Conducting Research on the International Space Station using the EXPRESS Rack Facilities

30th American Society for Gravitational and Space Research and October 2014

Sean W. Thompson
EXPRESS Rack Project Manager
NASA Marshall Space Flight Center
sean.thompson@nasa.gov

Robert E. Lake
EXPRESS Rack Lead Systems Engineer
NASA Marshall Space Flight Center
robert.e.lake@nasa.gov
EXPRESS Rack

- **EXPedite the PRocessing of Experiments to Space Station (EXPRESS) Rack** is a multi-use facility which provides standard interfaces and resources for 8 locker-type and 2 drawer-type payloads

- **Payload Interfaces**
 - Power: 28 Vdc
 - Data: Ethernet, RS-422, Analog, Discrete
 - Video: NTSC
 - Cooling: Air (all locations) and Water (2 locations per rack)
 - Vacuum Exhaust (1 location per rack)
 - Nitrogen Supply (1 location per rack)

- **Active Rack Isolation System (ARIS)**
 - Isolates vibration between ISS and EXPRESS
Payload configuration options:

- Insert into a NASA-provided ISS Locker
- Integrate into an International Subrack Interface Standard (ISIS) Drawer
- Design single unit to replace 1, 2, or 4 lockers.
EXPRESS Racks

- 8 flight racks on-orbit (4 ARIS, 4 non-ARIS)
- First launched April 19, 2001
- Trainer Racks at JSC and MSFC to support crew and ground training
- Functional Checkout Unit (FCU) at MSFC to support payload testing

<table>
<thead>
<tr>
<th>Rack</th>
<th>Location (Lab, Bay)</th>
<th>Launch (Flight, Date)</th>
<th>Aug. 2014 Operating Hrs</th>
<th>Total Operating Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPRESS Rack #1</td>
<td>US Lab, O2</td>
<td>6A, 4/19/01</td>
<td>744</td>
<td>99,172</td>
</tr>
<tr>
<td>EXPRESS Rack #2A</td>
<td>US Lab, O1</td>
<td>6A, 4/19/01</td>
<td>262</td>
<td>64,436</td>
</tr>
<tr>
<td>EXPRESS Rack #3A</td>
<td>Columbus, P2</td>
<td>UF2, 6/5/02</td>
<td>744</td>
<td>31,928</td>
</tr>
<tr>
<td>EXPRESS Rack #4</td>
<td>JEM, F5</td>
<td>7A.1, 8/10/01</td>
<td>744</td>
<td>93,654</td>
</tr>
<tr>
<td>EXPRESS Rack #5</td>
<td>JEM, F1</td>
<td>7A.1, 8/10/01</td>
<td>0</td>
<td>845</td>
</tr>
<tr>
<td>EXPRESS Rack #6</td>
<td>US Lab, O4</td>
<td>ULF2, 11/14/08</td>
<td>743</td>
<td>50,698</td>
</tr>
<tr>
<td>EXPRESS Rack #7A</td>
<td>US Lab, P2</td>
<td>19A, 4/5/10</td>
<td>744</td>
<td>7,043</td>
</tr>
<tr>
<td>EXPRESS Rack #8A</td>
<td>US Lab, P4</td>
<td>ULF5, 2/24/11</td>
<td>0</td>
<td>9,463</td>
</tr>
</tbody>
</table>

Total: 357,239

Operational Hours through 8/31/2014
EXPRESS ISS Locker Details

Features
- 4 rear captive fastener attachments
- Installation tool guides on 4 corners
- Friction hinge
- Dual door locks
- 3 removable panels on door
- Rear internal closeout removed for active payloads
- Internal dimensions (ref)
 - Width 17.340 in.
 - Height 9.970 in.
 - Depth 20.320 in.
- Weight – 13 lbs. empty
- Internal Volume – 2 ft³

Payloads can either be locker “inserts” or locker “replacements”
EXPRESS Powered ISIS Drawer

Features
- Blind-mate connectors
- Locking handles
- Internal dimensions (ref)
 - 15.94 x 5.88 x 23.23 in.
- Weight – 26 lbs empty
- Volume – 1.26 ft³

NASA provides a powered ISIS drawer for ground integration of powered payloads.
EXPRESS Subrack Payload Mounting

- Mounting for 8 single ISS lockers (or equivalent) and 2 ISIS drawers
- Subsystem equipment located behind connector panels or mounting plates

Front View
EXPRESS Subsystems

- **RIC: Rack Interface Controller**
 - Provides command and control of rack subsystems and payloads and interfaces with the ISS Payload MDM.
 - Collects health and status from rack subsystems and payloads.

- **SSPCM: Solid State Power Control Module**
 - Receives ISS main power and provides power to rack subsystems and payloads.
 - Provides discrete and analog I/O to payloads and rack subsystems.

- **AAA: Avionics Air Assembly**
 - Provides air cooling to payloads and exchanges heat with the Moderate Temperature Loop.
 - Circulates air for smoke detection
EXPRESS Subsystems

- **PEHB: Payload Ethernet Hub Bridge**
 - Provides primary means of communication between EXPRESS rack, the payloads, and the ISS.
 - Provides 10 Mbps Ethernet data packet transfer between payloads, laptops, and the RIC and provides a bridge to the ISS LANs for telemetry downlink.
 - Command and data interface to EXPRESS laptop.

- **PEHG: Payload Ethernet Hub Gateway**
 - Will replace PEHB in 2015-2016
 - 100 Mbps Ethernet
ELC: EXPRESS Laptop Computer
- Dedicated to EXPRESS rack operations
- Crew can view rack displays
- Crew can command rack and payloads
- Payload can have applications installed
- Lenovo T61p
- Windows XP SP2 operating system
 - Upgrade to Windows 7 March 2014
EXPRESS Subsystems

- **Payload Cooling**
 - Moderate Temperature Loop (MTL)
 - MTL circulates water through rack
 - Payloads have MTL cooling access at the upper and lower connector panels
 - 500 W per payload position x 2 positions per rack
 - AAA – “Rear Breather” payloads (1200 W total rack)
 - Cabin Heat Load – “Front Breather” payloads (very limited)

- **Thermal Shutdown**
 - RIC monitors 2 internal sensors that are configured by the PRO (usually a flow sensor and a temperature sensor)
 - RIC will shut down all active payloads and rack if both sensors are out of limits

- **Fire Detection System (FDS)**
 - Provides fire detection for the rack
 - Payload Rear Breathers
 - ISS/EXPRESS-provided by smoke detector within rack
 - Payload Front Breathers
 - Payload-provided parameter monitoring delivered through health & status data to PL MDM
Conducting Research on the ISS using the EXPRESS Rack

EXPRESS Functional Interfaces

Station

- Power 120 VDC (+6/-4) (25 Amps @ 3kW)
- MIL-STD-1553
- High Rate Data Link
- Internal Video Sys
- Ethernet (10bT)
- Vacuum Exhaust
- GN2
- MTL Water (16 to 23 °C) (61-73.4 °F)

Payload

- Power 28 VDC (+1.5/-2.5) (5/10/15/20 Amps)
- Analog +/- 5V
- Discrete (5 V)
- RSS-422
- Video Analog
- Timing Signal
- Ethernet (10bT)
- Vacuum Exhaust
- GN2
- MTL Water (200 lbm/hr)
- Air
EXPRESS Payload Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Amount per Payload Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Attachment</td>
<td>Attachment to Rack per IDD
• Mass constraint launch vehicle dependent</td>
</tr>
<tr>
<td>Power</td>
<td>5, 10, 15, or 20 Amp at 28 VDC</td>
</tr>
<tr>
<td>Thermal Control Air</td>
<td>Nominal 150 W (1200 W rack maximum)</td>
</tr>
<tr>
<td>Thermal Control Water</td>
<td>500 W Heat Rejection per position
(2 positions per rack)</td>
</tr>
<tr>
<td>Data</td>
<td>• 1 - RS-422
• 1 - Ethernet
• 2 - +/- 5 Vdc Analog
• 3 - 5 Vdc Discrete (bi-dir)</td>
</tr>
<tr>
<td>Video</td>
<td>NTSC/RS 170A feed from payload source (Shared)</td>
</tr>
<tr>
<td>Venting</td>
<td>1 payload interface per rack (Shared)</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1 payload interface per rack (Shared, 12 lbm/hr)</td>
</tr>
</tbody>
</table>

ISIS Drawer	Attachment to Rack per ISIS Spec • 64 lb within cg constraints
Power	5, 10, 15, or 20 Amp at 28 VDC
Thermal Control Air	Nominal 150 W (1200 W rack maximum)
Thermal Control Water	500 W Heat Rejection per position (2 positions per rack)
Data	• 1 - RS-422 • 1 - Ethernet • 1 - +/- 5 Vdc Analog • 2 - 5 Vdc Discrete (bi-dir)
Video	NTSC/RS 170A feed from payload source (Shared)
Venting	1 payload interface per rack (Shared)
Nitrogen	1 payload interface per rack (Shared, 12 lbm/hr)

Reference: EXPRESS Rack Payloads Interface Definition Document, SSP 52000-IDD-ERP
Developed by Boeing, STELLA provides a generic software toolkit for Payload Developers to accommodate all of the unique software formatting required to communicate with the ISS.

STELLA easily adapts Ethernet-based (TCP/UDP) software used in ground laboratories to software for conducting research on ISS; it enables a command and telemetry environment from ISS that is analogous to a terrestrial laboratory’s control and data acquisition environment.

STELLA functionality highlights:
- Payload commanding and payload file uplink
- Remote console access to flight payload computer
- Payload telemetry downlink and file downlink via the ISS Ethernet LAN
- Payload health and status data routing to the Payload Operations Integration Center

Boeing assists Payload Developers with STELLA software integration as a standard ISS integration service
Payload Testing for EXPRESS Rack

- Payload-to-rack interfaces verified efficiently for both Payload Developer and ISS
- End-to-end data flow from payload to rack to HOSC to PD ground station.
- Human Factors Team evaluates hardware locally
- Payload operations flight controller familiarization
- Validation of crew procedures

Additional Services Available
- Off-gas
- Vibration
- EMI/EMC
- Acoustics

Payload shipment to MSFC

Rack simulator s/w provided for development

C&DH remote test possible using VPN

Payload shipment to launch site or PD

Virtual Private Network

EXPRESS Rack Functional Checkout Unit
NASA Payload Integration Manager (PIM)

- Functions as the Payload Developer’s primary interface to the ISS Program
- Serves as payload advocate while protecting ISS Program Requirements

- Ensures payload requirements are accurately defined and documented
- Facilitates payload integration product development, delivery schedules, and communications with the ISS Program
Conducting Research on the ISS using the EXPRESS Rack

EXPRESS Topology – 9/26/14

Payload Locations 56
Total Payloads 44 79%
National Lab Payloads 19 34%
Stowage Lockers 12

ER1 - LAB1O2
- CGBA4 (39)
- ISS Locker (22)
- ISS Locker (14)
- MERLIN 3
- Rodent Habitat 1
- SAMS CU Uses PS28 power
- MAMS
- CTP power
- MERLIN 4/CPCG-HM
- SAMS-RTS1
- SAMS-IHCU (I)
- ER5 - JPM1F1
- SDRUMS-AGM (10)
- SAMS-IPM (12)
- SDRUMS-APEM (11)
- SDRUMS-PCEM (13)
- SpaceDRUMS-PM
- NLP
- SDRUMS D1 (2)
- SDRUMS D2 (4)
- AMS DDRS Laptop utilizes PS28 power, L3 data, and J7 HRDL

ER2A - LAB1O1
- ISS Locker (4)
- CGBA6 (6)
- ABRS
- GLACIER-1 (L4 Power)
- Rodent Habitat 2
- CUCU redundant power source
- METEORON
- ISS Locker (18)
- ISS Dwrs (1)
- ISS Dwrs (11)
- EMCS-ISIS Dwrs
- EMCS-ISD Dwrs
- ISD (6)
- ER6 - LAB1O4
- MERLIN 1
- Galley
- SAMS CU
- CTP power
- MERLIN 2
- Galley
- Potable Water Dispenser
- Alt. Power/Data for RH1 or AEM-T power
- DDRS
- GLACIER-2 (L4 Power)
- FW connection
- CUCU Spare
- PS28 power connection (L3)
- Food Warmer
- FW / ISS Closeout
- ISD (7)
- ISD (8)
- ER7A - LAB1P2
- MERLIN 5/CPCG
- GLACIER-5 (L6 Power)
- ISD Locker (41)
- ISD Locker (41)
- GLACIER-4 (L4 Power)
- Bone Densitometer
- NLP
- ISD (46)
- ER4 - JPM1F5
- NanoRacks Platform-1 (5)
- ISS Locker (1)
- ISS Locker (20)
- ISS Locker (29)
- NanoRacks Platform-2 (8)
- (Rotated 180°)
- NanoRacks Keyboard
- ISS Locker (1)
- ISS Locker (20)
- CUCU Spare
- ISS Locker (6)
- ELITE-S2
- SAMS-RTS2
- ER8A - LAB1P4
- ROBONAUT Tele-Ops (33)
- CGBA5 (49)
- ISS Locker (48)
- ISS Locker (50)
- AMINE SWINGBED
- ISS Locker (51)
- ISS Locker (52)
- Multi-Gas Monitor
- ISS Locker (52)
- AMINE SWINGBED
- ISS Locker (10)

NLP

AMS DDRS Laptop utilizes PS28 power, L3 data, and J7 HRDL.
Basic Express Rack Concept

- NASA has identified the need to accommodate additional EXPRESS payloads on ISS
- NASA and Boeing are developing an additional 2 or 3 racks with limited functionality
 - Systems Requirements Review held 7/23/14
 - Concept waiting ISS Program approval
 - Anticipated on-orbit in 2018
- Basic Express Rack (BER) Architecture defined
 - Accommodations
 - 8 locker locations
 - Approximately 2000 W at 28Vdc available for payloads
 - Air cooling to payloads provided by Avionics Air Assembly (AAA)
 - Moderate Temperature Loop (MTL) interface provided with manually adjusted flow rate
 - ISS Smoke Detector (SD) provided
 - 16 port 100 baseT Ethernet Switch provided for C&DH interface to payloads
 - Payload MDM software modification to allow handling of payload health & status data and commands to payloads (replaces RIC)
 - 120Vdc outlet to accommodate the 120Vac inverter.
 - Racks designated ER9B, 10B and 11B
Basic Express Concept

Conducting Research on the ISS using the EXPRESS Rack

PAYLOAD MOD TEMP TCS SUPPLY
PAYLOAD MOD TEMP TCS RETURN
ETHERNET PANEL
TCS MANUAL VALVE
BACKPLATE
LOWER SHELF ASSY
USER PANEL ASSY
USER PANEL
POWER INVERTER (accommodated)
RACK FRONT
MOD TEMP TCS RETURN (Pink)
MOD TEMP TCS SUPPLY (Blue)
RACK SIDE (ISO)
Proposed Basic Express Rack Payload Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Amount per Payload Position</th>
<th>Express</th>
<th>Basic Express Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Attachment</td>
<td>Attachment to Rack per IDD</td>
<td>EXPRESS</td>
<td>Same</td>
</tr>
<tr>
<td></td>
<td>• Mass constraint launch vehicle dependent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>5, 10, 15, or 20 Amp at 28 VDC</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>10 or 20 Amp at 28 VDC, manual only</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td>Thermal Control Air</td>
<td>Nominal 150 W (1200 W rack maximum)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td>Thermal Control Water</td>
<td>500 W Heat Rejection per position (2 positions per rack)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>500 W Heat Rejection per position (1 position per rack)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td>Data</td>
<td>• 1 - RS-422</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>• 1 - Ethernet</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>• 2 - +/- 5 Vdc Analog</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>• 3 - 5 Vdc Discrete (bi-dir)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td>Video</td>
<td>NTSC/RS 170A feed from payload source (Shared)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td>Venting</td>
<td>1 payload interface per rack (Shared)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1 payload interface per rack (Shared, 12 lbm/hr)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td>Aux Power</td>
<td>Automatic failover when set</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
<tr>
<td></td>
<td>None (TBD)</td>
<td>EXPRESS</td>
<td>Basic Express Rack</td>
</tr>
</tbody>
</table>
Summary

- EXPRESS Racks provide capability for payload access to ISS resources.
- The successful on-orbit operations and versatility of the EXPRESS Rack has facilitated the operations of many scientific areas, with the promise of continued payload support for years to come.
- EXPRESS Racks are currently deployed in the US Lab, Columbus and JEM.
- Process improvements and enhancements continue to improve the accommodations and make the integration and operations process more efficient.
- Payload Integration Managers serve as the primary interface between the ISS Program and EXPRESS Payload Developers.
- EXPRESS Project coordinates across multiple functional areas and organizations to ensure integrated EXPRESS Rack and subrack products and hardware are complete, accurate, on time, safe, and certified for flight.
- NASA is planning to expand the EXPRESS payload capacity by developing new Basic Express Racks expected to be on ISS in 2018.
Back Up Material
EXPRESS Rack 1 INC 35

- **Commercial Generic Bioprocessing Apparatus (CGBA) 4**
 - Provides programmable, accurate temperature control for applications ranging from cold stowage to customizable incubation for experiments on cells, microbes, and plants.

- **Microgravity Experiment Research Locker/INcubator (MERLIN) 3**

- **NanoRacks Platform 2**

- **Microgravity Acceleration Measurement System (MAMS) & Space Acceleration Measurement System-II (SAMS-II)**
 - Studies the small forces, or vibrations and accelerations, on the International Space Station (ISS) that result from the operation of hardware, crew activities, dockings and maneuvering.
EXPRESS Rack 2 INC 35

- Commercial Generic Bioprocessing Apparatus (CGBA) 6
- Advanced Biological Research System (ABRS)
 - Two growth chambers independently controlling temperature, illumination, and atmospheric composition to grow a variety of biological organisms.
- NanoRacks Plate Reader
 - Instrument designed to detect biological, chemical or physical events of samples in microtiter plates.
- General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) 1
 - Ultra-cold freezers that will store samples at temperatures as low as -160 °C (-301 °F).
Conducting Research on the ISS using the EXPRESS Rack

EXPRESS Rack 3 INC 35

- **General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) 1**
- **European Modular Cultivation System (EMCS)**
 - Large incubator that provides control over the atmosphere, lighting and humidity of growth chambers to study plant growth.
 - Contains two centrifuges whose speed can be set to exert a gravitational force ranging from nearly 0 to 2 g on four samples.
 - Developed by the European Space Agency (ESA)
EXPRESS Rack 4 INC 35

- **DEvice for the study of Critical LIquids and Crystallization (DECLIC)**
 - Multi-user facility utilized to study transparent media and their phase transitions in microgravity.
 - Established the precise temperature (373.995 °C) at which water becomes supercritical.

- **NanoRacks Platform 1**
 - NanoRacks Platforms provide power and data transfer capabilities for NanoRacks Modules, which function as experiment platforms for a wide range of disciplines.

- **ELaboratore Immagini TElevisive - Space 2 (ELITE-S2)**
 - Investigates the connection between brain, visualization and motion in the absence of gravity.
 - http://www.nasa.gov/mission_pages/station/research/experiments/78.html
EXPRESS Rack 6 (Galley)

- Microgravity Experiment Research Locker/INcubator (MERLIN) 1
 - Freezer/refrigerator or incubator that can be used for a variety of experiments.
 - Temperature range for MERLIN is -20 °C (-4 °F) to +48.5 °C (+119 °F).

- Potable Water Dispenser

- Microgravity Experiment Research Locker/INcubator (MERLIN) 2

- COTS UHF Communication System (CUCU)

- GLACIER 2

- Food Warmer
Robonaut Tele-Ops

Amine Swingbed

- Investigation determines if a vacuum-regenerated amine system can effectively remove carbon dioxide (CO\textsubscript{2}) from the ISS atmosphere using a smaller more efficient vacuum regeneration system.
EXPRESS – EXpedite the PRocessing of Experiments for Space Station – Research Accommodations

EXPRESS 8/2 Configuration
- **International Standard Payload Rack**
- **Secondary Structure & Subsystems**

8/2 Payload Configuration (8 ISS Lockers, 2 ISIS Drawers)

ISS Locker
P/N SEG46117022

- **Features**
 - 4 rear captive fastener attachments
 - Friction hinge
 - Dual door locks
 - Installation tool guides on 4 corners
 - Weight – 13 lbs empty
 - Volume – 2 ft³

International Subrack Interface
Standard Drawer
- **Powered** P/N 683-43650
- **Stowage** P/N 683-43656

EXPRESS Laptop Computer
- **Features**
 - 4 PU (Panel Unit)
 - Blind Connectors
 - Locking Handles
 - Weight – 26 lbs empty
 - Volume – 1.26 ft³

EXPRESS Functional Interfaces

<table>
<thead>
<tr>
<th>Type</th>
<th>Total EXPRESS Rack Accommodations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural</td>
<td>8 Lockers & 2 4-PU ISIS Drawers</td>
</tr>
<tr>
<td>Power</td>
<td>2000 W 28 VDC power to payloads</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>2000 W payload heat rejection</td>
</tr>
<tr>
<td>Air/water combined (1200 W air)</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>10 – RS-422; 10 – Ethernet;</td>
</tr>
<tr>
<td></td>
<td>18 – Analog; 28 – Discrete (bi-dir)</td>
</tr>
<tr>
<td>Video*</td>
<td>1 – NTSC feed from each payload</td>
</tr>
<tr>
<td>Vacuum Exhaust</td>
<td>1 – Payload connection</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1 – Payload connection</td>
</tr>
</tbody>
</table>

EXPRESS Laptop Computer
- **Power**
 - 28 VDC (+1.5/-2.5)
 - 5/10/15/20 Amps
- **MIL-STD-1553**
- **HRDL**
- **IVS**
- **Ethernet (10bT)**
- **Vacuum Exhaust**
 - GN₂
 - MTL Water (200lbm/hr)
- **Gaseous Nitrogen**
- **PEHB**

EXPRESS 8/2 Functional Block Diagram

- **SSPCM**
- **RIC**
- **PEHB**
- **AAA**

EXPRESS 8/2 Functional Block Diagram

- **ISS Locker Position Accommodations**
- **4-PU Drawer Position Accommodations**

<table>
<thead>
<tr>
<th>ISS Locker Position Accommodations</th>
<th>4-PU Drawer Position Accommodations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass vehicle dependent</td>
<td>64 lb total within cg constraints</td>
</tr>
<tr>
<td>5/10/15/20 Amps (@28 VDC)</td>
<td>5/10/15/20 Amps (@28 VDC)</td>
</tr>
<tr>
<td>Nominal – 150 W (Ducted Air)</td>
<td>Nominal – 150 W (Ducted Air)</td>
</tr>
<tr>
<td>500 W – 2 positions (Water)</td>
<td>500 W – 2 positions (Water)</td>
</tr>
<tr>
<td>1 – RS-422; 1 – Ethernet;</td>
<td>1 – RS-422; 1 – Ethernet;</td>
</tr>
<tr>
<td>1 – Analog; 3 – Discrete</td>
<td>1 – Analog; 2 – Discrete</td>
</tr>
<tr>
<td>1 – NTSC/170A feed - Shared</td>
<td>1 – NTSC/170A feed - Shared</td>
</tr>
<tr>
<td>1 – Shared</td>
<td>1 – Shared</td>
</tr>
<tr>
<td>1 – Shared (0 – 12 lbm/hr)</td>
<td>1 – Shared (0 – 12 lbm/hr)</td>
</tr>
</tbody>
</table>

* Digitized Payload Video may be included in ethernet telemetry

** Grayed-out Accommodations are not supported with the Lean Payload Integration approach
EXPRESS Subsystems

Rack Rear View
EXPRESS Rack Connector Panels

Upper Connector Panel
- **Power Ports**
- **SAMS Data Ports**
- **Data Ports**
- **ELC Video/Data/Ethernet/Power**
- **Power Switches**
- **Vacuum Waste Gas**
- **Nitrogen**
- **Water Supply & Return**
- **LEDs**
- **Smoke Indication LED & Fire Port (PFE Access)**

Lower Connector Panel
EXPRESS Topology - Legend

- Stowage Locker
- Location reserved for Lean Payloads
- Payload Insert (Payload inserted into ISS Locker or ISIS Drawer)
- Locker Replacement Payload
- ISIS Drawer
- Drawer Replacement Payload

- requires water (TCS)
- requires EXPRESS Rack provided power
- requires EXPRESS Rack provided data connection
- Front Breather payload
- deployed payload
- power resource utilized

NLP - National Lab Payload
ISS Topology at Assembly Complete

Columbus Orbital Facility

Node 2

US Lab

Japanese Experiment Module

EXPRESS Racks
NASA Payload Racks
EXPRESS Subsystems

- **EMU: EXPRESS Memory Unit**
 - 320 MB solid state memory device that stores RIC boot-up and payload configuration data

- **PEHB: Payload Ethernet Hub Bridge**
 - Provides primary means of communication between EXPRESS rack, the payloads, and the ISS.
 - Provides 10 Mbps Ethernet data packet transfer between payloads, laptops, and the RIC and provides a bridge to the ISS LANs for telemetry downlink.
 - Command and data interface to EXPRESS laptop.

- **SAMS-II RTS-EE: Space Acceleration Measurement System Remote Triaxial System Electronics Enclosure (ARIS only)**
EXPRESS Project

• Manage engineering integration activities for the EXPRESS Racks.
• Review and submit the integrated EXPRESS Safety Data Package.
• Review and approve EXPRESS generic and payload-unique documentation and engineering integration products.
 – EXPRESS rack to payload hardware and software ICDs, IDD, IRD, PVP
 – ICD PIRNs, Exceptions, Verification
 – Stage Analysis/Guidelines & Constraints, On-Orbit Topology Config. Drawings
 – Review and sign CEFs for EXPRESS hardware manifests
• Facilitate identification and coordinate resolution of EXPRESS issues.
• Perform Mission/Stage Management & ensure accurate and complete accomplishment of CoFR activities for all launched and on-orbit EXPRESS hardware.
• Coordinate EXPRESS Project support for subrack payload development.
 – Review Payload Integration Agreements (PIAs)
 • Notify PSS manager of requested GSE and GFE (Connectors, QDs, Simulators, etc)
 – Facilitate EXPRESS Rack interface TIMs, as needed
 – Coordinate development and interface testing with Functional Checkout Unit
 • Support EXPRESS Integration Readiness Review (EIRR)