite of technologies are needed.
Light weight and large area are achieved by using multiple, concentric shells of very thin glass sheets, coated
with a high atomic number material such as iridium for good reflection efficiency up to about 10 keV. The thin
sheets cannot be ground to shape as in conventional optics, but instead are thermally formed, “slumped,” to the
desired shape on a figured and polished mandrel. Since such flimsy glass pieces could not be expected to hold a
rigid shape through launch, the mandrels are not required to be of the final 0.

′′5 figure quality. Optical metrology
assesses the detailed figure of each piece as removed from the mandrel. The key innovative technology is then
to develop a technique to adjust the mirrors to the final required shape. Our group at SAO has been pursuing
in-plane bi-morph piezoelectric actuators to effect this adjustment.16

3. ADJUSTABLE X-RAY OPTICS

Figure 2 shows a straw-man concept of the mirror assembly. Individual modules (left panel) are aligned and
mounted to form a 3 m diameter mirror. The mirror consists of 292 concentric shells with 0.4 mm thick glass
sheets coated with Ir and formed to the required Wolter-Schwarzschild prescription for each primary/secondary
pair. The reflecting pairs are aligned to each other within a module that spans 15◦ to 30◦ azimuthally. The
assembly concept has heritage from the Con-X and IXO studies, but with the ability to adjust the mirror element
shapes we expect to only require one mandrel for every two or three shells. Because further figure adjustment
is accomplished after mounting and aligning each pair, the alignment process is allowed to impart some small
distortion. Ground induced effects, such as gravity release, are calculated via finite element analysis, and will
be verified by optical metrology measurements at different orientations to vertical. These calculated effects will
lead to a final small adjustment to the piezo voltages to be applied on-orbit.

Simulations show that the figure correction can be done to the required sub-arcsecond precision, if the initial
mirror figure is as good as 10 arcsec.17 For a given pattern of actuators, we start with a finite element analysis
(FEA) to predict the influence function of each actuator on the entire mirror piece.18 We have used optical
metrology to verify the accuracy of the FEA. For the simulation, we used a model of an actual mounted mirror
that gave a 10′′ image. We considered 5 different azimuthal positions. Figure 3 shows the radial displacement
as a function of axial position along those 5 positions. On the left is the displacement from the required figure,
as a function of axial position for the 5 different traces.



Figure 2. Mirror assembly concept. Primary and secondary glass pieces are aligned to each other, figured to a Wolter-
Schwarzschild geometry, and aligned to about 90 other shells within a module (left). Discrete modules are aligned to each
other and assembled within a 3 m diameter mirror structure (right). Not shown are the thermal pre- and post-collimators,
and structure for attaching the mirror to the optical bench.

Figure 3. Using a bounded, constrained, least squares optimization we simulate the correction of one mirror element from
an equivalent 10′′ (left panel) to 0.

′′4 (right panel). Each figure shows the displacement from the required shape as a
function of axial position, at five different azimuthal locations. Scales are the same in both panels.

The algorithm to optimize the figure takes some care. We directly minimize the slope errors, not the dis-
placement errors. Because the piezo actuators can only squeeze more or less, but cannot expand, voltages can
only be of one polarity, and cannot be so large as to exceed the strain capability of the piezo material, about
1000 part per million.

For simplicity in the error budgeting process we assume a Gaussian shape for the mirror point response
function. For such a shape, the half power diameter of 0.

′′5 corresponds to a root-mean-square (rms) diameter
of 0.

′′74. We budget using the rms quantity, since by definition it combines according to the root-sum-square
law. The most important top level terms requiring technology development are the as-corrected figure, and
the alignment. Smaller terms such as aspect reconstruction to 0.

′′2 have been demonstrated on the Chandra
observatory. The mirror figure terms are the low order figure, the uncorrectable figure errors due to upper
mid-frequency and micro-roughness scattering, and any distortion resulting from the packing of the individual



Figure 4. We have deposited an array of piezoelectric cells on cylindrical glass elements. The piece is 100 mm × 100 mm
slumped to radius of curvature of 220 mm. There is an array of 7×7 piezo cells, of 10 mm × 10 mm size with 1 mm
spacing in between. The x-ray reflecting side is face down in this figure. A discrete trace to each cell allows independent
application of a voltage to induce local strain.

modules. The alignment terms include the metrology (for which we have achieved the required 0.
′′25), the

alignment process within a module, and the module to module alignment, each budgeted at 0.
′′25. We take the

gravity release term to be 10% of the size of the effect predicted from the FEA modeling, or less than 0.
′′1.

We have successfully deposited piezoelectric films of PbZr0.52Ti0.48)O3 (PZT) on thin boro-aluminosilicate
glass sheets. Initial efforts demonstrated the feasibility using flat Corning Eagle glass.19, 20 Currently, we have
taken a 100 mm × 100 mm sheet slumped to a cylindrical shape with a 220 mm radius of curvature, corresponding
to one of the innermost shells of the mirror. RF magnetron sputtering was used to deposit an ≈ 1 to 2 µm thick
piezo layer.21 Figure 4 shows the resulting piece.

For our small test pieces we have been depositing traces to each individual cell, and connecting to an external
wire providing a specified controlled voltage. We plan to carry out an x-ray imaging demonstration of a single
mirror pair, using the NASA/MSFC stray light facility.22 For that test we plan a 20×20 array of 5 mm cells,
still with discrete wires. Voltages will be set via a computer driven controller. A prototype of our graphical user
interface (GUI) is shown in Figure 5.

For the SMART-X mission with 8000 individual mirror pieces and 400 piezo cells per piece, discrete wires to
each cell will not be practical. We expect to use a row/column addressing scheme so that we require as inputs
the sum instead of the product of the numbers of rows and columns. To effect this, we have been demonstrating
the feasibility of depositing ZnO transistors on top of an insulating layer over the backs of the piezo cells.23 The
concept is to make the electrical connections via anisotropic conductive film as is used in liquid crystal displays.
We will also incorporate on-cell strain gauges which can be used to sense changes in the voltage/strain relation
of the piezo material and facilitate any necessary on-orbit adjustments. Strain gauge response is also extremely
sensitive to temperature, so these sensors may also play a role in the thermal control system for the mirror.

For the x-ray test of a single pair, we have designed a mount which conceptually can be extended to the flight
configuration (Figure 6). In particular, the design is calculated to withstand the expected launch loads. The left
panel shows the mounted pair, held by four supports on each edge. A custom designed hexapod manipulates
the glass pieces prior to bonding. A laser beam is reflected off the piece to be aligned, and retro-reflected back
to a centroiding detector assembly in a two pass Hartmann configuration. This concept was used to align the
full shell Chandra mirrors within 0.

′′25. To extend to the alignment of SMART-X, the shells would be aligned
from the outermost to the innermost, since the reflecting surface must be exposed. The hexapod structure will
be modified to allow access to the rear of each shell being aligned.



Figure 5. Prototype gui for controlling piezo voltages. The insert figures (not to scale) represent the current mirror figure
errors as determined from optical metrology, and the predicted correction that will be applied when the piezo cells are
activated with the 400 voltages shown in the background matrix structure. These voltages can be read in from a file, or
individual cells can be directly addressed, and an existing set of voltages can be saved in a file.

Figure 6. Alignment of a single primary (P) and secondary (S) mirror pair. Left panel shows the mounting fixture, holding
each piece at four points top and bottom. Right panel shows the custom designed hexapod used for precise manipulation
of the glass pieces prior to bonding to the supports. The system is designed to align with 0.

′′25 equivalent rms diameter
imaging. The concept is extensible to a full mirror module, aligning successively from the outermost to innermost pairs.
We are looking at the x-ray reflecting surfaces in both panels.

4. SMART-X

We expect to verify the capability to figure and align a single mirror pair via x-ray testing at the NASA/MSFC
stray light facility. This will establish the two largest terms in the imaging budget at technology readiness level
4. With a factor of 100 increase in throughput at 250 eV, compared to Chandra, we expect SMART-X to be
poised to carry out game changing observations of the universe at redshifts 10 to 20.



ACKNOWLEDGMENTS

This research has been funded in part by NASA contracts NAS8-39073 and NNX09AE87G, grants from the
Gordon and Betty Moore Foundation and SAO Internal Research and Development and at PSU from an APRA
grant via sub-contracts SV0-79020 and SV-79021 from the Smithsonian Astrophysical Laboratory.

REFERENCES

[1] [New Worlds, New Horizons in Astronomy and Astrophysics ], The National Academies Press, Washington,
D.C. (2010). http://www.nap.edu/catalog/12951.html.

[2] Vikhlinin, A., Reid, P., Schwartz, D. A., Forman, W. R., Jones, C., Bookbinder, J., Cotroneo, V., Trolier-
McKinstry, S., Burrows, D., Bautz, M. W., Heilmann, R., Davis, J., Bandler, S. R., Weisskopf, M. C., and
Murray, S. S., “SMART-X, square meter, arcsecond resolution x-ray telescope,” in [Space Telescopes and
Instrumentation 2012: Ultraviolet to Gamma Ray ], Takahashi, T., Murray, S. S., den Herder, J.-W. A., and
Ueno, S., eds., Proc. SPIE 8443 (Aug. 2012).

[3] Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R., Bennett, C. L., Halpern, M., Hinshaw,
G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L., Tucker, G. S., Weiland, J. L., Wollack, E., and
Wright, E. L., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination
of Cosmological Parameters,” ApJS 148, 175–194 (Sept. 2003).

[4] Condon, J. J., “Confusion and Flux-Density Error Distributions,” ApJ 188, 279–286 (Mar. 1974).

[5] Moretti, A., Campana, S., Lazzati, D., and Tagliaferri, G., “The Resolved Fraction of the Cosmic X-Ray
Background,” ApJ 588, 696–703 (May 2003).

[6] Chase, R. C. and VanSpeybroeck, L. P., “Wolter-schwarzschild telescopes for x-ray astronomy,” Applied
Optics 12.

[7] Schwartz, D. A., “Invited Review Article: The Chandra X-ray Observatory,” Review of Scientific Instru-
ments 85, 061101 (June 2014).

[8] Heilmann, R. K., Davis, J. E., Dewey, D., Bautz, M. W., Foster, R., Bruccoleri, A., Mukherjee, P., Robin-
son, D., Huenemoerder, D. P., Marshall, H. L., Schattenburg, M. L., Schulz, N. S., Guo, L. J., Kaplan,
A. F., and Schweikart, R. B., “Critical-angle transmission grating spectrometer for high-resolution soft x-
ray spectroscopy on the International X-ray Observatory,” in [Space Telescopes and Instrumentation 2010:
Ultraviolet to Gamma Ray ], Arnaud, M., Murray, S. S., and Takahashi, T., eds., Proc. SPIE 7732 (July
2010).

[9] Heilmann, R. K., Bruccoleri, A., Mukherjee, P., Yam, J., and Schattenburg, M. L., “Fabrication update on
critical-angle transmission gratings for soft x-ray grating spectrometers,” in [Optics for EUV, X-Ray, and
Gamma-Ray Astronomy V ], O’Dell, S. L. and Pareschi, G., eds., Proc. SPIE 8147 (Sept. 2011).

[10] Bandler, S., “Status of current efforts and future needs in detectors,” (2012).
http://pcos.gsfc.nasa.gov/physpag/meeting-2012-presentations.php.

[11] Falcone, A., “X-ray active pixel sensors: Status and development needs for future missions,” (2012).
http://pcos.gsfc.nasa.gov/physpag/meeting-2012-presentations.php.

[12] Bandler, S., Adams, J. D., Busch, S. E., Chervenak, J. A., Eckart, M. E., Finkbeiner, F. M., Kilbourne, C.,
Lee, S., Porter, F. S., Porst, J., Sadleir, J. E., Smith, S. J., Doriese, W. B., Fowler, J. W., Hilton, G. C.,
Irwin, K., Reintsema, C. D., and Ullom, J. N., “Focal Plane Array Concept and Technologies for the X-Ray
Microcalorimeter Spectrometer on the Advanced X-ray Spectroscopic Imaging Observatory (AXSIO),” in
[AAS/High Energy Astrophysics Division ], AAS/High Energy Astrophysics Division 13, 119.03 (Apr. 2013).

[13] Heilmann, R. K., Bruccoleri, A. R., Guan, D., and Schattenburg, M. L., “Development of lightweight blazed
transmission gratings and large-area soft x-ray spectrographs,” in [Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series ], Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series 8861 (Sept. 2013).

[14] McEntaffer, R. L. and Off-Plane X-ray Grating Spectrometer (OP-XGS) Team, “Developments in Off-Plane
X-ray Reflection Grating Spectrometers,” in [AAS/High Energy Astrophysics Division ], AAS/High Energy
Astrophysics Division 13, 119.04 (Apr. 2013).



[15] Kenter, A., Kraft, R., Murray, S., Smith, R., George, F., Branduardi-Raymont, G., Roediger, E., Forman,
W., and Elvis, M., “Planetary Observations in the Soft X-ray band; Present status and Future CMOS based
technology,” AGU Fall Meeting Abstracts , G1825 (Dec. 2013).

[16] Reid, P. B., Aldcroft, T. L., Cotroneo, V., Davis, W., Johnson-Wilke, R. L., McMuldroch, S., Ramsey,
B. D., Schwartz, D. A., Trolier-McKinstry, S., Vikhlinin, A., and Wilke, R. H. T., “Technology develop-
ment of adjustable grazing incidence x-ray optics for sub-arc second imaging,” in [Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series ], Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series 8443 (Sept. 2012).

[17] Aldcroft, T., Schwartz, D., Reid, P., Cotroneo, V., and Davis, W., “Simulating correction of adjustable
optics for an x-ray telescope,” in [Adaptive X-ray Optics ], Khounsary, A. M., O’Dell, S. L., and Bifano,
T. G., eds., Proc. SPIE 8503 (2012).

[18] Davis, W. N., Reid, P. B., and Schwartz, D. A., “Finite element analyses of thin film active grazing incidence
x-ray optics,” in [Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ], Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7803 (Sept. 2010).

[19] Wilke, R. H. T., Trolier-McKinstry, S., Reid, P. B., and Schwartz, D. A., “PZT piezoelectric films on glass
for Gen-X imaging,” in [Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ],
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7803 (Sept. 2010).

[20] Wilke, R. H. T., Johnson-Wilke, R. L., Cotroneo, V., Davis, W. N., Reid, P. B., Schwartz, D. A., and
Trolier-McKinstry, S., “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable
x-ray optics,” Applied Optics 52, 3412 (May 2013).

[21] Wilke, R. H. T., Johnson-Wilke, R. L., Cotroneo, V., McMuldroch, S., Reid, P. B., Schwartz, D. A., and
Trolier-McKinstry, S., “Fabrication of adjustable cylindrical mirror segments for the SMART-X telescope,”
IEEE Trans. 61, 1386 (2014).

[22] O’Dell, S. L., Baker, M. A., Carter, J. M., Content, D. A., Davis, W. N., Freeman, M. D., Glenn, P. E.,
Gubarev, M. V., Hair, J. H., Kolodziejczak, J. J., Jones, W. D., Joy, M. K., McCracken, J. E., Nanan, G.,
Owens, S. M., Petre, R., Podgorski, W. A., Ramsey, B. D., Saha, T. T., Stewart, J. W., Swartz, D. A.,
Zhang, W. W., and Zirnstein, G. X., “X-ray testing Constellation-X optics at MSFC’s 100-m facility,”
in [Optics for EUV, X-Ray, and Gamma-Ray Astronomy ], Citterio, O. and O’Dell, S. L., eds., Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series 5168, 306–317 (Feb. 2004).

[23] Johnson-Wilke, R. L., Wilke, R. H. T., Wallace, M. L., Ramirez, J. I., Nikoleyczik, J., Jackson, T. N., Cotro-
neo, McMuldroch, S., Reid, P. B., Schwartz, D. A., and Trolier-McKinstry, S., “ZnO thin film transistors
and electronic connections for adjustable X-ray mirrors: SMART-X telescope,” in [Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series ], Khounsary, A. M. and O’Dell, S. L., eds., Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series 9208, 920809 (2014).


